Skip to main content

Comprehensive Glaucoma Imaging

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Advancements in ocular imaging over the past four decades have revolutionized glaucoma practice worldwide. As glaucomatous vision loss cannot be restored, early diagnosis, proper management, and timely intervention are essential to slow disease progression. The emergence of advanced computerized imaging modalities has shifted glaucoma assessment from being largely subjective to mostly objective. These modalities can document and accurately quantify the optic nerve head and the macula regions, which are affected by the disease. With various ocular imaging devices evolving over the years, optical coherence tomography (OCT) has become the dominant imaging technology in glaucoma practice. From the first prototype device to the newest swept-source OCT, each generation improved in image acquisition time, scan resolution, and artifact reduction, making structural assessment more accurate and sensitive. This advancement allows clinicians earlier detection of glaucoma diagnosis and increased sensitivity in monitoring of progression enabling timely modification of treatment to halt further damage. Moreover, the introduction of OCT angiography (OCTA) drew attention to the vascular component as an important element in glaucoma pathogenesis. In addition to technical advancements, the imaging field continues to evolve by the incorporation of innovative software such as image processing and artificial intelligence. Taken together, the role of ocular imaging is expected to further expand with a substantial impact on clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Helmholtz J. Beschreiburg eines Augenspiegels zur Untersuchung der Netzhaut in lebenden Augi. Berlin: A Forstner; 1851.

    Google Scholar 

  2. Graefe AV. Ueber die wirkug der Iridectomie bei Glaucom. Arch Ophthalmol. 1857;3:456.

    Google Scholar 

  3. Schnabel I. Die Entwicklungsgeschichte der glaukomatosen Exkavation. Z Augenheilkd. 1905;14:1.

    Google Scholar 

  4. Elliot R. Treatise on glaucoma. London: Henry Fraude and Hodder & Stroughton LTD; 1922. p. 195.

    Google Scholar 

  5. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100(1):135–46.

    PubMed  CAS  Google Scholar 

  6. Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol. 1980;98(9):1564–71.

    PubMed  CAS  Google Scholar 

  7. Lucy KA, Wollstein G. Structural and functional evaluations for the early detection of glaucoma. Expert Rev Ophthalmol. 2016;11(5):367–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Kuang TM, Zhang C, Zangwill LM, Weinreb RN, Medeiros FA. Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology. 2015;122(10):2002–9.

    PubMed  PubMed Central  Google Scholar 

  9. Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123(4):464–70.

    PubMed  PubMed Central  Google Scholar 

  10. Weinreb RN, Zangwill LM, Jain S, Becerra LM, Dirkes K, Piltz-Seymour JR, et al. Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the Ocular Hypertension Treatment Study. Ophthalmology. 2010;117(9):1674–83.

    PubMed  PubMed Central  Google Scholar 

  11. Reus NJ, Lemij HG. Relationships between standard automated perimetry, HRT confocal scanning laser ophthalmoscopy, and GDx VCC scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2005;46(11):4182–8.

    PubMed  Google Scholar 

  12. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet (London, England). 2017;390(10108):2183–93.

    Google Scholar 

  13. Gandhi M, Dubey S. Evaluation of the optic nerve head in glaucoma. J Curr Glaucoma Pract. 2013;7(3):106–14.

    PubMed  PubMed Central  Google Scholar 

  14. Lichter PR. Variability of expert observers in evaluating the optic disc. Trans Am Ophthalmol Soc. 1976;74:532–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Jackman WT, Webster J. On photographing the retina of the living human eye. Phila Photogr. 1886;23:340–1.

    Google Scholar 

  16. Parsons H. The photography of the fundus oculi. Nature. 1906;74:104.

    Google Scholar 

  17. Van Cader T. History of ophthalmic photography. J Ophthal Photogr. 1978;1(1):7.

    Google Scholar 

  18. Spaeth GL, Reddy SC. Imaging of the optic disk in caring for patients with glaucoma: ophthalmoscopy and photography remain the gold standard. Surv Ophthalmol. 2014;59(4):454–8.

    PubMed  Google Scholar 

  19. Tielsch JM, Katz J, Quigley HA, Miller NR, Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology. 1988;95(3):350–6.

