Skip to main content

Genetics of Glaucoma

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology
  • 77 Accesses

Abstract

A family history of glaucoma is a recognized disease risk factor, and recent studies suggest that glaucoma is one of the most heritable of all human diseases (Youngblood H, Hauser MA, Liu Y, Exp Eye Res 188:107795, 2019; Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A, Nat Genet 49(9):1319–1325, 2017). Glaucoma can be inherited as a Mendelian single gene disorder, caused by a single gene defect, or as a complex trait that results from the interactions of multiple genes and environmental factors. In general, the early-onset (childhood) forms of glaucoma are inherited as Mendelian autosomal dominant or recessive traits, while the adult-onset diseases are inherited as complex traits. Genes that predispose to glaucoma may influence intraocular pressure or degeneration of the optic nerve or both.

The types of glaucoma inherited as Mendelian traits include juvenile open-angle glaucoma; congenital glaucoma; developmental glaucomas, including Rieger’s syndrome and aniridia; and familial normal tension glaucoma (Lewis CJ, Hedberg-Buenz A, DeLuca AP, Stone EM, Alward WLM, Fingert JH, Hum Mol Genet 26(R1):R28–R36, 2017; Sears NC, Boese EA, Miller MA, Fingert JH, Exp Eye Res 186:107702, 2019). Complex forms of glaucoma include pigmentary glaucoma, primary open-angle glaucoma, angle-closure glaucoma, and exfoliation glaucoma (Wiggs JL, Pasquale LR, Hum Mol Genet 26(R1):R21–R27, 2017.). Genes and loci identified for these forms of glaucoma are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ko F, Papadopoulos M, Khaw PT. Primary congenital glaucoma. Prog Brain Res. 2015;221:177–89.

    Article  PubMed  Google Scholar 

  2. Li N, Zhou Y, Du L, Wei M, Chen X. Overview of cytochrome P450 1B1 gene mutations in patients with primary congenital glaucoma. Exp Eye Res. 2011;93(5):572–9.

    Article  CAS  PubMed  Google Scholar 

  3. Stoilov I, Akarsu AN, Alozie I, Child A, Barsoum-Homsy M, Turacli ME, et al. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet. 1998;62(3):573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jansson I, Stoilov I, Sarfarazi M, Schenkman JB. Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics. 2001;11(9):793–801.

    Article  CAS  PubMed  Google Scholar 

  5. Sena DF, Finzi S, Rodgers K, Del Bono E, Haines JL, Wiggs JL. Founder mutations of CYP1B1 gene in patients with congenital glaucoma from the United States and Brazil. J Med Genet. 2004;41(1):e6. https://doi.org/10.1136/jmg.2003.010777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Libby RT, Smith RS, Savinova OV, Zabaleta A, Martin JE, Gonzalez FJ, et al. Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science. 2003;299(5612):1578–81.

    Article  CAS  PubMed  Google Scholar 

  7. Bidinost C, Hernandez N, Edward DP, Al-Rajhi A, Lewis RA, Lupski JR, et al. Of mice and men: tyrosinase modification of congenital glaucoma in mice but not in humans. Invest Ophthalmol Vis Sci. 2006;47(4):1486–90.

    Article  PubMed  Google Scholar 

  8. Vehviläinen P, Hyytiäinen M, Keski-Oja J. Latent transforming growth factor-beta-binding protein 2 is an adhesion protein for melanoma cells. J Biol Chem. 2003;278(27):24705–13.

    Article  PubMed  CAS  Google Scholar 

  9. Hyytiäinen M, Keski-Oja J. Latent TGF-beta binding protein LTBP-2 decreases fibroblast adhesion to fibronectin. J Cell Biol. 2003;163(6):1363–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hirai M, Horiguchi M, Ohbayashi T, Kita T, Chien KR, Nakamura T. Latent TGF-beta-binding protein 2 binds to DANCE/fibulin-5 and regulates elastic fiber assembly. EMBO J. 2007;26(14):3283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujikawa Y, Yoshida H, Inoue T, Ohbayashi T, Noda K, von Melchner H, et al. Latent TGF-β binding protein 2 and 4 have essential overlapping functions in microfibril development. Sci Rep. 2017;7:43714. https://doi.org/10.1038/srep43714.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hirani R, Hanssen E, Gibson MA. LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol. 2007;26(4):213–23.

    Article  CAS  PubMed  Google Scholar 

  13. Suri F, Yazdani S, Elahi E. LTBP2 knockdown and oxidative stress affect glaucoma features including TGFβ pathways, ECM genes expression and apoptosis in trabecular meshwork cells. Gene. 2018;673:70–81.

    Article  CAS  PubMed  Google Scholar 

  14. Haji-Seyed-Javadi R, Jelodari-Mamaghani S, Paylakhi SH, Yazdani S, Nilforushan N, Fan JB, et al. LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix. Hum Mutat. 2012;33(8):1182–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA, et al. Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet. 2009;84(5):664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheong SS, Hentschel L, Davidson AE, Gerrelli D, Davie R, Rizzo R, et al. Mutations in CPAMD8 cause a unique form of autosomal-recessive anterior segment dysgenesis. Am J Hum Genet. 2016;99(6):1338–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alsaif HS, Khan AO, Patel N, Alkuraya H, Hashem M, Abdulwahab F, et al. Congenital glaucoma and CYP1B1: an old story revisited. Hum Genet. 2019;138(8–9):1043–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hollmann AK, Dammann I, Wemheuer WM, Wemheuer WE, Chilla A, Tipold A, et al. Morgagnian cataract resulting from a naturally occurring nonsense mutation elucidates a role of CPAMD8 in mammalian lens development. PLoS One. 2017;12(7):e0180665. https://doi.org/10.1371/journal.pone.0180665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siggs OM, Souzeau E, Taranath DA, Dubowsky A, Chappell A, Zhou T, et al. Biallelic CPAMD8 variants are a frequent cause of childhood and juvenile open-angle glaucoma. Ophthalmology. 2020;127(6):758–66.

    Article  PubMed  Google Scholar 

  20. Bonet-Fernández JM, Aroca-Aguilar JD, Corton M, Ramírez AI, Alexandre-Moreno S, García-Antón MT, et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix. Hum Genet. 2020; https://doi.org/10.1007/s00439-020-02164-0.

  21. Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K, Yamaguchi S, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 2016;126(7):2575–87.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thomson BR, Souma T, Tompson SW, Onay T, Kizhatil K, Siggs OM. Angiopoietin-1 is required for Schlemm's canal development in mice and humans. J Clin Invest. 2017;127(12):4421–36.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thomson BR, Carota IA, Souma T, Soman S, Vestweber D, Quaggin SE. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. elife. 2019;8:e48474. https://doi.org/10.7554/eLife.48474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis CJ, Hedberg-Buenz A, DeLuca AP, Stone EM, Alward WLM, Fingert JH. Primary congenital and developmental glaucomas. Hum Mol Genet. 2017;26(R1):R28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murray JC, Bennett SR, Kwitek AE, Small KW, Schinzel A, Alward WL. Linkage of Rieger syndrome to the region of the epidermal growth factor gene on chromosome 4. Nat Genet. 1992;2(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  26. Phillips JC, del Bono EA, Haines JL, Pralea AM, Cohen JS, Greff LJ, et al. A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet. 1996;59(3):613–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996;14(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  28. Nishimura DY, Swiderski RE, Alward WL, Searby CC, Patil SR, Bennet SR, et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet. 1998;19(2):140–7.

    Article  CAS  PubMed  Google Scholar 

  29. Gauthier AC, Wiggs JL. Childhood glaucoma genes and phenotypes: focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss. Exp Eye Res. 2020;190:107893. https://doi.org/10.1016/j.exer.2019.107893.

    Article  CAS  PubMed  Google Scholar 

  30. Ferre-Fernández JJ, Sorokina EA, Thompson S, Collery RF, Nordquist E, Lincoln J, et al. Disruption of foxc1 genes in zebrafish results in dosage-dependent phenotypes overlapping Axenfeld-Rieger syndrome. Hum Mol Genet. 2020. Jul 28:ddaa163; https://doi.org/10.1093/hmg/ddaa163.

  31. Pedersen HR, Baraas RC, Landsend ECS, Utheim ØA, Utheim TP, Gilson SJ, et al. PAX6 genotypic and retinal phenotypic characterization in Congenital Aniridia. Invest Ophthalmol Vis Sci. 2020;61(5):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ito YA, Walter MA. Genomics and anterior segment dysgenesis: a review. Clin Exp Ophthalmol. 2014;42(1):13–24.

    Article  PubMed  Google Scholar 

  33. Ghoumid J, Petit F, Holder-Espinasse M, Jourdain AS, Guerra J, Dieux-Coeslier A, et al. Nail-Patella syndrome: clinical and molecular data in 55 families raising the hypothesis of a genetic heterogeneity. Eur J Hum Genet. 2016;24(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  34. Choquet H, Paylakhi S, Kneeland SC, Thai KK, Hoffmann TJ, Yin J, et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun. 2018;9(1):2278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Graw J. Mouse models for microphthalmia, anophthalmia and cataracts. Hum Genet. 2019;138(8–9):1007–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Plaisancié J, Ceroni F, Holt R, Zazo Seco C, Calvas P, Chassaing N, et al. Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet. 2019;138(8–9):799–830.

    Article  PubMed  CAS  Google Scholar 

  37. Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet. 2019;138(8–9):831–46.

    Article  CAS  PubMed  Google Scholar 

  38. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–70.

    Article  CAS  PubMed  Google Scholar 

  39. Wiggs JL, Allingham RR, Vollrath D, Jones KH, De La Paz M, Kern J, et al. Prevalence of mutations in TIGR/Myocilin in patients with adult and juvenile primary open-angle glaucoma. Am J Hum Genet. 1998;63(5):1549–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhuo YH, Wei YT, Bai YJ, Duan S, Lin MK, Saragovi HU, et al. Pro370Leu MYOC gene mutation in a large Chinese family with juvenile-onset open angle glaucoma: correlation between genotype and phenotype. Mol Vis. 2008;14:1533–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fingert JH, Héon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, et al. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 1999;8(5):899–905.

    Article  CAS  PubMed  Google Scholar 

  42. Liu W, Liu Y, Challa P, Herndon LW, Wiggs JL, Girkin CA, et al. Low prevalence of myocilin mutations in an African American population with primary open-angle glaucoma. Mol Vis. 2012;18:2241–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen KF, Gaier ED, Wiggs JL. Genetics of primary inherited disorders of the optic nerve: clinical applications. Cold Spring Harb Perspect Med. 2015;5(7):a017277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sears NC, Boese EA, Miller MA, Fingert JH. Mendelian genes in primary open angle glaucoma. Exp Eye Res. 2019;186:107702.

    Article  CAS  PubMed  Google Scholar 

  45. Allingham RR, Wiggs JL, De La Paz MA, Vollrath D, Tallett DA, Broomer B, et al. Gln368STOP myocilin mutation in families with late-onset primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1998;39(12):2288–95.

    CAS  PubMed  Google Scholar 

  46. Craig JE, Baird PN, Healey DL, McNaught AI, McCartney PJ, Rait JL, et al. Evidence for genetic heterogeneity within eight glaucoma families, with the GLC1A Gln368STOP mutation being an important phenotypic modifier. Ophthalmology. 2001;108(9):1607–20.

    Article  CAS  PubMed  Google Scholar 

  47. Adam MF, Belmouden A, Binisti P, Brézin AP, Valtot F, Béchetoille A, et al. Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet. 1997;6(12):2091–7.

    Article  CAS  PubMed  Google Scholar 

  48. Lam DS, Leung YF, Chua JK, Baum L, Fan DS, Choy KW, et al. Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2000;41(6):1386–91.

    CAS  PubMed  Google Scholar 

  49. Wiggs JL, Vollrath D. Molecular and clinical evaluation of a patient hemizygous for TIGR/MYOC. Arch Ophthalmol. 2001;119(11):1674–8.

    Article  CAS  PubMed  Google Scholar 

  50. Kim BS, Savinova OV, Reedy MV, Martin J, Lun Y, Gan L, et al. Targeted disruption of the Myocilin Gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol Cell Biol. 2001;21(22):7707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasetti RB, Patel PD, Maddineni P, Zode GS. Ex-vivo cultured human corneoscleral segment model to study the effects of glaucoma factors on trabecular meshwork. PLoS One. 2020;15(6):e0232111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou Z, Vollrath D. A cellular assay distinguishes normal and mutant TIGR/myocilin protein. Hum Mol Genet. 1999;8(12):2221–8.

    Article  CAS  PubMed  Google Scholar 

  53. Donegan RK, Hill SE, Freeman DM, Nguyen E, Orwig SD, Turnage KC, et al. Structural basis for misfolding in myocilin-associated glaucoma. Hum Mol Genet. 2015;24(8):2111–24.

    Article  CAS  PubMed  Google Scholar 

  54. Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, et al. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci U S A. 2017;114(42):11199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295(5557):1077–9.

    Article  CAS  PubMed  Google Scholar 

  56. Aung T, Rezaie T, Okada K, Viswanathan AC, Child AH, Brice G, et al. Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci. 2005;46(8):2816–22.

    Article  PubMed  Google Scholar 

  57. Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Scheetz TE, et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet. 2011;20(12):2482–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ritch R, Darbro B, Menon G, Khanna CL, Solivan-Timpe F, Roos BR, et al. TBK1 gene duplication and normal-tension glaucoma. JAMA Ophthalmol. 2014;132(5):544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Evans CS, Holzbaur EL. Degradation of engulfed mitochondria is rate-limiting in Optineurin-mediated mitophagy in neurons. elife. 2020;9:e50260. https://doi.org/10.7554/eLife.50260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tucker BA, Solivan-Timpe F, Roos BR, Anfinson KR, Robin AL, Wiley LA, et al. Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. J Stem Cell Res Ther. 2014;3(5):161.

    PubMed  PubMed Central  Google Scholar 

  61. Li F, Xu D, Wang Y, Zhou Z, Liu J, Hu S, et al. Structural insights into the ubiquitin recognition by OPTN (optineurin) and its regulation by TBK1-mediated phosphorylation. Autophagy. 2018;14(1):66–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016;113(15):4039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldstein O, Nayshool O, Nefussy B, Traynor BJ, Renton AE, Gana-Weisz M, et al. OPTN 691_692insAG is a founder mutation causing recessive ALS and increased risk in heterozygotes. Neurology. 2016;86(5):446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oakes JA, Davies MC, Collins MO. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain. 2017;10(1):5. https://doi.org/10.1186/s13041-017-0287-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Minegishi Y, Iejima D, Kobayashi H, Chi ZL, Kawase K, Yamamoto T, et al. Enhanced optineurin E50K-TBK1 interaction evokes protein insolubility and initiates familial primary open-angle glaucoma. Hum Mol Genet. 2013;22(17):3559–67.

    Article  CAS  PubMed  Google Scholar 

  66. Hauser MA, Sena DF, Flor J, Walter J, Auguste J, Larocque-Abramson K, et al. Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States. J Glaucoma. 2006;15(5):358–63.

    Article  PubMed  Google Scholar 

  67. Tandon A, Zhang Z, Fingert JH, Kwon YH, Wang K, Alward WLM. The heritability of pigment dispersion syndrome and pigmentary glaucoma. Am J Ophthalmol. 2019;202:55–61.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Simcoe MJ, Weisschuh N, Wissinger B, Hysi PG, Hammond CJ. Genetic heritability of pigmentary glaucoma and associations with other eye phenotypes. JAMA Ophthalmol. 2020;138(3):294–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lascaratos G, Shah A, Garway-Heath DF. The genetics of pigment dispersion syndrome and pigmentary glaucoma. Surv Ophthalmol. 2013;58(2):164–75.

    Article  PubMed  Google Scholar 

  70. Lahola-Chomiak AA, Footz T, Nguyen-Phuoc K, Neil GJ, Fan B, Allen KF, et al. Non-Synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma. Hum Mol Genet. 2019;28(8):1298–311.

    Article  CAS  PubMed  Google Scholar 

  71. Wiggs JL, Pasquale LR. Genetics of glaucoma. Hum Mol Genet. 2017;26(R1):R21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42(10):906–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011;43(6):574–8.

    Article  CAS  PubMed  Google Scholar 

  74. Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8(4):e1002654. https://doi.org/10.1371/journal.pgen.1002654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, Martin S, et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet. 2014;46(10):1120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 2016;48(2):189–94.

    Article  PubMed  CAS  Google Scholar 

  77. Chen Y, Lin Y, Vithana EN, Jia L, Zuo X, Wong TY, et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat Genet. 2014;46(10):1115–9.

    Article  CAS  PubMed  Google Scholar 

  78. Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikeda Y, et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. 2015;24(13):3880–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shiga Y, Akiyama M, Nishiguchi KM, Sato K, Shimozawa N, Takahashi A, et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet. 2018;27(8):1486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Genetics of Glaucoma in People of African Descent (GGLAD) Consortium, Hauser MA, Allingham RR, Aung T, Van Der Heide CJ, Taylor KD, et al. Association of genetic variants with primary open-angle glaucoma among individuals With African Ancestry. JAMA. 2019;322(17):1682–91.

    Article  Google Scholar 

  81. Choquet H, Wiggs JL, Khawaja AP. Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye (Lond). 2020;34(1):29–39.

    Article  Google Scholar 

  82. Loomis SJ, Kang JH, Weinreb RN, Yaspan BL, Cooke Bailey JN, Gaasterland D, et al. Association of CAV1/CAV2 genomic variants with primary open-angle glaucoma overall and by gender and pattern of visual field loss. Ophthalmology. 2014;121(2):508–16.

    Article  PubMed  Google Scholar 

  83. Vithana EN, Khor CC, Qiao C, Nongpiur ME, George R, Chen LJ, et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2012;44(10):1142–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khor CC, Do T, Jia H, Nakano M, George R, Abu-Amero K, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48(5):556–62.

    Article  CAS  PubMed  Google Scholar 

  85. Arora KS, Jefferys JL, Maul EA, Quigley HA. The choroid is thicker in angle closure than in open angle and control eyes. Invest Ophthalmol Vis Sci. 2012;53(12):7813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317(5843):1397–400.

    Article  CAS  PubMed  Google Scholar 

  87. Li G, Schmitt H, Johnson WM, Lee C, Navarro I, Cui J, et al. Integral role for lysyl oxidase-like-1 in conventional outflow tissue function and behavior. FASEB J. 2020; https://doi.org/10.1096/fj.202000702RR. Online ahead of print

  88. Fan BJ, Pasquale LR, Rhee D, Li T, Haines JL, Wiggs JL. LOXL1 promoter haplotypes are associated with exfoliation syndrome in a U.S. Caucasian population. Invest Ophthalmol Vis Sci. 2011;52(5):2372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aung T, Ozaki M, Lee MC, Schlötzer-Schrehardt U, Thorleifsson G, Mizoguchi T, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet. 2017;49(7):993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aung T, Ozaki M, Mizoguchi T, Allingham RR, Li Z, Haripriya A, et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet. 2015;47(4):387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wiggs JL. Progress in diagnostic genetic testing for inherited eye disease. JAMA Ophthalmol. 2017;135(12):1385–6.

    Article  PubMed  Google Scholar 

  92. Fan BJ, Bailey JC, Igo RP Jr, Kang JH, Boumenna T, Brilliant MH, et al. Association of a primary open-angle glaucoma genetic risk score with earlier age at diagnosis. JAMA Ophthalmol. 2019;137(10):1190–4.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Craig JE, Han X, Qassim A, Hassall M, Cooke Bailey JN, Kinzy TG, et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat Genet. 2020;52(2):160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janey L. Wiggs .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wiggs, J.L. (2020). Genetics of Glaucoma. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_165-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_165-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics