Skip to main content

Fluorescein Angiography

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Fluorescein angiography is an invaluable tool in the diagnostic evaluation of retinal and choroidal diseases. Since its introduction in the 1960s, it has been refined with advancements in technology and has further expanded our understanding of the pathophysiology in different disease states of the retina. In this chapter we will start with a historic perspective on fluorescein angiography, continue with its basic principles, and provide the latest information regarding new instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Kelley JS. Fluorescein angiography: techniques and toxicity. Int Ophthalmol Clin. 1977;17(2):25–33.

    Article  CAS  Google Scholar 

  2. Eutick M. Sodium Fluorescein – colourful past, bright future. J Ophthalmic Photogr. 2006;28(Fall):66–70.

    Google Scholar 

  3. Akorn. AK-FLOUR package insert. http://www.akorn.com/documents/catalog/package_inserts/17478-253-10.pdf. Accessed 15 July 2019.

  4. Laatikainen L. The fluorescein angiography revolution: a breakthrough with sustained impact. Acta Ophthalmol Scand. 2004;82(4):381–92. https://doi.org/10.1111/j.1395-3907.2004.00284.x.

    Article  PubMed  Google Scholar 

  5. Jacobs J. Fluorescein Sodium – what is it? J Ophthalmic Photogr. 14(December)

    Google Scholar 

  6. Martonyi CL, Bahn CF, Meyer RF. Clinical slit lamp biomicroscopy and photo slit lamp biomicrography. Time One Ink. 1985:64–7.

    Google Scholar 

  7. Saine PJ. Landmarks in the historical development of fluorescein angiography. J Ophthalmic Photogr. 1993;15(1):17–23.

    CAS  PubMed  Google Scholar 

  8. Chao P, Flocks M. The retinal circulation time. Am J Ophthalmol. 1958;46(1 Pt 2):8–10. https://doi.org/10.1016/0002-9394(58)90027-8.

    Article  CAS  PubMed  Google Scholar 

  9. Flocks M, Miller J, Chao P. Retinal circulation time with the aid of fundus cinephotography. Am J Ophthalmol. 1959;48(1, Part 2):3–10. https://doi.org/10.1016/0002-9394(59)90234-x.

    Article  CAS  PubMed  Google Scholar 

  10. Maclean AL, Maumenee AE. Hemangioma of the choroid. Am J Ophthalmol. 1960;50:3–11. https://doi.org/10.1016/0002-9394(60)90833-3.

    Article  CAS  PubMed  Google Scholar 

  11. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6. https://doi.org/10.1161/01.cir.24.1.82.

    Article  CAS  PubMed  Google Scholar 

  12. Argento CJ, Lopez Mato OR, Martinez-Cartier MD. Oral fluorescein angiography with scanning laser ophthalmoscope. Int Ophthalmol. 2001;23(4–6):395–8.

    Article  CAS  Google Scholar 

  13. Hara T, Inami M, Hara T. Efficacy and safety of fluorescein angiography with orally administered sodium fluorescein. Am J Ophthalmol. 1998;126(4):560–4. https://doi.org/10.1016/s0002-9394(98)00112-3.

    Article  CAS  PubMed  Google Scholar 

  14. Squirrell D, Dinakaran S, Dhingra S, Mody C, Brand C, Talbot J. Oral fluorescein angiography with the scanning laser ophthalmoscope in diabetic retinopathy: a case controlled comparison with intravenous fluorescein angiography. Eye London Engl. 2005;19(4):411–7. https://doi.org/10.1038/sj.eye.6701513.

    Article  CAS  Google Scholar 

  15. Sugimoto M, Matsubara H, Miyata R, Matsui Y, Ichio A, Kondo M. Ultra-WideField fluorescein angiography by oral administration of fluorescein. Acta Ophthalmol. 2014;92(5):e417–8. https://doi.org/10.1111/aos.12323.

    Article  PubMed  Google Scholar 

  16. Azad RV, Baishya B, Pal N, Sharma YR, Kumar A, Vohra R. Comparative evaluation of oral fluorescein angiography using the confocal scanning laser ophthalmoscope and digital fundus camera with intravenous fluorescein angiography using the digital fundus camera. Clin Exp Ophthalmol. 2006;34(5):425–9. https://doi.org/10.1111/j.1442-9071.2006.01243.x.

    Article  PubMed  Google Scholar 

  17. Garcia CR, Rivero ME, Bartsch DU, et al. Oral fluorescein angiography with the confocal scanning laser ophthalmoscope. Ophthalmology. 1999;106(6):1114–8. https://doi.org/10.1016/S0161-6420(99)90264-6.

    Article  CAS  PubMed  Google Scholar 

  18. Wolfe DR. Fluorescein angiography basic science and engineering. Ophthalmology. 1986;93(12):1617–20.

    Article  CAS  Google Scholar 

  19. Patz A. Principles of fluorescein angiography. Int Ophthalmol Clin. 1977;17(2):1–19.

    Article  CAS  Google Scholar 

  20. Bloom JN, Herman DC, Elin RJ, et al. Intravenous fluorescein interference with clinical laboratory tests. Am J Ophthalmol. 1989;108(4):375–9. https://doi.org/10.1016/s0002-9394(14)73304-5.

    Article  CAS  PubMed  Google Scholar 

  21. Halperin LS, Olk RJ, Soubrane G, Coscas G. Safety of fluorescein angiography during pregnancy. Am J Ophthalmol. 1990;109(5):563–6. https://doi.org/10.1016/s0002-9394(14)70686-5.

    Article  CAS  PubMed  Google Scholar 

  22. Greenberg F, Lewis RA. Safety of fluorescein angiography during pregnancy. Am J Ophthalmol. 1990;110(3):323–5. https://doi.org/10.1016/s0002-9394(14)76364-0.

    Article  CAS  PubMed  Google Scholar 

  23. Xu K, Tzankova V, Li C, Sharma S. Intravenous fluorescein angiography-associated adverse reactions. Can J Ophthalmol. 2016;51(5):321–5. https://doi.org/10.1016/j.jcjo.2016.03.015.

    Article  PubMed  Google Scholar 

  24. Kwan ASL, Barry C, McAllister IL, Constable I. Fluorescein angiography and adverse drug reactions revisited: the lions eye experience. Clin Exp Ophthalmol. 2006;34(1):33–8. https://doi.org/10.1111/j.1442-9071.2006.01136.x.

    Article  PubMed  Google Scholar 

  25. Pacurariu RI. Low incidence of side effects following intravenous fluorescein angiography. Ann Ophthalmol. 1982;14(1):32–6.

    CAS  PubMed  Google Scholar 

  26. Karhunen U, Raitta C, Kala R. Adverse reactions to fluorescein angiography. Acta Ophthalmol. 1986;64(3):282–6.

    Article  CAS  Google Scholar 

  27. McLauchlan R, Waterman H, Waterman C, Hillier V, Dodd C. Ethnic variation in fluorescein angiography induced nausea and vomiting. Eye London Engl. 2001;15(Pt 2):159–62. https://doi.org/10.1038/eye.2001.52.

    Article  CAS  Google Scholar 

  28. Elman MJ, Fine SL, Sorenson J, et al. Skin necrosis following fluorescein extravasation. A survey of the Macula Society. Retina Phila Pa. 1987;7(2):89–93.

    Article  CAS  Google Scholar 

  29. Lipson BK, Yannuzzi LA. Complications of intravenous fluorescein injections. Int Ophthalmol Clin. 1989;29(3):200–5.

    Article  CAS  Google Scholar 

  30. Yannuzzi LA, Rohrer KT, Tindel LJ, et al. Fluorescein angiography complication survey. Ophthalmology. 1986;93(5):611–7.

    Article  CAS  Google Scholar 

  31. Fineschi V, Monasterolo G, Rosi R, Turillazzi E. Fatal anaphylactic shock during a fluorescein angiography. Forensic Sci Int. 1999;100(1–2):137–42.

    Article  CAS  Google Scholar 

  32. Ascaso FJ, Tiestos MT, Navales J, Iturbe F, Palomar A, Ayala JI. Fatal acute myocardial infarction after intravenous fluorescein angiography. Retina Phila Pa. 1993;13(3):238–9.

    Article  CAS  Google Scholar 

  33. Kelly SP, MacDermott NJ, Saunders DC, Leach FN. Convulsion following intravenous fluorescein angiography. Br J Ophthalmol. 1989;73(8):655–6. https://doi.org/10.1136/bjo.73.8.655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Acheson R, Serjeant G. Painful crises in sickle cell disease after fluorescein angiography. Lancet London Engl. 1985;1(8439):1222. https://doi.org/10.1016/s0140-6736(85)92908-3.

    Article  CAS  Google Scholar 

  35. Kameda Y, Babazono T, Haruyama K, Iwamoto Y, Kitano S. Renal function following fluorescein angiography in diabetic patients with chronic kidney disease. Diabetes Care. 2009;32(3):e31. https://doi.org/10.2337/dc08-1692.

    Article  PubMed  Google Scholar 

  36. Friedman N, Haegerstrom-Portnoy G, Paul O, Jampolsky A. Foveal vision function before and after fluorescein angiography. Invest Ophthalmol Vis Sci. 1994;35(9):3566–70.

    CAS  PubMed  Google Scholar 

  37. Spaide RF. Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Retina Phila Pa. 2011;31(5):829–37. https://doi.org/10.1097/IAE.0b013e31820c841e.

    Article  Google Scholar 

  38. Cullen AP. Fluorescein angiography of the ocular fundus. Am J Optom Physiol Optic. 1979;56(9):592–6.

    Article  CAS  Google Scholar 

  39. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):766–785.

    Google Scholar 

  40. Kabachinski J. DICOM: key concepts–part I. Biomed Instrum Technol. 2005;39(3):214–6.

    PubMed  Google Scholar 

  41. Kabachinski J. DICOM: key concepts--part II. Biomed Instrum Technol. 2005;39(4):292–4.

    PubMed  Google Scholar 

  42. Calvo CM, Hartnett ME. The utility of ultra-widefield fluorescein angiography in pediatric retinal diseases. Int J Retina Vitr. 2018;4:21. https://doi.org/10.1186/s40942-018-0122-2.

    Article  Google Scholar 

  43. Kim JW, Ngai LK, Sadda S, Murakami Y, Lee DK, Murphree AL. Retcam fluorescein angiography findings in eyes with advanced retinoblastoma. Br J Ophthalmol. 2014;98(12):1666–71. https://doi.org/10.1136/bjophthalmol-2014-305180.

    Article  PubMed  Google Scholar 

  44. Klufas MA, Patel SN, Ryan MC, et al. Influence of fluorescein angiography on the diagnosis and management of retinopathy of prematurity. Ophthalmology. 2015;122(8):1601–8. https://doi.org/10.1016/j.ophtha.2015.04.023.

    Article  PubMed  Google Scholar 

  45. Tsui I, Franco-Cardenas V, Hubschman J-P, Schwartz SD. Pediatric retinal conditions imaged by ultra wide field fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2013;44(1):59–67. https://doi.org/10.3928/23258160-20121221-14.

    Article  PubMed  Google Scholar 

  46. Freeman WR, Bartsch DU, Mueller AJ, Banker AS, Weinreb RN. Simultaneous indocyanine green and fluorescein angiography using a confocal scanning laser ophthalmoscope. Arch Ophthalmol Chic Ill 1960. 1998;11 6(4):455–63. https://doi.org/10.1001/archopht.116.4.455.

    Article  Google Scholar 

  47. Jones NP, Sala-Puigdollers A, Stanga PE. Ultra-widefield fundus fluorescein angiography in the diagnosis and management of retinal vasculitis. Eye Lond Engl. 2017;31(11):1546–9. https://doi.org/10.1038/eye.2017.93.

    Article  CAS  Google Scholar 

  48. Staurenghi G, Viola F, Mainster MA, Graham RD, Harrington PG. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol Chic Ill 1960. 2005;123(2):244–52. https://doi.org/10.1001/archopht.123.2.244.

    Article  Google Scholar 

  49. Orlin A, Fatoo A, Ehrlich J, D’Amico DJ, Chan RP, Kiss S. Ultra-widefield fluorescein angiography of white without pressure. Clin Ophthalmol Auckl NZ. 2013;7:959–64. https://doi.org/10.2147/OPTH.S43450.

    Article  Google Scholar 

  50. Lu J, Mai G, Luo Y, et al. Appearance of far peripheral retina in normal eyes by ultra-widefield fluorescein angiography. Am J Ophthalmol. 2017;173:84–90. https://doi.org/10.1016/j.ajo.2016.09.024.

    Article  PubMed  Google Scholar 

  51. Fan W, Uji A, Borrelli E, et al. Precise measurement of retinal vascular bed area and density on ultra-wide fluorescein angiography in normal subjects. Am J Ophthalmol. 2018;188:155–63. https://doi.org/10.1016/j.ajo.2018.01.036.

    Article  PubMed  Google Scholar 

  52. Allen L. Ocular fundus photography: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am J Ophthalmol. 1964;57:13–28.

    Article  CAS  Google Scholar 

  53. Zheng Y, Gandhi JS, Stangos AN, Campa C, Broadbent DM, Harding SP. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010;51(7):3653–9. https://doi.org/10.1167/iovs.09-4935.

    Article  PubMed  Google Scholar 

  54. Son G, Kim YJ, Sung YS, Park B, Kim J-G. Analysis of quantitative correlations between microaneurysm, ischaemic index and new vessels in ultrawide-field fluorescein angiography images using automated software. Br J Ophthalmol. 2019; https://doi.org/10.1136/bjophthalmol-2018-313596.

  55. Justice J. Fluorescein angiography. Int Ophthalmol Clin. 1976;16(2):33–9.

    PubMed  Google Scholar 

  56. Federman JL, Weiss H. Fluorescein angiography of the uvea. Int Ophthalmol Clin. 1977;17(3):247–74.

    Article  CAS  Google Scholar 

  57. Fluorescein angiography. Br Med J. 1969;3(5661):48–9.

    Google Scholar 

  58. De Laey JJ. Fluorescein angiography of the choroid in health and disease. Int Ophthalmol. 1983;6(2):125–38.

    Article  Google Scholar 

  59. Seo EJ, Kim J-G. Analysis of the normal peripheral retinal vascular pattern and its correlation with microvascular abnormalities using ultra-widefield fluorescein angiography. Retina Phila Pa. 2019;39(3):530–6. https://doi.org/10.1097/IAE.0000000000001984.

    Article  Google Scholar 

  60. Shah AR, Abbey AM, Yonekawa Y, et al. Widefield fluorescein angiography in patients without peripheral disease: a study of normal peripheral findings. Retina Phila Pa. 2016;36(6):1087–92. https://doi.org/10.1097/IAE.0000000000000878.

    Article  Google Scholar 

  61. Rabb MF, Burton TC, Schatz H, Yannuzzi LA. Fluorescein angiography of the fundus: a schematic approach to interpretation. Surv Ophthalmol. 1978;22(6):387–403.

    Article  CAS  Google Scholar 

  62. Ffytche TJ, Shilling JS, Chisholm IH, Federman JL. Indications for fluorescein angiography in disease of the ocular fundus: a review. J R Soc Med. 1980;73(5):362–5.

    Article  CAS  Google Scholar 

  63. Norton EW, Gutman F. Diabetic retinopathy studied by fluorescein angiography. Trans Am Ophthalmol Soc. 1965;63:108–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang H, Chhablani J, Freeman WR, et al. Characterization of diabetic microaneurysms by simultaneous fluorescein angiography and spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;153(5):861–867.e1. https://doi.org/10.1016/j.ajo.2011.10.005.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee CS, Lee AY, Sim DA, et al. Reevaluating the definition of intraretinal microvascular abnormalities and neovascularization elsewhere in diabetic retinopathy using optical coherence tomography and fluorescein angiography. Am J Ophthalmol. 2015;159(1):101–110.e1. https://doi.org/10.1016/j.ajo.2014.09.041.

    Article  PubMed  Google Scholar 

  66. Yeung L, Lima VC, Garcia P, Landa G, Rosen RB. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema. Ophthalmology. 2009;116(6):1158–67. https://doi.org/10.1016/j.ophtha.2008.12.063.

    Article  PubMed  Google Scholar 

  67. Landa G, Springer A, Bukelman A, Pollack A. The diagnostic contribution of indocyanine green to fluorescein angiography in fellow drusen eyes of patients with wet age-related macular degeneration. Eur J Ophthalmol. 2007;17(4):615–9.

    Article  CAS  Google Scholar 

  68. Meyer K, Augsburger JJ. Independent diagnostic value of fluorescein angiography in the evaluation of intraocular tumors. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1999;237(6):489–94.

    Article  CAS  Google Scholar 

  69. Shields JA, Sanborn GE, Augsburger JJ, Orlock D, Donoso LA. Fluorescein angiography of retinoblastoma. Retina Phila Pa. 1982;2(4):206–14.

    Article  CAS  Google Scholar 

  70. Ouyang Y, Keane PA, Sadda SR, Walsh AC. Detection of cystoid macular edema with three-dimensional optical coherence tomography versus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010;51(10):5213–8. https://doi.org/10.1167/iovs.09-4635.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jittpoonkuson T, Garcia PMT, Rosen RB. Correlation between fluorescein angiography and spectral-domain optical coherence tomography in the diagnosis of cystoid macular edema. Br J Ophthalmol. 2010;94(9):1197–200. https://doi.org/10.1136/bjo.2009.170589.

    Article  CAS  PubMed  Google Scholar 

  72. Chhablani J, Deepa MJ, Tyagi M, Narayanan R, Kozak I. Fluorescein angiography and optical coherence tomography in myopic choroidal neovascularization. Eye Lond Engl. 2015;29(4):519–24. https://doi.org/10.1038/eye.2014.345.

    Article  CAS  Google Scholar 

  73. Kotsolis AI, Killian FA, Ladas ID, Yannuzzi LA. Fluorescein angiography and optical coherence tomography concordance for choroidal neovascularisation in multifocal choroidtis. Br J Ophthalmol. 2010;94(11):1506–8. https://doi.org/10.1136/bjo.2009.159913.

    Article  PubMed  Google Scholar 

  74. Walton RC, Byrnes GA, Chan CC, Nussenblatt RB. Fluorescein angiography in the progressive outer retinal necrosis syndrome. Retina Phila Pa. 1996;16(5):393–8.

    Article  CAS  Google Scholar 

  75. Tan CS, Ngo WK, Lim LW, Tan NW, Lim TH. EVEREST study report 4: fluorescein angiography features predictive of polypoidal choroidal vasculopathy. Clin Exp Ophthalmol. 2019; https://doi.org/10.1111/ceo.13464.

  76. Spaeth GL. Fluorescein angiography: its contributions towards understanding the mechanisms of visual loss in glaucoma. Trans Am Ophthalmol Soc. 1975;73:491–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shoughy SS, Kozak I. Selective and complementary use of optical coherence tomography and fluorescein angiography in retinal practice. Eye Vis Lond Engl. 2016;3:26. https://doi.org/10.1186/s40662-016-0058-2.

    Article  Google Scholar 

  78. Tolentino FI, Lapus JV, Novalis G, Trempe CL, Gutow GS, Ahmad A. Fluorescein angiography of degenerative lesions of the peripheral fundus and rhegmatogenous retinal detachment. Int Ophthalmol Clin. 1976;16(1):13–29.

    Article  CAS  Google Scholar 

  79. Kaneko Y, Moriyama M, Hirahara S, Ogura Y, Ohno-Matsui K. Areas of nonperfusion in peripheral retina of eyes with pathologic myopia detected by ultra-widefield fluorescein angiography. Invest Ophthalmol Vis Sci. 2014;55(3):1432–9. https://doi.org/10.1167/iovs.13-13706.

    Article  PubMed  Google Scholar 

  80. Sim DA, Keane PA, Rajendram R, et al. Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am J Ophthalmol. 2014;158(1):144–153.e1. https://doi.org/10.1016/j.ajo.2014.03.009.

    Article  PubMed  Google Scholar 

  81. Friberg TR, Gupta A, Yu J, et al. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems. Ophthalmic Surg Lasers Imag Off J Int Soc Imag Eye. 2008;39(4):304–11.

    Article  Google Scholar 

  82. Friberg TR, Gupta A, Yu J, et al. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems. Ophthalmic Surg Lasers Imaging Off J Int Soc Imaging Eye. 2008;39(4):304–11.

    Article  Google Scholar 

  83. Chen X, Sanfilippo CJ, Nagiel A, et al. Early detection of retinal hemangioblastomas in von hippel-lindau disease using ultra-widefield fluorescein angiography. Retina Phila Pa. 2018;38(4):748–54. https://doi.org/10.1097/IAE.0000000000001601.

    Article  Google Scholar 

  84. Thomas AS, Thomas MK, Finn AP, Fekrat S. Use of the ischemic index on widefield fluorescein angiography to characterize a central retinal vein occlusion as ischemic or nonischemic. Retina Phila Pa. 2019;39(6):1033–8. https://doi.org/10.1097/IAE.0000000000002126.

    Article  Google Scholar 

  85. Karampelas M, Sim DA, Chu C, et al. Quantitative analysis of peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography. Am J Ophthalmol. 2015;159(6):1161–1168.e1. https://doi.org/10.1016/j.ajo.2015.02.009.

    Article  PubMed  Google Scholar 

  86. Pahl DA, Green NS, Bhatia M, et al. Optical coherence tomography angiography and ultra-widefield fluorescein angiography for early detection of adolescent sickle retinopathy. Am J Ophthalmol. 2017;183:91–8. https://doi.org/10.1016/j.ajo.2017.08.010.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yokoi T, Hiraoka M, Miyamoto M, et al. Vascular abnormalities in aggressive posterior retinopathy of prematurity detected by fluorescein angiography. Ophthalmology. 2009;116(7):1377–82. https://doi.org/10.1016/j.ophtha.2009.01.038.

    Article  PubMed  Google Scholar 

  88. Cheng Y, Liu T-G, Li W-Y, Zhao M-W, Liang J-H. Fluorescein angiography of retinal vascular involution after intravitreal injection of ranibizumab for retinopathy of prematurity. Int J Ophthalmol. 2019;12(1):79–82. https://doi.org/10.18240/ijo.2019.01.12.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Suzani M, Moore AT. Intraoperative fluorescein angiography-guided treatment in children with early coats’ disease. Ophthalmology. 2015;122(6):1195–202. https://doi.org/10.1016/j.ophtha.2015.02.002.

    Article  PubMed  Google Scholar 

  90. Weiss SJ, Srinivasan A, Klufas MA, Shields CL. Incontinentia pigmenti in a child with suspected retinoblastoma. Int J Retina Vitr. 2017;3:34. https://doi.org/10.1186/s40942-017-0088-5.

    Article  Google Scholar 

  91. Labrador-Velandia SC, Sanabria MR. Fluorescein angiography indications: changes after optical coherence tomography and antiangiogenics. Optom Vis Sci Off Publ Am Acad Optom. 2018;95(5):435–42. https://doi.org/10.1097/OPX.0000000000001212.

    Article  Google Scholar 

  92. Vance SK, Chang LK, Imamura Y, Freund KB. Effects of intravitreal anti-vascular endothelial growth factor treatment on retinal vasculature in retinal vein occlusion as determined by ultra wide-field fluorescein angiography. Retin Cases Brief Rep. 2011;5(4):343–7. https://doi.org/10.1097/ICB.0b013e3181ff0999.

    Article  PubMed  Google Scholar 

  93. Matsui M, Justice J. Anterior segment fluorescein angiography. Int Ophthalmol Clin. 1976;16(2):189–97.

    CAS  PubMed  Google Scholar 

  94. Brancato R, Bandello F, Lattanzio R. Iris fluorescein angiography in clinical practice. Surv Ophthalmol. 1997;42(1):41–70.

    Article  CAS  Google Scholar 

  95. Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616.

    Article  PubMed  Google Scholar 

  96. Bischoff PM, Niederberger HJ, Török B, Speiser P. Simultaneous indocyanine green and fluorescein angiography. Retina Phila Pa. 1995;15(2):91–9.

    Article  CAS  Google Scholar 

  97. Mendis KR, Balaratnasingam C, Yu P, et al. Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail. Invest Ophthalmol Vis Sci. 2010;51(11):5864–9. https://doi.org/10.1167/iovs.10-5333.

    Article  PubMed  Google Scholar 

  98. Soares M, Neves C, Marques IP, et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol. 2017;101(1):62–8. https://doi.org/10.1136/bjophthalmol-2016-309424.

    Article  PubMed  Google Scholar 

  99. Salz DA, de Carlo TE, Adhi M, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and Normal eyes. JAMA Ophthalmol. 2016;134(6):644–50. https://doi.org/10.1001/jamaophthalmol.2016.0600.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sawada O, Ichiyama Y, Obata S, et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2018;256(7):1275–80. https://doi.org/10.1007/s00417-018-3992-y.

    Article  Google Scholar 

  101. Delori FC, Gragoudas ES. Examination of the ocular fundus with monochromatic light. Ann Ophthalmol. 1976;8(6):703–9.

    CAS  PubMed  Google Scholar 

  102. Behrendt T, Slipakoff E. Spectral reflectance photography. Int Ophthalmol Clin. 1976;16(2):95–100.

    Article  CAS  Google Scholar 

  103. Delori FC, Gragoudas ES, Francisco R, Pruett RC. Monochromatic ophthalmoscopy and fundus photography. The normal fundus. Arch Ophthalmol Chic Ill 1960. 1977;95(5):861–8. https://doi.org/10.1001/archopht.1977.04450050139018.

    Article  CAS  Google Scholar 

  104. Ducrey NM, Delori FC, Gragoudas ES. Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus. Arch Ophthalmol Chic Ill 1960. 1979;97(2):288–93. https://doi.org/10.1001/archopht.1979.01020010140009.

    Article  CAS  Google Scholar 

  105. Spaide RF. Fundus autofluorescence and age-related macular degeneration. Ophthalmology. 2003;110(2):392–9. https://doi.org/10.1016/S0161-6420(02)01756-6.

    Article  PubMed  Google Scholar 

  106. von Rückmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol. 1995;79(5):407–12. https://doi.org/10.1136/bjo.79.5.407.

    Article  Google Scholar 

  107. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36(3):718–29.

    CAS  PubMed  Google Scholar 

  108. von Rückmann A, Fitzke FW, Bird AC. In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol Chic Ill 1960. 1997;115(5):609–15. https://doi.org/10.1001/archopht.1997.01100150611006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Weiss, S.J., Papakostas, T.D. (2021). Fluorescein Angiography. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_138-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_138-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Fluorescein Angiography
    Published:
    17 August 2021

    DOI: https://doi.org/10.1007/978-3-319-90495-5_138-2

  2. Original

    Fluorescein Angiography
    Published:
    31 July 2021

    DOI: https://doi.org/10.1007/978-3-319-90495-5_138-1