    PubMed  CAS  Google Scholar 

  20. Gaasterland DE, Blackwell B, Dally LG, Caprioli J, Katz LJ, Ederer F. The advanced glaucoma intervention study (AGIS): 10. Variability among academic glaucoma subspecialists in assessing optic disc notching. Trans Am Ophthalmol Soc. 2001;99:177–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Reus NJ, Lemij HG, Garway-Heath DF, Airaksinen PJ, Anton A, Bron AM, et al. Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. Ophthalmology. 2010;117(4):717–23.

    PubMed  Google Scholar 

  22. Ervin AM, Boland MV, Myrowitz EH, Prince J, Hawkins B, Vollenweider D, Ward D, et al. Screening for glaucoma: comparative effectiveness. AHRQ Comparative Effectiveness Review. 12:EHC037-EF. Rockville: Agency for Healthcare Research and Quality (US); 2012.

    Google Scholar 

  23. Budenz DL, Anderson DR, Feuer WJ, Beiser JA, Schiffman J, Parrish RK, Piltz-Seymour JR, et al. Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study. Ophthalmology. 2006;113(12):2137–43.

    PubMed  PubMed Central  Google Scholar 

  24. Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, et al. Fundus photography in the 21st century – a review of recent technological advances and their implications for worldwide healthcare. Telemed E-Health. 2016;22(3):198–208.

    Google Scholar 

  25. Myers JS, Fudemberg SJ, Lee D. Evolution of optic nerve photography for glaucoma screening: a review. Clin Exp Ophthalmol. 2018;46(2):169–76.

    PubMed  Google Scholar 

  26. Zheng C, Johnson TV, Garg A, Boland MV. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30(2):97–103.

    PubMed  CAS  Google Scholar 

  27. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.

    PubMed  PubMed Central  Google Scholar 

  28. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125(8):1199–206.

    PubMed  Google Scholar 

  29. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science (New York, NY). 1991;254(5035):1178–81.

    CAS  Google Scholar 

  30. Hougaard JL, Heijl A, Bengtsson B. Glaucoma detection by stratus OCT. J Glaucoma. 2007;16(3):302–6.

    PubMed  Google Scholar 

  31. Parikh RS, Parikh S, Sekhar GC, Kumar RS, Prabakaran S, Babu JG, et al. Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma. Ophthalmology. 2007;114(12):2238–43.

    PubMed  Google Scholar 

  32. Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J. Detection of early glaucoma with optical coherence tomography (Stratus OCT). J Glaucoma. 2008;17(3):183–8.

    PubMed  Google Scholar 

  33. Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R Jr, et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50(12):5741–8.

    PubMed  PubMed Central  Google Scholar 

  34. Dong ZM, Wollstein G, Schuman JS. Clinical utility of optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2016;57(9):OCT556–67.

    PubMed  PubMed Central  Google Scholar 

  35. Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011;95(7):909–14.

    PubMed  Google Scholar 

  36. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116(7):1257–63, 63.e1–2.

    PubMed  Google Scholar 

  37. Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009;93(8):1057–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Mwanza JC, Oakley JD, Budenz DL, Anderson DR. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118(2):241–8.e1.

    PubMed  Google Scholar 

  39. Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118(8):1558–62.

    PubMed  Google Scholar 

  40. Schuman JS. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc. 2008;106:426–58.

    PubMed  PubMed Central  Google Scholar 

  41. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005;112(10):1734–46.

    PubMed  PubMed Central  Google Scholar 

  42. Kostanyan T, Wollstein G, Schuman JS. New developments in optical coherence tomography. Curr Opin Ophthalmol. 2015;26(2):110–5.

    PubMed  PubMed Central  Google Scholar 

  43. Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18(19):20029–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci. 2008;49(11):5103–10.

    PubMed  PubMed Central  Google Scholar 

  45. Fallon M, Valero O, Pazos M, Anton A. Diagnostic accuracy of imaging devices in glaucoma: a meta-analysis. Surv Ophthalmol. 2017;62(4):446–61.

    PubMed  Google Scholar 

  46. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117(9):1692–9.

    PubMed  Google Scholar 

  47. Oddone F, Lucenteforte E, Michelessi M, Rizzo S, Donati S, Parravano M, et al. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology. 2016;123(5):939–49.

    PubMed  Google Scholar 

  48. Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98(Suppl 2):ii15–9.

    PubMed  Google Scholar 

  49. Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM, Sample PA, et al. Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. Invest Ophthalmol Vis Sci. 2010;51(8):4104–9.

    PubMed  PubMed Central  Google Scholar 

  50. Bengtsson B, Andersson S, Heijl A. Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening. Acta Ophthalmol. 2012;90(4):310–5.

    PubMed  PubMed Central  Google Scholar 

  51. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300(1):5–25.

    PubMed  CAS  Google Scholar 

  52. Jeong JS, Kang MG, Kim CY, Kim NR. Pattern of macular ganglion cell-inner plexiform layer defect generated by spectral-domain OCT in glaucoma patients and normal subjects. J Glaucoma. 2015;24(8):583–90.

    PubMed  Google Scholar 

  53. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(12):2305–14.

    PubMed  PubMed Central  Google Scholar 

  54. Zangalli CS, Ahmed OM, Waisbourd M, Ali MH, Cvintal V, Affel E, et al. Segmental analysis of macular layers in patients with unilateral primary open-angle glaucoma. J Glaucoma. 2016;25(4):e401–7.

    PubMed  Google Scholar 

  55. Lisboa R, Paranhos A Jr, Weinreb RN, Zangwill LM, Leite MT, Medeiros FA. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54(5):3417–25.

    PubMed  PubMed Central  Google Scholar 

  56. Pollet-Villard F, Chiquet C, Romanet JP, Noel C, Aptel F. Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Invest Ophthalmol Vis Sci. 2014;55(5):2953–62.

    PubMed  Google Scholar 

  57. Fan KC, Tsikata E, Khoueir Z, Simavli H, Guo R, de Luna RA, et al. Enhanced diagnostic capability for glaucoma of 3-dimensional versus 2-dimensional neuroretinal rim parameters using spectral domain optical coherence tomography. J Glaucoma. 2017;26(5):450–8.

    PubMed  PubMed Central  Google Scholar 

  58. Sung KR, Na JH, Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by cirrus HD optical coherence tomography. J Glaucoma. 2012;21(7):498–504.

    PubMed  Google Scholar 

  59. Hood DC, De Cuir N, Blumberg DM, Liebmann JM, Jarukasetphon R, Ritch R, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma. Transl Vis Sci Technol. 2016;5(6):4.

    PubMed  PubMed Central  Google Scholar 

  60. Lee WJ, Na KI, Kim YK, Jeoung JW, Park KH. Diagnostic ability of wide-field retinal nerve fiber layer maps using swept-source optical coherence tomography for detection of preperimetric and early perimetric glaucoma. J Glaucoma. 2017;26(6):577–85.

    PubMed  Google Scholar 

  61. Lee WJ, Kim TJ, Kim YK, Jeoung JW, Park KH. Serial combined wide-field optical coherence tomography maps for detection of early glaucomatous structural progression. JAMA Ophthalmol. 2018;136(10):1121–7.

    PubMed  PubMed Central  Google Scholar 

  62. Lee WJ, Oh S, Kim YK, Jeoung JW, Park KH. Comparison of glaucoma-diagnostic ability between wide-field swept-source OCT retinal nerve fiber layer maps and spectral-domain OCT. Eye. 2018;32(9):1483–92.

    PubMed  PubMed Central  Google Scholar 

  63. Balyen L, Peto T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac J Ophthalmol. 2019;8(3):264–72.

    Google Scholar 

  64. Grewal PS, Oloumi F, Rubin U, Tennant MTS. Deep learning in ophthalmology: a review. Can J Ophthalmol. 2018;53(4):309–13.

    PubMed  Google Scholar 

  65. Wu Z, Medeiros FA. Comparison of visual field point-wise event-based and global trend-based analysis for detecting glaucomatous progression. Transl Vis Sci Technol. 2018;7(4):20.

    PubMed  PubMed Central  Google Scholar 

  66. Tatham AJ, Medeiros FA. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology. 2017;124(12s):S57–65.

    PubMed  PubMed Central  Google Scholar 

  67. Hammel N, Belghith A, Weinreb RN, Medeiros FA, Mendoza N, Zangwill LM. Comparing the rates of retinal nerve fiber layer and ganglion cell-inner plexiform layer loss in healthy eyes and in glaucoma eyes. Am J Ophthalmol. 2017;178:38–50.

    PubMed  Google Scholar 

  68. Shin JW, Sung KR, Lee GC, Durbin MK, Cheng D. Ganglion cell-inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma. Ophthalmology. 2017;124(10):1466–74.

    PubMed  Google Scholar 

  69. Zhang X, Loewen N, Tan O, Greenfield DS, Schuman JS, Varma R, et al. Predicting development of glaucomatous visual field conversion using baseline Fourier-domain optical coherence tomography. Am J Ophthalmol. 2016;163:29–37.

    PubMed  Google Scholar 

  70. Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology. 2012;119(4):731–7.

    PubMed  Google Scholar 

  71. Zhang X, Francis BA, Dastiridou A, Chopra V, Tan O, Varma R, et al. Longitudinal and cross-sectional analyses of age effects on retinal nerve fiber layer and ganglion cell complex thickness by Fourier-domain OCT. Transl Vis Sci Technol. 2016;5(2):1.

    PubMed  PubMed Central  Google Scholar 

  72. Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51(11):5724–30.

    PubMed  PubMed Central  Google Scholar 

  73. Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci. 2015;56(8):4857–64.

    PubMed  Google Scholar 

  74. Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A. Three dimensional optical angiography. Opt Express. 2007;15(7):4083–97.

    PubMed  Google Scholar 

  75. Hope-Ross M, Yannuzzi LA, Gragoudas ES, Guyer DR, Slakter JS, Sorenson JA, et al. Adverse reactions due to indocyanine green. Ophthalmology. 1994;101(3):529–33.

    PubMed  CAS  Google Scholar 

  76. Lopez-Saez MP, Ordoqui E, Tornero P, Baeza A, Sainza T, Zubeldia JM, et al. Fluorescein-induced allergic reaction. Ann Allergy Asthma Immunol. 1998;81(5):428–30.

    PubMed  CAS  Google Scholar 

  77. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52.

    PubMed  PubMed Central  Google Scholar 

  78. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57(9):Oct451–9.

    PubMed  PubMed Central  Google Scholar 

  79. Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101(8):1066–70.

    PubMed  Google Scholar 

  80. Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101(9):1261–8.

    PubMed  Google Scholar 

  81. Chihara E, Dimitrova G, Amano H, Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017;58(1):690–7.

    PubMed  Google Scholar 

  82. Yarmohammadi A, Zangwill LM, Manalastas PIC, Fuller NJ, Diniz-Filho A, Saunders LJ, et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018;125(4):578–87.

    PubMed  Google Scholar 

  83. Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 2018;60(3):139–51.

    PubMed  Google Scholar 

  84. Mwanza JC, Budenz DL. New developments in optical coherence tomography imaging for glaucoma. Curr Opin Ophthalmol. 2018;29(2):121–9.

    PubMed  Google Scholar 

  85. Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Manalastas PIC, et al. Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes. Am J Ophthalmol. 2018;190:69–77.

    PubMed  PubMed Central  Google Scholar 

  86. Chen CL, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudumbai RC, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss. JAMA Ophthalmol. 2017;135(5):461–8.

    PubMed  PubMed Central  Google Scholar 

  87. Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, et al. Optical coherence tomography angiography macular vascular density measurements and the central 10-2 visual field in glaucoma. J Glaucoma. 2018;27(6):481–9.

    PubMed  PubMed Central  Google Scholar 

  88. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123(12):2498–508.

    PubMed  PubMed Central  Google Scholar 

  89. Pradhan ZS, Dixit S, Sreenivasaiah S, Rao HL, Venugopal JP, Devi S, et al. A sectoral analysis of vessel density measurements in perimetrically intact regions of glaucomatous eyes: an optical coherence tomography angiography study. J Glaucoma. 2018;27(6):525–31.

    PubMed  Google Scholar 

  90. Sakaguchi K, Higashide T, Udagawa S, Ohkubo S, Sugiyama K. Comparison of sectoral structure-function relationships in glaucoma: vessel density versus thickness in the peripapillary retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 2017;58(12):5251–62.

    PubMed  Google Scholar 

  91. Bojikian KD, Chen PP, Wen JC. Optical coherence tomography angiography in glaucoma. Curr Opin Ophthalmol. 2019;30(2):110–6.

    PubMed  Google Scholar 

  92. Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H, et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology. 2019;126(7):980–8.

    PubMed  PubMed Central  Google Scholar 

  93. Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB, et al. Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol. 2018;136(5):507–13.

    PubMed  PubMed Central  Google Scholar 

  94. Shin JW, Kwon J, Lee J, Kook MS. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol. 2019;103:585–591.

    Google Scholar 

  95. Lombardo M, Serrao S, Devaney N, Parravano M, Lombardo G. Adaptive optics technology for high-resolution retinal imaging. Sensors (Basel, Switzerland). 2012;13(1):334–66.

    Google Scholar 

  96. Dreher AW, Bille JF, Weinreb RN. Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt. 1989;28(4):804–8.

    PubMed  CAS  Google Scholar 

  97. Dong ZM, Wollstein G, Wang B, Schuman JS. Adaptive optics optical coherence tomography in glaucoma. Prog Retin Eye Res. 2017;57:76–88.

    PubMed  Google Scholar 

  98. Jonnal RS, Kocaoglu OP, Zawadzki RJ, Liu Z, Miller DT, Werner JS. A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. Invest Ophthalmol Vis Sci. 2016;57(9):Oct51–68.

    PubMed  PubMed Central  Google Scholar 

  99. Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc Natl Acad Sci U S A. 2017;114(48):12803–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Wang B, Lucy KA, Schuman JS, Sigal IA, Bilonick RA, Lu C, et al. Tortuous pore path through the glaucomatous lamina cribrosa. Sci Rep. 2018;8(1):7281.

    PubMed  PubMed Central  Google Scholar 

  101. Nadler Z, Wang B, Schuman JS, Ferguson RD, Patel A, Hammer DX, et al. In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(10):6459–66.

    PubMed  PubMed Central  Google Scholar 

  102. Ivers KM, Sredar N, Patel NB, Rajagopalan L, Queener HM, Twa MD, et al. In vivo changes in lamina cribrosa microarchitecture and optic nerve head structure in early experimental glaucoma. PLoS One. 2015;10(7):e0134223.

    PubMed  PubMed Central  Google Scholar 

  103. Kim TW, Kagemann L, Girard MJ, Strouthidis NG, Sung KR, Leung CK, et al. Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications. Curr Eye Res. 2013;38(9):903–9.

    PubMed  PubMed Central  Google Scholar 

  104. de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography – a review [Invited]. Biomed Opt Express. 2017;8(3):1838–73.

    PubMed  PubMed Central  Google Scholar 

  105. Dwelle J, Liu S, Wang B, McElroy A, Ho D, Markey MK, et al. Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates. Invest Ophthalmol Vis Sci. 2012;53(8):4380–95.

    PubMed  PubMed Central  Google Scholar 

  106. Liu S, Wang B, Yin B, Milner TE, Markey MK, McKinnon SJ, et al. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J Glaucoma. 2014;23(1):e45–52.

    PubMed  Google Scholar 

  107. Gardiner SK, Demirel S, Reynaud J, Fortune B. Changes in retinal nerve fiber layer reflectance intensity as a predictor of functional progression in glaucoma. Invest Ophthalmol Vis Sci. 2016;57(3):1221–7.

    PubMed  PubMed Central  Google Scholar 

  108. Huang XR, Zhou Y, Kong W, Knighton RW. Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas. Invest Ophthalmol Vis Sci. 2011;52(9):6737–42.

    PubMed  PubMed Central  Google Scholar 

  109. Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L. Doppler optical coherence tomography. Prog Retin Eye Res. 2014;41:26–43.

    PubMed  PubMed Central  Google Scholar 

  110. Sehi M, Goharian I, Konduru R, Tan O, Srinivas S, Sadda SR, et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014;121(3):750–8.

    PubMed  Google Scholar 

  111. Kirby MA, Pelivanov I, Song S, Ambrozinski L, Yoon SJ, Gao L, et al. Optical coherence elastography in ophthalmology. J Biomed Opt. 2017;22(12):1–28.

    PubMed  Google Scholar 

  112. Singh M, Li J, Han Z, Raghunathan R, Nair A, Wu C, et al. Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography. Biomed Opt Express. 2017;8(1):349–66.

    PubMed  CAS  Google Scholar 

  113. Torricelli AA, Bechara SJ, Wilson SE. Screening of refractive surgery candidates for LASIK and PRK. Cornea. 2014;33(10):1051–5.

    PubMed  Google Scholar 

  114. Moon S, Choi ES. VCSEL-based swept source for low-cost optical coherence tomography. Biomed Opt Express. 2017;8(2):1110–21.

    PubMed  PubMed Central  Google Scholar 

  115. Lu CD, Waheed NK, Witkin A, Baumal CR, Liu JJ, Potsaid B, et al. Microscope-integrated intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging. Ophthalmic Surg Lasers Imaging Retina. 2018;49(2):94–102.

    PubMed  PubMed Central  Google Scholar 

  116. Uchida H, Brigatti L, Caprioli J. Detection of structural damage from glaucoma with confocal laser image analysis. Invest Ophthalmol Vis Sci. 1996;37(12):2393–401.

    PubMed  CAS  Google Scholar 

  117. Zangwill LM, van Horn S, Lima MD, Sample PA, Weinreb RN. Optic nerve head topography in ocular hypertensive eyes using confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 1996;122(4):520–5.

    PubMed  CAS  Google Scholar 

  118. Iester M, De Ferrari R, Zanini M. Topographic analysis to discriminate glaucomatous from normal optic nerve heads with a confocal scanning laser: new optic disk analysis without any observer input. Surv Ophthalmol. 1999;44:S33–40.

    PubMed  Google Scholar 

  119. Iester M, Mikelberg FS, Courtright P, Drance SM. Correlation between the visual field indices and Heidelberg retina tomograph parameters. J Glaucoma. 1997;6(2):78–82.

    PubMed  CAS  Google Scholar 

  120. Gulati V, Agarwal HC, Sihota R, Saxena R. Correlation analysis of visual field thresholds and scanning laser ophthalmoscopic optic nerve head measurements in glaucoma. Ophthalmic Physiol Opt. 2003;23(3):233–42.

    PubMed  Google Scholar 

  121. Ferreras A, Pablo LE, Larrosa JM, Polo V, Pajarin AB, Honrubia FM. Discriminating between normal and glaucoma-damaged eyes with the Heidelberg retina tomograph 3. Ophthalmology. 2008;115(5):775–81.

    PubMed  Google Scholar 

  122. Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology. 1998;105(8):1557–63.

    PubMed  CAS  Google Scholar 

  123. Miglior S, Guareschi M, Albe E, Gomarasca S, Vavassori M, Orzalesi N. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am J Ophthalmol. 2003;136(1):26–33.

    PubMed  Google Scholar 

  124. Kamal DS, Viswanathan AC, Garway-Heath DF, Hitchings RA, Poinoosawmy D, Bunce C. Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma. Br J Ophthalmol. 1999;83(3):290–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Zangwill LM, Weinreb RN, Beiser JA, Berry CC, Cioffi GA, Coleman AL, et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Arch Ophthalmol. 2005;123(9):1188–97.

    PubMed  Google Scholar 

  126. Alencar LM, Bowd C, Weinreb RN, Zangwill LM, Sample PA, Medeiros FA. Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. Invest Ophthalmol Vis Sci. 2008;49(5):1898–906.

    PubMed  PubMed Central  Google Scholar 

  127. Chauhan BC, Blanchard JW, Hamilton DC, LeBlanc RP. Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci. 2000;41(3):775–82.

    PubMed  CAS  Google Scholar 

  128. DeLeon Ortega JE, Sakata LM, Kakati B, McGwin G Jr, Monheit BE, Arthur SN, et al. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48(3):1156–63.

    PubMed  Google Scholar 

  129. Weinreb RN, Lusky M, Bartsch DU, Morsman D. Effect of repetitive imaging on topographic measurements of the optic nerve head. Arch Ophthalmol. 1993;111(5):636–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Schuman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Glidai, Y., Kahook, M.Y., Noecker, R.J., Wollstein, G., Schuman, J.S. (2020). Comprehensive Glaucoma Imaging. In: Albert, D., Miller, J., Azar, D., Young, L. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_167-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_167-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics