Skip to main content

Bacterial, Chlamydial, and Mycobacterial Infections

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

The ocular surface is a complex biological structure responsible for the maintenance of corneal clarity, as well as protection of the eye against microbial and mechanical insults. In addition to serving as a physical barrier to the external environment, it has an important role in innate and adaptive immunity. The commensal flora that exist on the ocular surface have a protective role in preventing the proliferation of pathogenic species, and any alteration that disturbs the homeostatic microbiome may lead to ocular pathologies. For the purpose of this review, the ocular surface will be defined as consisting of the conjunctiva, cornea, and tear film. The ocular surface has both specific and nonspecific defense mechanisms to prevent microbial and viral infections. Worldwide, bacteria are the major contributor of ocular infections. They are associated with many types of ocular infections and with many factors including contact lenses, trauma, surgery, and age. If left untreated, they can lead to visual impairment and blindness. Diseases that affect the conjunctiva and cornea will be discussed with a focus on bacterial conjunctivitis and keratitis.

Bacterial conjunctivitis , inflammation of the mucosa of conjunctiva, is commonly seen in children but is present among neonates and adults. In neonates, the most common cause of conjunctivitis is infection by Chlamydia trachomatis. After cataracts, bacterial keratitis, inflammation of the cornea, is the second-largest cause of legal blindness worldwide. Corneal injury, surgery trauma, dry eyes, and contact lens wear are the most common predisposing factors for keratitis. The most common pathogenic bacteria associated with bacterial keratitis are Staphylococcus aureus and, for contact lens wearers, Pseudomonas aeruginosa. With the increasing use of LASIK, nontuberculous mycobacterial keratitis, while rare, maybe increasing in frequency. Infectious keratitis can progress rapidly and generally requires urgent therapy to eliminate the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Mannis MJ, Smolin G. Natural defense mechanisms of the ocular surface. In: Pepose JS, Holland GN, Wilhemus KR, editors. Ocular infection and immunity. St Louis: Mosby; 1996. p. 185–90.

    Google Scholar 

  2. Akpek EK, Gottsch JD. Immune defense at the ocular surface. Eye. 2003;17:949–56.

    Article  CAS  PubMed  Google Scholar 

  3. Osato MS. Normal ocular flora. In: Pepose JS, Holland GN, Wilhemus KR, editors. Ocular infection and immunity. St Louis: Mosby; 1996. p. 191–9.

    Google Scholar 

  4. Singer TR, Isenberg SJ, Apt L. Conjunctival anaerobic and aerobic bacterial flora in paediatric versus adult subjects. Br J Ophthalmol. 1988;72:448–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parmar P, et al. Microbial keratitis at extremes of age. Cornea. 2006;25:153–8.

    Article  PubMed  Google Scholar 

  6. O’Brien TP, Hazlett LD. Pathogenesis of ocular infection. In: Pepose JS, Holland GN, Wilhemus KR, editors. Ocular infection and immunity. St Louis: Mosby; 1996. p. 200–14.

    Google Scholar 

  7. O’Brien TP. Management of bacterial keratitis: beyond exorcism towards consideration of organism and host factors. Eye. 2003;17:957–74.

    Article  PubMed  Google Scholar 

  8. Zegans ME, et al. The role of bacterial biofilms in ocular infections. DNA Cell Biol. 2002;21:415–20.

    Article  CAS  PubMed  Google Scholar 

  9. Engel LS, et al. Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest Ophthalmol Vis Sci. 1998;39:662–5.

    CAS  PubMed  Google Scholar 

  10. Matsumoto K. Role of bacterial proteases in pseudomonal and serratial keratitis. Biol Chem. 2004;385:1007–16.

    Article  CAS  PubMed  Google Scholar 

  11. Dajcs JJ, et al. Corneal virulence of Staphylococcus aureus in an experimental model of keratitis. DNA Cell Biol. 2002;21:375–82.

    Article  CAS  PubMed  Google Scholar 

  12. Dana MR, Qian Y, Hamrah P. Twenty-five-year panorama of corneal immunology: emerging concepts in the immunopathogenesis of microbial keratitis, peripheral ulcerative keratitis, and corneal transplant rejection. Cornea. 2000;19:625–43.

    Article  CAS  PubMed  Google Scholar 

  13. Hazlett LD. Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res. 2004;23:1–30.

    Article  CAS  PubMed  Google Scholar 

  14. McDonnell PJ, et al. Community care of corneal ulcers. Am J Ophthalmol. 1992;114:531–8.

    Article  CAS  PubMed  Google Scholar 

  15. Charukamnoetkanok P, Pineda R II. Controversies in management of bacterial keratitis. Int Ophthalmol Clin. 2005;45:199–210.

    Article  PubMed  Google Scholar 

  16. Badenoch PR, Coster DJ. Antimicrobial activity of topical anaesthetic preparations. Br J Ophthalmol. 1982;66:364–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Brien TP. Bacterial keratitis. In: Foster CS, Azar DT, Dohlman CH, editors. Smolin and Thoft’s the cornea. Philadelphia: William & Wilkins; 2005. p. 235–88.

    Google Scholar 

  18. Alexandrakis G, et al. Corneal biopsy in the management of progressive microbial keratitis. Am J Ophthalmol. 2000;129:571–6.

    Article  CAS  PubMed  Google Scholar 

  19. Seal DV, Barrett SP, McGill JI. Aetiology and treatment of acute bacterial infection of the external eye. Br J Ophthalmol. 1982;66:357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gigliotti F, et al. Etiology of acute conjunctivitis in children. J Pediatr. 1981;98:531–6.

    Article  CAS  PubMed  Google Scholar 

  21. Bodor FF, et al. Bacterial etiology of conjunctivitis-otitis media syndrome. Pediatrics. 1985;76:26–8.

    CAS  PubMed  Google Scholar 

  22. Centers for Disease Control (CDC). Brazilian purpuric fever: Haemophilus aegyptius bacteremia complicating purulent conjunctivitis. MMWR Morb Mortal Wkly Rep. 1986;35:553–4.

    Google Scholar 

  23. Gigliotti F, et al. Efficacy of topical antibiotic therapy in acute conjunctivitis in children. J Pediatr. 1984;104:623–6.

    Article  CAS  PubMed  Google Scholar 

  24. Leibowitz HM. Antibacterial effectiveness of ciprofloxacin 0.3% ophthalmic solution in the treatment of bacterial conjunctivitis. Am J Ophthalmol. 1991;112(4 Suppl):29S–33S.

    CAS  PubMed  Google Scholar 

  25. Fraunfelder FT, Bagby GC Jr, Kelly DJ. Fatal aplastic anemia following topical administration of ophthalmic chloramphenicol. Am J Ophthalmol. 1982;93:356–60.

    Article  CAS  PubMed  Google Scholar 

  26. Barquet N, et al. Primary meningococcal conjunctivitis: report of 21 patients and review. Rev Infect Dis. 1990;12:838–47.

    Article  CAS  PubMed  Google Scholar 

  27. Haimovici R, Roussel TJ. Treatment of gonococcal conjunctivitis with single-dose intramuscular ceftriaxone. Am J Ophthalmol. 1989;107:511–4.

    Article  CAS  PubMed  Google Scholar 

  28. CDC. Sexually transmitted diseases treatment guidelines, 2015. MMWR Morb Mortal Wkly Rep. 2015;64:1–137.

    Google Scholar 

  29. Judson FN. The importance of coexisting syphilitic, chlamydial, mycoplasmal, and trichomonal infections in the treatment of gonorrhea. Sex Trans Dis. 1979;6(2 Suppl):112–9.

    Article  CAS  Google Scholar 

  30. Orden B, et al. Primary meningococcal conjunctivitis. Clin Microbiol Infect. 2003;9:1245–7.

    Article  CAS  PubMed  Google Scholar 

  31. Andreoli CM, et al. Primary meningococcal conjunctivitis in an adult. Cornea. 2004;23:738–9.

    Article  PubMed  Google Scholar 

  32. Rosenstein NE, et al. Meningococcal disease. N Engl J Med. 2001;344:1378–88.

    Article  CAS  PubMed  Google Scholar 

  33. Hammerschlag MR, Rapoza P. Neonatal conjunctivitis. In: Pepose JS, Holland GN, Wilhemus KR, editors. Ocular infection and immunity. St Louis: Mosby; 1996. p. 831–42.

    Google Scholar 

  34. Nishida H, Risemberg HM. Silver nitrate ophthalmic solution and chemical conjunctivitis. Pediatrics. 1975;56:368–73.

    Article  CAS  PubMed  Google Scholar 

  35. Roblin PM, et al. Comparison of two rapid microscopic methods and culture for detection of Chlamydia trachomatis in ocular and nasopharyngeal specimens from infants. J Clin Microbiol. 1989;27:968–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stenberg K, et al. Culture, ELISA and immunofluorescence tests for the diagnosis of conjunctivitis caused by Chlamydia trachomatis in neonates and adults. Apmis. 1990;98:514–20.

    Article  CAS  PubMed  Google Scholar 

  37. Talley AR, et al. The use of polymerase chain reaction for the detection of chlamydial keratoconjunctivitis. Am J Ophthalmol. 1992;114:685–92.

    Article  CAS  PubMed  Google Scholar 

  38. Hammerschlag MR, et al. Efficacy of neonatal ocular prophylaxis for the prevention of chlamydial and gonococcal conjunctivitis. N Engl J Med. 1989;320:769–72.

    Article  CAS  PubMed  Google Scholar 

  39. Benevento WJ, et al. The sensitivity of Neisseria gonorrhoeae, Chlamydia trachomatis, and herpes simplex type II to disinfection with povidone-iodine. Am J Ophthalmol. 1990;109:329–33.

    Article  CAS  PubMed  Google Scholar 

  40. Isenberg SJ, Apt L, Wood M. A controlled trial of povidone-iodine as prophylaxis against ophthalmia neonatorum. N Engl J Med. 1995;332:562–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lietman T, et al. Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin Infect Dis. 1998;26:1335–40.

    Article  CAS  PubMed  Google Scholar 

  42. Mabey DC, Solomon AW, Foster A. Trachoma. Lancet. 2003;362:223–9.

    Article  PubMed  Google Scholar 

  43. Allen SK, Semba RD. The trachoma menace in the United States, 1897–1960. Surv Ophthalmol. 2002;47:500–9.

    Article  PubMed  Google Scholar 

  44. Miller K, et al. Pesky trachoma suspect finally caught. Br J Ophthalmol. 2004;88:750–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Solomon AW, et al. Diagnosis and assessment of trachoma. Clin Microbiol Rev. 2004;17:982–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dawson CR, Jones BR, Tarizzo ML. Guide to trachoma control in programs for the prevention of blindness. Geneva: World Health Organization; 1981.

    Google Scholar 

  47. Thylefors B, et al. A simple system for the assessment of trachoma and its complications. Bull World Health Organ. 1987;65:477–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Uyeda CT, et al. Rapid diagnosis of chlamydial infections with the MicroTrak direct test. J Clin Microbiol. 1984;20:948–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mabey DC, Robertson JN, Ward ME. Detection of Chlamydia trachomatis by enzyme immunoassay in patients with trachoma. Lancet. 1987;2:1491–2.

    Article  CAS  PubMed  Google Scholar 

  50. Report of the Second Meeting of the WHO Alliance for the Global Elimination of Trachoma. Geneva: World Health Organization; 1998.

    Google Scholar 

  51. Reacher MH, et al. A controlled trial of surgery for trachomatous trichiasis of the upper lid. Arch Ophthalmol. 1992;110:667–74.

    Article  CAS  PubMed  Google Scholar 

  52. Report of the Eighth Meeting of the WHO Alliance for the Global Elimination of Blinding Trachoma. Geneva: World Health Organization; 2004.

    Google Scholar 

  53. Solomon AW, et al. Mass treatment with single-dose azithromycin for trachoma. N Engl J Med. 2004;351:1962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chidambaram JD, et al. Effect of a single mass antibiotic distribution on the prevalence of infectious trachoma. JAMA. 2006;295:1142–6.

    Article  CAS  PubMed  Google Scholar 

  55. Katusic D, et al. Azithromycin vs doxycycline in the treatment of inclusion conjunctivitis. Am J Ophthalmol. 2003;135:447–51.

    Article  CAS  PubMed  Google Scholar 

  56. Siganos CS, Solomon A, Frucht-Pery J. Microbial findings in suture erosion after penetrating keratoplasty. Ophthalmology. 1997;104:513–6.

    Article  CAS  PubMed  Google Scholar 

  57. Sampath R, Ridgway AE, Leatherbarrow B. Bacterial keratitis following excimer laser photorefractive keratectomy: a case report. Eye. 1994;8(Pt 4):481–2.

    Article  PubMed  Google Scholar 

  58. Laspina F, et al. Epidemiological characteristics of microbiological results on patients with infectious corneal ulcers: a 13-year survey in Paraguay. Graefes Arch Clin Exp Ophthalmol. 2004;242:204–9.

    Article  PubMed  Google Scholar 

  59. Dixon JM, et al. Complications associated with the wearing of contact lenses. JAMA. 1966;195:901–3.

    Article  CAS  PubMed  Google Scholar 

  60. Alfonso E, et al. Ulcerative keratitis associated with contact lens wear. Am J Ophthalmol. 1986;101:429–33.

    Article  CAS  PubMed  Google Scholar 

  61. Schein OD, et al. The incidence of microbial keratitis among wearers of a 30-day silicone hydrogel extended-wear contact lens. Ophthalmology. 2005;112:2172–9.

    Article  PubMed  Google Scholar 

  62. Driebe WT Jr. Present status of contact lens-induced corneal infections. Ophthalmol Clin North Am. 2003;16:485–94, viii.

    Article  PubMed  Google Scholar 

  63. Mah-Sadorra JH, et al. Trends in contact lens-related corneal ulcers. Cornea. 2005;24:51–8.

    Article  PubMed  Google Scholar 

  64. Liesegang TJ. Contact lens-related microbial keratitis. Part I. Epidemiology. Cornea. 1997;16:125–31.

    CAS  PubMed  Google Scholar 

  65. Liesegang TJ. Contact lens-related microbial keratitis. Part II. Pathophysiology. Cornea. 1997;16:265–273.

    Google Scholar 

  66. Hsiao CH, et al. Infectious keratitis related to overnight orthokeratology. Cornea. 2005;24:783–8.

    Article  PubMed  Google Scholar 

  67. Keay L, et al. Microbial keratitis predisposing factors and morbidity. Ophthalmology. 2006;113:109–16.

    Article  PubMed  Google Scholar 

  68. Bourcier T, et al. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol. 2003;87:834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goldstein MH, Kowalski RP, Gordon YJ. Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year review. Ophthalmology. 1999;106:1313–8.

    Article  CAS  PubMed  Google Scholar 

  70. Forster RK. Conrad Berens Lecture. The management of infectious keratitis as we approach the 21st century. CLAO J. 1998;24:175–80.

    CAS  PubMed  Google Scholar 

  71. Sun X, et al. Distribution and shifting trends of bacterial keratitis in north China (1989–98). Br J Ophthalmol. 2004;88:165–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cohen EJ, et al. Corneal ulcers associated with cosmetic extended wear soft contact lenses. Ophthalmology. 1987;94:109–14.

    Article  CAS  PubMed  Google Scholar 

  73. Cohen EJ, et al. Trends in contact lens-associated corneal ulcers. Cornea. 1996;15:566–70.

    Article  CAS  PubMed  Google Scholar 

  74. Alexandrakis G, Alfonso EC, Miller D. Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones. Ophthalmology. 2000;107:1497–502.

    Article  CAS  PubMed  Google Scholar 

  75. Solomon R, et al. Infectious keratitis after laser in situ keratomileusis: results of an ASCRS survey. J Cataract Refract Surg. 2003;29:2001–6.

    Article  PubMed  Google Scholar 

  76. Freitas D, et al. An outbreak of Mycobacterium chelonae infection after LASIK. Ophthalmology. 2003;110:276–85.

    Article  PubMed  Google Scholar 

  77. Chang MA, Jain S, Azar DT. Infections following laser in situ keratomileusis: an integration of the published literature. Surv Ophthalmol. 2004;49:269–80.

    Article  PubMed  Google Scholar 

  78. Sridhar MS, et al. Infectious crystalline keratopathy in an immunosuppressed patient. CLAO J. 2001;27:108–10.

    CAS  PubMed  Google Scholar 

  79. Sharma N, et al. Infectious crystalline keratopathy. CLAO J. 2000;26:40–3.

    CAS  PubMed  Google Scholar 

  80. Khater TT, Jones DB, Wilhelmus KR. Infectious crystalline keratopathy caused by gram-negative bacteria. Am J Ophthalmol. 1997;124:19–23.

    Article  CAS  PubMed  Google Scholar 

  81. Alvarenga L, et al. Infectious post-LASIK crystalline keratopathy caused by nontuberculous mycobacteria. Cornea. 2002;21:426–9.

    Article  PubMed  Google Scholar 

  82. Raber IM, et al. Pseudomonas corneoscleral ulcers. Am J Ophthalmol. 1981;92:353–62.

    Article  CAS  PubMed  Google Scholar 

  83. Mah-Sadorra JH, et al. Serratia corneal ulcers: a retrospective clinical study. Cornea. 2005;24:793–800.

    Article  PubMed  Google Scholar 

  84. Pinna A, et al. Detection of virulence factors in a corneal isolate of Klebsiella pneumoniae. Ophthalmology. 2005;112:883–7.

    Article  PubMed  Google Scholar 

  85. Marioneaux SJ, et al. Moraxella keratitis. Cornea. 1991;10:21–4.

    Article  CAS  PubMed  Google Scholar 

  86. Garg P, et al. Treatment outcome of Moraxella keratitis: our experience with 18 cases – a retrospective review. Cornea. 1999;18:176–81.

    Article  CAS  PubMed  Google Scholar 

  87. Choudhuri KK, et al. Clinical and microbiological profile of Bacillus keratitis. Cornea. 2000;19:301–6.

    Article  CAS  PubMed  Google Scholar 

  88. Donzis PB, Mondino BJ, Weissman BA. Bacillus keratitis associated with contaminated contact lens care systems. Am J Ophthalmol. 1988;105:195–7.

    Article  CAS  PubMed  Google Scholar 

  89. Pinna A, et al. Bacillus cereus keratitis associated with contact lens wear. Ophthalmology. 2001;108:1830–4.

    Article  CAS  PubMed  Google Scholar 

  90. Chandler JW, Milam DF. Diphtheria corneal ulcers. Arch Ophthalmol. 1978;96:53–6.

    Article  CAS  PubMed  Google Scholar 

  91. Stern GA, Hodes BL, Stock EL. Clostridium perfringens corneal ulcer. Arch Ophthalmol. 1979;97:661–3.

    Article  CAS  PubMed  Google Scholar 

  92. Brook I. Ocular infections due to anaerobic bacteria. Int Ophthalmol. 2001;24:269–77.

    Article  CAS  PubMed  Google Scholar 

  93. Underdahl JP, et al. Propionibacterium acnes as a cause of visually significant corneal ulcers. Cornea. 2000;19:451–4.

    Article  CAS  PubMed  Google Scholar 

  94. Sridhar MS, et al. Ocular nocardia infections with special emphasis on the cornea. Surv Ophthalmol. 2001;45:361–78.

    Article  CAS  PubMed  Google Scholar 

  95. Sudesh S, et al. Mycobacterium chelonae infection in a corneal graft. Arch Ophthalmol. 2000;118:294–5.

    Article  CAS  PubMed  Google Scholar 

  96. Servat JJ, et al. Mycobacterium chelonae–Mycobacterium abscessus complex clear corneal wound infection with recurrent hypopyon and perforation after phacoemulsification and intraocular lens implantation. J Cataract Refract Surg. 2005;31:1448–51.

    Article  PubMed  Google Scholar 

  97. Mah-Sadorra JH, Cohen EJ, Rapuano CJ. Mycobacterium chelonae wound ulcer after clear-cornea cataract surgery. Arch Ophthalmol. 2004;122:1888–9.

    Article  PubMed  Google Scholar 

  98. Malecha MA, Doughman DJ. Mycobacterium chelonae keratitis associated with soft contact lens wear. CLAO J. 2002;28:228–30.

    PubMed  Google Scholar 

  99. O’Brien TP, Matoba AY. Nontuberculous mycobacterial diseases. In: Pepose JS, Holland GN, Wilhemus KR, editors. Ocular infection & immunity. St Louis: Mosby; 1996. p. 1033–41.

    Google Scholar 

  100. Chandra NS, et al. Cluster of Mycobacterium chelonae keratitis cases following laser in-situ keratomileusis. Am J Ophthalmol. 2001;132:819–30.

    Article  CAS  PubMed  Google Scholar 

  101. Holmes GP, et al. A Cluster of cases of Mycobacterium szulgai keratitis that occurred after laser-assisted in situ keratomileusis. Clin Infect Dis. 2002;34:1039–46.

    Article  PubMed  Google Scholar 

  102. John T, Velotta E. Nontuberculous (atypical) mycobacterial keratitis after LASIK: current status and clinical implications. Cornea. 2005;24:245–55.

    Article  PubMed  Google Scholar 

  103. Fulcher SF, et al. Delayed-onset mycobacterial keratitis after LASIK. Cornea. 2002;21:546–54.

    Article  PubMed  Google Scholar 

  104. Umapathy T, et al. Non-tuberculous mycobacteria related infectious crystalline keratopathy. Br J Ophthalmol. 2005;89:1374–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garg P, Athmanathan S, Rao GN. Mycobacterium chelonei masquerading as Corynebacterium in a case of infectious keratitis: a diagnostic dilemma. Cornea. 1998;17:230–2.

    Article  CAS  PubMed  Google Scholar 

  106. Baum J, Barza M. Topical vs subconjunctival treatment of bacterial corneal ulcers. Ophthalmology. 1983;90:162–8.

    Article  CAS  PubMed  Google Scholar 

  107. Willoughby CE, Batterbury M, Kaye SB. Collagen corneal shields. Surv Ophthalmol. 2002;47:174–82.

    Article  CAS  PubMed  Google Scholar 

  108. Kalayci D, et al. Penetration of topical ciprofloxacin by presoaked medicated soft contact lenses. CLAO J. 1999;25:182–4.

    CAS  PubMed  Google Scholar 

  109. O’Brien TP, et al. Efficacy of ofloxacin vs cefazolin and tobramycin in the therapy for bacterial keratitis. Report from the Bacterial Keratitis Study Research Group. Arch Ophthalmol. 1995;113:1257–65.

    Article  PubMed  Google Scholar 

  110. Ofloxacin monotherapy for the primary treatment of microbial keratitis: a double-masked, randomized, controlled trial with conventional dual therapy. The Ofloxacin Study Group. Ophthalmology. 1997;104:1902–9.

    Google Scholar 

  111. Hyndiuk RA, et al. Comparison of ciprofloxacin ophthalmic solution 0.3% to fortified tobramycin-cefazolin in treating bacterial corneal ulcers. Ciprofloxacin Bacterial Keratitis Study Group. Ophthalmology. 1996;103:1854–62; discussion 1862–1863.

    Article  CAS  PubMed  Google Scholar 

  112. Marangon FB, et al. Ciprofloxacin and levofloxacin resistance among methicillin-sensitive Staphylococcus aureus isolates from keratitis and conjunctivitis. Am J Ophthalmol. 2004;137:453–8.

    Article  CAS  PubMed  Google Scholar 

  113. Garg P, Sharma S, Rao GN. Ciprofloxacin-resistant Pseudomonas keratitis. Ophthalmology. 1999;106:1319–23.

    Article  CAS  PubMed  Google Scholar 

  114. Chaudhry NA, et al. Emerging ciprofloxacin-resistant Pseudomonas aeruginosa. Am J Ophthalmol. 1999;128:509–10.

    Article  CAS  PubMed  Google Scholar 

  115. Kowalski RP, et al. Gatifloxacin and moxifloxacin: an in vitro susceptibility comparison to levofloxacin, ciprofloxacin, and ofloxacin using bacterial keratitis isolates. Am J Ophthalmol. 2003;136:500–5.

    Article  CAS  PubMed  Google Scholar 

  116. Parmar P, et al. Comparison of topical gatifloxacin 0.3% and ciprofloxacin 0.3% for the treatment of bacterial keratitis. Am J Ophthalmol. 2006;141:282–6.

    Article  CAS  PubMed  Google Scholar 

  117. Dajcs JJ, et al. Effectiveness of ciprofloxacin, levofloxacin, or moxifloxacin for treatment of experimental Staphylococcus aureus keratitis. Antimicrob Agents Chemother. 2004;48:1948–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aliprandis E, et al. Comparative efficacy of topical moxifloxacin versus ciprofloxacin and vancomycin in the treatment of P. aeruginosa and ciprofloxacin-resistant MRSA keratitis in rabbits. Cornea. 2005;24:201–5.

    Article  PubMed  Google Scholar 

  119. Karp CL, et al. Infectious keratitis after LASIK. Ophthalmology. 2003;110:503–10.

    Article  PubMed  Google Scholar 

  120. Abshire R, et al. Topical antibacterial therapy for mycobacterial keratitis: potential for surgical prophylaxis and treatment. Clin Ther. 2004;26:191–6.

    Article  CAS  PubMed  Google Scholar 

  121. Hyon JY, et al. Comparative efficacy of topical gatifloxacin with ciprofloxacin, amikacin, and clarithromycin in the treatment of experimental Mycobacterium chelonae keratitis. Arch Ophthalmol. 2004;122:1166–9.

    Article  CAS  PubMed  Google Scholar 

  122. Wilhelmus KR. Indecision about corticosteroids for bacterial keratitis: an evidence-based update. Ophthalmology. 2002;109:835–42; quiz 843.

    Article  PubMed  Google Scholar 

  123. Burns RP. Pseudomonas aeruginosa keratitis: mixed infections of the eye. Am J Ophthalmol. 1969;67:257–62.

    Article  CAS  PubMed  Google Scholar 

  124. Harbin T. Recurrence of a corneal pseudomonas infection after topical steroid therapy: report of a case. Am J Ophthalmol. 1964;58:670–4.

    Article  CAS  PubMed  Google Scholar 

  125. Stern GA, Buttross M. Use of corticosteroids in combination with antimicrobial drugs in the treatment of infectious corneal disease. Ophthalmology. 1991;98:847–53.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • RFS1. Yeu E, Hauswirth SA. Review of the differential diagnosis of acute infectious conjunctivitis: implications for treatment and management. Clin Ophthalmol. 2020;14:805–813

    Google Scholar 

  • RFS2. Azari AA, Barney NP. Conjunctivitis: a systematic review of diagnosis and treatment. JAMA 2013;310(16):1721–1729.

    Google Scholar 

  • RFS3. Bolaños-Jiménez R, Navas A, López-Lizárraga EP, et al. Ocular surface as barrier of innate immunity. Open Ophthalmol J. 2015;9:49–55.

    Google Scholar 

  • RFS4. McDermott AM. Antimicrobial compounds in tears. Exp Eye Res. 2013;117:53–61.

    Google Scholar 

  • RFS5. Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR, Beuerman RW. In-depth analysis of the human tear proteome. J Proteomics. 2012 Jul 16;75(13):3877–3885.

    Google Scholar 

  • RFS6. Hodges RR, Dartt DA. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res. 2013;117:62–78.

    Google Scholar 

  • RFS7. McGilligan VE, Gregory-Ksander MS, Li D, et al. Staphylococcus aureus activates the NLRP3 inflammasome in human and rat conjunctival goblet cells. PLoS One. 2013;8(9):e74010

    Google Scholar 

  • RFS8. Knop E, Knop N. Anatomy and immunology of the ocular surface. Chem Immunol Allergy. 2007;92:36–49.

    Google Scholar 

  • RFS9. Akpek EK, Gottsch JD. Immune of defense at the ocular surface. Eye. 2003;17(8):949–956.

    Google Scholar 

  • RFS9b. O’Callaghan RJ. The pathogenesis of Staphylococcus aureus eye infections. Pathogens. 2018;7(1):9.

    Google Scholar 

  • RFS10. Miller D, Iovieno A. The role of microbial flora on the ocular surface. Curr Opin Allergy Clin Immunol. 2009;9:466–470.

    Google Scholar 

  • RFS11. Willcox MDP. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99–105.

    Google Scholar 

  • RFS12. Dong BJ, Iovieno A, Bates B, Garoutte A, Miller D, Revanna KV, Gao X, Antonopoulos DA, Slepak VZ, Shestopalov VI. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci. 2011;52(8):5408–5413.

    Google Scholar 

  • RFS13. Lu LJ, Liu J. Human microbiota and ophthalmic disease. Yale J Biol Med. 2016 Sep 30;89(3):325–330.

    Google Scholar 

  • RFS14. Doan T, Akileswaran L, Andersen D, Johnson B, Ko N, Shrestha A, Shestopalov V, Lee CS, Lee AY, Van Gelder RN. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest Ophthalmol Vis Sci. 2016;57:5116–5126.

    Google Scholar 

  • RFS15. Baim AD, Movahedan A, Farooq AV, Skondra D. The microbiome and ophthalmic disease. Exp Biol Med. 2019;244:419–29.

    Google Scholar 

  • RFS16. Wen X, Miao L, Deng Y, et al. The influence of age and sex on ocular surface microbiota in healthy adults. Invest Ophthalmol Vis Sci. 2017;58:6030–6037.

    Google Scholar 

  • RFS16a. Mah FS, Davidson R, Holland EJ, et al. Current knowledge about and recommendations for ocular methicillin-resistant Staphylococcus aureus. J Cataract Refract Surg. 2014; 40:1894–1908.

    Google Scholar 

  • RFS17. Willcox M. Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review. Optom Vis Sci. 2007;84:273–278.

    Google Scholar 

  • RFS18. Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. Chlamydia intracellular survival strategies. Cold Spring Harb Perspect Med. 2013;3:a010256.

    Google Scholar 

  • RFS19. Kowalaski RP. In: Mannis MJ, Holland EJ, editors. Cornea. 4th ed. St. Louis, MO: Elsevier; 2016. p. 123–53.

    Google Scholar 

  • RFS20. Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology. 2017;124(11):1678–1689.

    Google Scholar 

  • RFS21. Thanathanee O, O’Brien TP. Conjunctivitis: systematic approach to diagnosis and therapy. Curr Infect Dis Rep. 2011;13(2):141–148.

    Google Scholar 

  • RFS21b. Goldschmidt P, Rostane H, Saint-Jean C, Batellier L, Alouch C, Zito E, et al. Effects of topical anaesthetics and fluorescein on the real-time PCR used for the diagnosis of Herpes viruses and Acanthamoeba keratitis. Br J Ophthalmol. 2006;90(11):1354–1356.

    Google Scholar 

  • RFS22. American Academy of Ophthalmology Cornea/External Disease Preferred Practice Pattern Panel. Preferred Practice Pattern Guidelines: Conjunctivitis. 2018. https://www.aao.org/preferredpracticepattern/conjunctivitis-ppp-2018.

  • RFS23. Hovding G. Acute bacterial conjunctivitis. Acta Ophthalmol. 2008;86(1):5–17.

    Google Scholar 

  • RFS24. Thanathanee O, O’Brien TP. Conjunctivitis: systematic approach to diagnosis and therapy. Curr Infect Dis Rep. 2011;13(2):141–148.

    Google Scholar 

  • RFS25. Chen F, Chang T, Cavoto K. Patient demographic and microbiology trends in bacterial conjunctivitis in children. J AAPOS. 2018;22(1):66–67.

    Google Scholar 

  • RFS26. Smith AF, Waycaster C. Estimate of the direct and indirect annual cost of bacterial conjunctivitis in the United States. BMC Ophthalmol. 2009;9:13.

    Google Scholar 

  • RFS27. Jefferis J, Perera R, Everitt H, et al. Acute infective conjunctivitis in primary care: who needs antibiotics? An individual patient data meta-analysis. Br J Gen Pract. 2011;61(590):e542–e548.

    Google Scholar 

  • RFS28. Everitt HA, Little PS, Smith PW. A randomised controlled trial of management strategies for acute infective conjunctivitis in general practice. BMJ. 2006;333(7563): 321.

    Google Scholar 

  • RFS29. Dave SB, Toma HS, Kim SJ. Changes in ocular flora in eyes exposed to ophthalmic antibiotics. Ophthalmology. 2013;120:937–941.

    Google Scholar 

  • RFS30. Thomas RK, Melton R, Asbell PA. Antibiotic resistance among ocular pathogens: current trends from the ARMOR surveillance study (2009-2016). Clin Optometry. 2019;11:15–26.

    Google Scholar 

  • RFS31. Yin VT, et al. Antibiotic resistance of ocular surface flora with repeated use of a topical antibiotic after intravitreal injection. JAMA Ophthalmol. 2013;131(4):456–461.

    Google Scholar 

  • RFS32. Olson R, Donnenfeld E, Bucci FA Jr, Price FW Jr, Raizman M, Solomon K, Devgan U, Trattler W, Dell S, Wallace RB. Methicillin resistance of Staphylococcus species among health care and nonhealth care workers undergoing cataract surgery. Clin Ophthalmol. 2010;4:1505.

    Google Scholar 

  • RFS33. Papp JR, Schachter J, Gaydos CA, Van Der Pol B. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae—2014. MMWR Recomm Rep. 2014; 63(RR-2):1–19.

    Google Scholar 

  • RFS34. Workowski KA, Bolan GA; Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015;64(RR-03):1–137.

    Google Scholar 

  • RFS35. Dolange V, Churchward CP, Christodoulides M, Snyder LAS. The growing threat of gonococcal blindness. Antibiotics (Basel). 2018;7(3):59.

    Google Scholar 

  • RFS36. Darling, EK, McDonald, H. A meta-analysis of the efficacy of ocular prophylactic agents used for the prevention of gonococcal and chlamydial ophthalmia neonatorum. J Midwifery Women’s Health. 2010;55:319–327

    Google Scholar 

  • RFS37. Isenberg SJ, Apt L, Valenton M, Del Signore M, Cubillan L, Labrador MA, Chan P, Berman NG. A controlled trial of povidone-iodine to treat infectious conjunctivitis in children. Am J Ophthalmol. 2002;134:681–688.

    Google Scholar 

  • RFS38. David M, Rumelt S, Weintraub Z. Efficacy comparison between povidone iodine 2.5% and tetracycline 1% in prevention of ophthalmia neonatorum. Ophthalmology. 2011;118:1454–1458.

    Google Scholar 

  • RFS39. Mannis MJ, Holland EJ. Cornea. 4th ed. St. Louis, MO: Elsevier; 2016. p. 518–25.

    Google Scholar 

  • RFS40. Kim MC, Okada K, Ryner AM, et al. Sensitivity and specificity of computer vision classification of eyelid photographs for programmatic trachoma assessment. PLoS One. 2019;14(2):e0210463.

    Google Scholar 

  • RFS41. See CW, Alemayehu W, Melese M, et al. How reliable are tests for trachoma? —a latent class approach. Invest Ophthalmol Vis Sci. 2011;52:6133–6137.

    Google Scholar 

  • RFS42. Meyer T. Diagnostic procedures to detect chlamydia trachomatis infections. Microorganisms. 2016;4(3):25.

    Google Scholar 

  • RFS43. Schuurs TA, Verweij SP, Weel JFL, et al. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in an STI population: performances of the Presto CT-NG assay, the Lightmix Kit 480 HT CT/NG and the COBAS Amplicor with urine specimens and urethral/cervicovaginal samples BMJ Open. 2013;3:e003607.

    Google Scholar 

  • RFS44. Yee A. Nepal sees end in sight for trachoma. Lancet. 2012;379:2329–2330.

    Google Scholar 

  • RFS45. Garnock-Jones KP. Azithromycin 1.5% ophthalmic solution: in purulent bacterial or trachomatous conjunctivitis. Drugs. 2012;72:361–373.

    Google Scholar 

  • RFS46. Miller KE. Diagnosis and treatment of Chlamydia trachomatis infection. Am Fam Physician. 2006 Apr 15;73(8):1411–1416.

    Google Scholar 

  • RFS47. Bartimote C, Foster J, Watson S. The spectrum of microbial keratitis: an updated review. Open Ophthalmol J. 2019;13(1):100–30.

    Google Scholar 

  • RFS48. Lin A, Rhee MK, Akpek EK, Amescua G, Farid M, Garcia-Ferrer FJ, Varu DM, Musch DC, Dunn SP, Mah FS. Bacterial keratitis preferred Practice Pattern®. Ophthalmology. 2019;126:P1–P55.

    Google Scholar 

  • RFS49. Tuzhikov A, Panchin A, Thanathanee O, Shalabi N, Nelson D, Akileswaran L, Van Gelder R, O’Brien T, Shestopalov V. Keratitis-induced changes to the homeostatic microbiome at the human cornea. Invest Ophthalmol Vis Sci. 2013;54:2891.

    Google Scholar 

  • RFS50. Srinivasan M, Mascarenhas J, Prashanth CN. Distinguishing infective versus noninfective keratitis. Indian J Ophthalmol. 2008;56:203–207.

    Google Scholar 

  • RFS51. Liu HY, Hopping GC, Vaidyanathan U, Ronquillo YC, Hoopes PC, Moshirfar M. Polymerase chain reaction and its application in the diagnosis of infectious keratitis. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):152–155.

    Google Scholar 

  • RFS52. Garg P. Fungal, mycobacterial, and Nocardia infections and the eye: an update. Eye (Lond). 2012;26(2):245–251.

    Google Scholar 

  • RFS53. McDonald EM, Ram FS, Patel DV, McGhee CN. Topical antibiotics for the management of bacterial keratitis: an evidence-based review of high quality randomised controlled trials. Br J Ophthalmol. 2014;98(11):1470–1477.

    Google Scholar 

  • RFS54. Thompson AM. Ocular toxicity of fluoroquinolones. Clin Exp Ophthalmol. 2007;35:566–577.

    Google Scholar 

  • RFS55. Porter AJ, Lee GA, Jun AS. Infectious crystalline keratopathy. Surv Ophthalmol.2018;63(4):480–499

    Google Scholar 

  • RFS56. Masselos K, Tsang HH, Ooi JL, Sharma NS, Coroneo MT. Laser corneal biofilm disruption for infectious crystalline keratopathy. Clin Exp Ophthalmol. 2009;37:177–80.

    Google Scholar 

  • RFS57. Lalitha P, Srinivasan M, Rajaraman R, et al. Nocardia keratitis: clinical course and effect of corticosteroids. Am J Ophthalmol. 2012;154(6):934–939.

    Google Scholar 

  • RFS58. Srinivasan M, Mascarenhas J, Rajaraman R, et al. Corticosteroids for bacterial keratitis: the Steroids for Corneal Ulcers Trial (SCUT). Arch Ophthalmol. 2012;130(2):143–150.

    Google Scholar 

  • RFS59. Herretes S, Wang X, Reyes JM. Topical corticosteroids as adjunctive therapy for bacterial keratitis. The Cochrane database of systematic reviews. 2014;(10):CD005430; Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology. 2017;124(11):1678–1689.

    Google Scholar 

  • RFS60. Chan TCY, Agarwal T, Vajpayee RB, Jhanji V. Cross-linking for microbial keratitis. Curr Opin Ophthalmol. 2016;27(4):348–52.

    Google Scholar 

  • RFS61. Prajna NV, Radhakrishnan N, Lalitha P, et al. A randomized clinical trial evaluating the effect of adjuvant cross-linking on outcomes in fungal keratitis. Ophthalmology. 2020;127(2):159–166.

    Google Scholar 

  • RFS62. Borroni D, Romano V, Kaye SB, et al. Metagenomics in ophthalmology: current findings and future prospectives [published correction appears in BMJ Open Ophthalmol. 2019 Jun 27;4(1):e000248corr1]. BMJ Open Ophthalmol. 2019;4(1):e000248.

    Google Scholar 

  • RFS63. Abraham S, Juel HB, Bang P, Cheeseman HM, Dohn RB, Cole T, et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2019;19:1091–1100.

    Google Scholar 

  • RFS64. Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S et al. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol. 2019;59:123–133.

    Google Scholar 

  • RFS65. Xiao A, Dhand C, Leung CM, Beuerman RW, Ramakrishna S, Lakshminarayanan R. Strategies to design antimicrobial contact lenses and contact lens cases. J Mater Chem B. 2018;6:2171–86.

    Google Scholar 

  • RFS66. Venkateswaran N, Galor A, Wang J, et al. Optical coherence tomography for ocular surface and corneal diseases: a review. Eye Vis. 2018;5:13.

    Google Scholar 

  • RFS67. Chidambaram JD, Prajna NV, Palepu S, et al. In vivo confocal microscopy cellular features of host and organism in bacterial, fungal, and acanthamoeba keratitis. Am J Ophthalmol. 2018;190:24–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalin M. Kumar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, N.M., Mah, F.S. (2021). Bacterial, Chlamydial, and Mycobacterial Infections. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_210-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_210-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics