Skip to main content

Neuromodulation for Chronic Refractory Angina

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics

Abstract

Angina pectoris is not a proportional indicator of the severity of occlusive coronary disease or myocardial ischemia; however, it is a key symptom of coronary artery disease. In a subgroup of patients suffering from long-lasting angina-type pain in the presence of myocardial ischemia, symptoms cannot be controlled by a combination of medical therapy, angioplasty, and coronary bypass surgery. Despite a relatively low mortality, these patients suffer high morbidity and frequent hospital admissions. This “refractory angina syndrome” is associated with important biopsychosocial issues and should be considered and treated as “chronic pain.”

Considering refractory angina pain as a chronic pain syndrome implies re-examining the entire neurophysiological pain pathways and questioning the Cartesian model. This also opens the gate to different hypothesis, including rethinking the symptom “angina” as a marker of ischemia only and looking at abnormal modulation processes involving pain pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Deedwania PC, Carbajal EV. Silent ischemia during daily life is an independent predictor of mortality unstable angina. Circulation. 1990;81:748–56.

    Article  CAS  PubMed  Google Scholar 

  2. Mavrocordatos P, Söderström D, de Jongste MJL. Chronic refractory angina. In: Hayek SM, Desai MJ, Shah BJ, Chelimsky TC, editors. Pain medicine: an interdisciplinary case-based approach. 3rd ed. New York: Oxford; 2015. p. 303–21.

    Chapter  Google Scholar 

  3. Cheng K, Sainsbury P, Fisher M, de Silva R. Management of refractory angina pectoris. Eur Cardiol Rev. 2016;11(2):69–76.

    Article  Google Scholar 

  4. McGillion M, Rthur HM. Persistent cardiac pain: a burgeoning science requiring a new approach. Can J Cardiol. 2012;28:S1–2.

    Article  PubMed  Google Scholar 

  5. Ianetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res. 2010; 205(1):1–12.

    Article  Google Scholar 

  6. Sainsbury PA, Fisher M, de Silva R. Alternative interventions for refractory angina. Heart. 2017;103: 1911–22.

    Article  PubMed  Google Scholar 

  7. Mannheimer C, Camici P, Chester MR, Collins A, de Jongste M, Eliasson T, et al. The problem of chronic refractory angina. Report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J. 2002;23:355–70.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng K, de Silva R. New advances in the management of refractory angina pectoris. Eur Cardiol Rev. 2018;13(1):70–9.

    Article  Google Scholar 

  9. Khan SN, Dutka P. A systematic approach to refractory angina. Curr Opin Support Palliat Care. 2008;2:247–51.

    Article  PubMed  Google Scholar 

  10. Jolicoeur EM, Cartier R, Henry TD, Barsness GW, Bourassa MG, McGillion M, L’Allier PL. Patients with coronary artery disease unsuitable for revascularization: definition, general principles, and a classification. Can J Cardiol. 2012;28(2 Suppl):S50–9.

    Article  PubMed  Google Scholar 

  11. Williams B, Menom M, Satran D, Hayward D, Hodges JS, Burke MN, et al. Patients with coronary artery disease not amenable to traditional revascularization: prevalence and 3-year mortality. Catheter Cardiovasc Interv. 2010;75:886–91.

    PubMed  Google Scholar 

  12. Cosin J, Asín E, Marrugat J, Elousa R, Arós F, de los Reyes M, et al. Prevalence of angina pectoris in Spain. PANES Study group. Eur J Epidemiol. 1999;4: 323–30.

    Article  Google Scholar 

  13. McGillion M, Arthur HM, Cook A, Carrol SL, Victor JC, L’Allier PL, et al. Management of patients with refractory angina: Canadian Cardiovascular Society/Canadian Pain Society joint guidelines. Can J Cardiol. 2012;28(2 Suppl):S20–41.

    Article  PubMed  Google Scholar 

  14. Reynolds MW, Frame D, Scheye R, et al. A systematic review of the economic burden of chronic angina. Am J Manag Care. 2004;10:S347–57.

    PubMed  Google Scholar 

  15. Schofield PM, Sharples LD, Caine N, Burns S, Tait S, Wistow T, et al. Transmyocardial laser revascularisation in patients with refractory angina: a randomised controlled trial. Lancet. 1999;353: 519–24.

    Article  CAS  PubMed  Google Scholar 

  16. Kandzari DE, Lam LC, Eisenstein EL, Clapp-Channing FJT, Califf RM, et al. Advanced coronary artery disease: appropriate end points for trials of novel therapies. Am Heart J. 2001;142:843–51.

    Article  CAS  PubMed  Google Scholar 

  17. TenVaarwerk IA, Jessurun GA, de Jongste MJL, Andersen C, Mannheimer C, Eliasson T, et al. Clinical outcome of patients treated with spinal cord stimulation for therapeutically refractory angina pectoris. Heart. 1999;82(1):82–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dobias M, Michalek P, Neuzil P, Stritesky M, Johnston P. Interventional treatment of pain inrefractory angina. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014; 158(4):518–27.

    Article  PubMed  Google Scholar 

  19. Waltenberger J. Chronic refractory angina pectoris: recent progress and remaining challenges. Eur Heart J. 2017;38(33):2256–558.

    Article  Google Scholar 

  20. Pak N, Devcich DA, Johnson MH, Merry AF. Is refractory angina pectoris a form of chronic pain? A comparison of two patient groups receiving spinal cord stimulation therapy. N Z Med J. 2014; 127(1391):52–61.

    PubMed  Google Scholar 

  21. Foreman RD, Chao Q. Neuromodulation of cardiac pain and cerebral vasculature: neural mechanisms. Cleve Clin J Med. 2009;76(Supl 2):575–9.

    Google Scholar 

  22. Rosen SD. From heart to brain: the genesis and processing of cardiac pain. Can J Cardiol. 2012; 28:S7–S19.

    Article  PubMed  Google Scholar 

  23. Parry CH. An inquiry into the symptoms and causes of the syncope anginosa, commonly caused angina pectoris. Bath R. Cruttwell; 1799. https://wellcomecollection.org/works/hm4zfbtq, Francis A. Countway Library of Medicine.

  24. Warren J. Remarks on angina pectoris. N Engl J Med Surg. 1812;1:1–11.

    Article  Google Scholar 

  25. Colbeck EH. Angina pectoris: a criticism and a hypothesis. Lancet. 1903;161:793–5.

    Article  Google Scholar 

  26. Lewis T. Pain in muscular ischemia – its relation to anginal pain. Arch Intern Med. 1932;49:713–27.

    Article  Google Scholar 

  27. De Decker K, Beese U, Staal MJ, de Jongste MJL. Electrical neuromodulation for patients with cardiac diseases. Neth Heart J. 2013;21:91–4.

    Article  PubMed  Google Scholar 

  28. Foreman RD. Mechanisms of cardiac pain. Annu Rev Physiol. 1999;61:143–67.

    Article  CAS  PubMed  Google Scholar 

  29. Lapointe K, Altier C. The role of TRPA in visceral inflammation and pain. Channels. 2011;5(6):525–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu M, Komori N, Qin C, et al. Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilatation. Brain Res. 2007; 1156:80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hua F, Ricketts BA, Reifsteck A, et al. Myocardial ischemia induces the release of substance P from cardiac afferent neurons in rat thoracic spinal cord. Am J Physiol Heart Circ Physiol. 2004;286:H1654–64.

    Article  CAS  PubMed  Google Scholar 

  32. Meller ST, Gebhart GF. A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience. 1992;48(3): 501–24.

    Article  CAS  PubMed  Google Scholar 

  33. Svorkdal N. Treatment of inoperable coronary disease and refractory angina: spinal stimulators, epidurals, gene therapy, transmyocardial laser, and counterpulsation. Semin Cardiothorac Vasc Anesth. 2004;8(1):43–58. https://doi.org/10.1177/108925320400800109

    Article  PubMed  Google Scholar 

  34. Kasparov S, Teschemacher AG. Altered central catecholaminergic transmission and cardiovascular disease. Exp Physiol. 2008;93:725–40. Rosen SD. From heart to brain: The genesis and processing of cardiac pain. Can J Cardiol. 2012;28:S7–19.

    Article  CAS  PubMed  Google Scholar 

  35. Kuo DC, Oravitz JJ, DeGroat WC. Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res. 1984; 321(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  36. Richter A, Caderholm I, Jonasson L, Mucchiano C, Uchto M, Janerot-Sjöberg B. Effect of thoracic epidural analgesia on refractory angina pectoris: long-term home self-treatment. J Cardiothorac Vasc Anesth. 2002;16(6):679–84.

    Article  PubMed  Google Scholar 

  37. Richter, Cederholm I, Fredrikson M, Mucchiano C, Tärff S, Janerot-Sjoberg B. Effect of long-term thoracic epidural analgesia pectoris: a 10-year experience. J Cardiothorac Vasc Anesth. 2012;26(5):822–8.

    Article  PubMed  Google Scholar 

  38. Ali N, Patel P. Non-pharmacological interventions in refractory angina. Heart Res Open J. 2018;5(1):1–7.

    Article  Google Scholar 

  39. Chester M, Hammond C, Leach A. Long-term benefits of stellate ganglion block in severe chronic refractory angina. Pain. 2000;87:103–5.

    Article  CAS  PubMed  Google Scholar 

  40. Kim ED, Yoo WJ, Kim YN, Park HJ. Ultrasound-guided pulsed radiofrequency treatment of the cervical sympathetic chain for complex regional pain syndrome. Medicine. 2017;96:1–5.

    Google Scholar 

  41. Stanton-Hicks M. Complications of sympathetic blocks for extremity pain. Tech Reg Anesth Pain Manag. 2007;11(3):148–51.

    Article  Google Scholar 

  42. Foreman RD. Neurological mechanisms of chest pain and cardiac disease. Cleve Clin J Med. 2007; 74(Suppl 1):S30–3.

    Article  PubMed  Google Scholar 

  43. Kreiner M, Okeson JP, Michelis V, Lujambio M, Isberg A. Craniofacial pain as the sole symptom of cardiac ischemia: a prospective multicenter study. J Am Dent Assoc. 2007;138:174–9.

    Article  Google Scholar 

  44. Melzack R, Wall P. Pain mechanisms: a new theory. Science. 1965;150:971–99.

    Article  CAS  PubMed  Google Scholar 

  45. Prager JP. What does the mechanism of spinal cord stimulation tell us about complex regional pain syndrome? Pain Med. 2010;11(8):1278–83.

    Article  PubMed  Google Scholar 

  46. Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34: 2949–3003.

    Article  Google Scholar 

  47. Andersen C, Hole P, Oxhoj H. Does pain relief with spinal cord stimulation for angina conceal myocardial infarction? Br Heart J. 1994;71:419–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. West PD, Colquhoun DM. TENS in refractory angina pectoris. Three case reports. Med J Aust. 1993; 158(7):488–9.

    Article  CAS  PubMed  Google Scholar 

  49. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489–91.

    CAS  PubMed  Google Scholar 

  50. Shealy CN, Taslitz N, Mortimer JT, Becker DP. Electrical inhibition of pain: experimental evaluation. Anesth Analg. 1967;46:299–305.

    CAS  PubMed  Google Scholar 

  51. Deer TR, Thomson S, Pope JE, Russo M, Luscombe F, Levy R. International neuromodulation society critical assessment: guideline review of implantable neurostimulation devices. Neuromodulation. 2014;17:678–85.

    Article  PubMed  Google Scholar 

  52. Deer TR, Mekhail N, Provenzano D, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the neuromodulation appropriateness consensus committee. Neuromodulation. 2014;17:515–50.

    Article  PubMed  Google Scholar 

  53. Narouze S, Benzon HT, Provenzano DA, Buvanendran A, De Andres J, Deer TR. Interventional spine and pain procedures in patients on antiplatelet and anticoagulant medications guidelines from the American Society of Regional Anesthesia and Pain Medicine, the European Society of Regional Anaesthesia and Pain Therapy, the American Academy of Pain Medicine, the International Neuromodulation Society, the North American Neuromodulation Society, and the World Institute of Pain. Reg Anesth Pain Med. 2015;40(3):182–212.

    Article  CAS  PubMed  Google Scholar 

  54. Smith SC Jr, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation. 2011;124: 2458–73.

    Article  PubMed  Google Scholar 

  55. Oscarsson A, Gupta A, Fredrikson M, et al. To continue or discontinue aspirin in the perioperative period: a randomized, controlled clinical trial. Br J Anaesth. 2010;104:305–12.

    Article  CAS  PubMed  Google Scholar 

  56. Douketis JD, Spyropoulos AC, Kaatz S, Becker RC, Caprini JA, Dunn AS, et al. Perioperative bridging anticoagulation in patients with atrial fibrillation. N Engl J Med. 2015;373:823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rechenmacher SJ, Fang JC. Bridging anticoagulation. J Am Coll Cardiol. 2015;66:1392–403.

    Article  CAS  PubMed  Google Scholar 

  58. Sjögren V, Grzymala-Lubranski B, Renlund H, Sevensson PJ, Själander A. Safety and efficacy of bridging with low-molecular-weight heparin during temporary interruptions of warfarin: a register-based cohort study. Clin Appl Thromb Hemost. 2017; 23(8):961–6.

    Article  PubMed  CAS  Google Scholar 

  59. Van Kleef M, Staats P, Mekhail N, Huygen F. 24. Chronic refractory angina pectoris. Pain Pract. 2011;11:476–82.

    Article  PubMed  Google Scholar 

  60. Sanderson JE, Ibrahim B, Waterhouse D, Palmer RB. Spinal electrical stimulation for intractable angina -long-term clinical outcome and safety. Eur Heart J. 1994;15:810–4.

    Article  CAS  PubMed  Google Scholar 

  61. Zipes DP, Svorkdal N, Berman D, Boortz-Marx R, Henry T, Lerman A, et al. Spinal cord stimulation therapy for patients with refractory angina who are not candidates for revascularization. Neuromodulation. 2012;15:550–8.

    Article  PubMed  Google Scholar 

  62. Mannheimer C, Eliasson T, Augustinsson LE, Blomstrand C, Emanuelsson H, Larsson S, et al. Electrical stimulation versus coronary artery bypass surgery in severe angina pectoris: the ESBY study. Circulation. 1998;97:1157–63.

    Article  CAS  PubMed  Google Scholar 

  63. Ibuki T, Hama AT, Wang XT, Pappas GD, Sagen J. Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience. 1997;76:845–58.

    Article  CAS  PubMed  Google Scholar 

  64. Stiller CO, Cui JG, O’Connor WT, Brodin E, Meyerson BA, Linderoth B. Release of gamma-aminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery. 1996;39: 367–75.

    Article  CAS  PubMed  Google Scholar 

  65. Myerson BA, Linderoth B. Mechanisms of spinal cord stimulation in neuropathic pain. Neurol Res. 2000;22:285–92.

    Article  Google Scholar 

  66. Armour JA, Linderoth B, Arora RC, et al. Long-term modulation of the intrinsic cardiac nervous system by spinal cord neurons in normal and ischaemic hearts. Auton Neurosci. 2002;95:71–9.

    Article  CAS  PubMed  Google Scholar 

  67. Blair RW, Weber RN, Foreman RD. Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin in the monkey. Circ Res. 1982;51:83–94.

    Article  CAS  PubMed  Google Scholar 

  68. Ammons WS, Girardot MN, Foreman RD. Effects of intracardiac bradykinin on T2–T3 medial spinothalamic cells. Am J Physiol. 1985;249:R147–52.

    CAS  PubMed  Google Scholar 

  69. Chandler MJ, Brennan TJ, Garrison DW, Kim KS, Schwartz PJ, Foreman RD. A mechanism of cardiac pain suppression by spinal cord stimulation: implications for patients with angina pectoris. Eur Heart J. 1993;14:96–105.

    Article  CAS  PubMed  Google Scholar 

  70. de Jongste MJ, Haustvat R, Hillege H, Lie K. Efficacy of spinal cord stimulation as adjuvant therapy for intractable angina pectoris: a prospective, randomized clinical study. J Am Coll Cardiol. 1994;23:1592–7.

    Article  PubMed  Google Scholar 

  71. Eliasson T, Jern S, Augustinsson L-E, Mann-heimer C. Safety aspects of spinal cord stimula-tion in severe angina pectoris. Coron Artery Dis. 1994; 5:845–50.

    CAS  PubMed  Google Scholar 

  72. Mannheimer C, Eliasson T, Andersson B, Bergh CH, Augustinsson LE, Emanuelsson H, et al. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action. BMJ. 1993;307:477–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Norrsell H, Eliasson T, Mannheimer C, Augustinsson LE, Bergh CA, Andersson B, et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover. Eur Heart J. 1997;18:1890–6.

    Article  CAS  PubMed  Google Scholar 

  74. González-Darder JM, Canela P, González-Martinez V. High cervical spinal cord stimulation for unstable angina pectoris. Stereotact Funct Neurosurg. 1991;56:20–7.

    Article  PubMed  Google Scholar 

  75. Kingma JG, Linderoth B, Ardell JL, Armour JA, de Jongste MJ, Foreman RD. Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia. Auton Neurosci. 2001;91:47–54.

    Article  PubMed  Google Scholar 

  76. Norrsell H, Eliasson T, Albertsson P, Augustinsson LE, Emanuelsson H, Eriksson P, et al. Effects of spinal cord stimulation on coronary blood flow velocity. Coron Artery Dis. 1998;9:273–8.

    Article  CAS  PubMed  Google Scholar 

  77. Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine post-infarction heart failure model. Circulation. 2009;120:286–94.

    Article  PubMed  Google Scholar 

  78. Naar J, Jaye D, Linde C, et al. Spinal cord stimulation in heart failure: effect on disease-associated biomarkers. Eur J Heart Fail. 2017;19:283–6.

    Article  PubMed  Google Scholar 

  79. Howard-Quijano K, Takamiya T, Dale EA, Kipke J, Kubo Y, Grogan T, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am J Physiol Heart Circ Physiol. 2017;313:H421–31.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Naar J, Jaye D, Linde C, et al. Effects of spinal cord stimulation on cardiac sympathetic nerve activity in patients with heart failure. Pacing Clin Electrophysiol. 2017;40:504–13.

    Article  PubMed  Google Scholar 

  81. Qin C, Farber JP, Linderoth B, Shahid A, Foreman RD. Neuromodulation of thoracic intraspinal visceroreceptive transmission by electrical stimulation of spinal dorsal column and somatic afferents in rats. J Pain. 2008;9:71–8.

    Article  PubMed  Google Scholar 

  82. Ding X, Hua F, Sutherly K, Ardell JL, Williams CA. C2 spinal cord stimulation induces dynorphin release from rat T4 spinal cord: potential modulation of myocardial ischemia-sensitive neurons. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. In: Hamani C, Moro E editors. Emerging horizons in neuromodulation. New frontiers in brain and spine stimulation, vol 107. ScienceDirect; 2012. p. 87–119. International Review of Neurobiology. Academic Press. ISSN 0074-7742, ISBN 9780124047068, https://doi.org/10.1016/B978-0-12-404706-8.00006-1. http://www.sciencedirect.com/science/article/pii/B9780124047068000061.

    Chapter  Google Scholar 

  84. Pak N, Devcich DA, Johnson MH, et al. Is refractory angina pectoris a form of chronic pain? A comparison of two patient groups receiving spinal cord stimulation therapy. N Z Med J. 2014;127(1391):52–61.

    PubMed  Google Scholar 

  85. Pan X, Bao H, Si Y, Xu C, Clen H, Gao X, et al. Spinal cord stimulation for refractory angina pectoris. Clin J Pain. 2017;33(6):543–51.

    Article  PubMed  Google Scholar 

  86. Andréil P, Yu W, Gersbach P, Gillberg L, Pehrsson K, Hardy I. Long-term effects of spinal cord stimulation on angina symptoms and quality of life in patients with refractory angina pectoris. Results from the European Angina Registry Link Study (EARL). Heart. 2010;96:1132–6.

    Article  Google Scholar 

  87. Rosen SD, Paulesu E, Fritch CD, et al. Central neural correlates of angina pectoris as a model of visceral pain. Lancet. 1994;344:147–50.

    Article  CAS  PubMed  Google Scholar 

  88. Rosen S, Paulesu E, Wise R, Camici P. Central neural contribution to the perception of chest pain in cardiac syndrome X. Heart. 2002;87:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kong J-T, Schnyer RN, Johnson KA, Mackey S. Understanding central mechanisms of acupuncture analgesia using dynamic quantitative sensory testing: a review. Evid Based Complement Alternat Med. 2013;2013:Article ID 187182, 12 pages https://doi.org/10.1155/2013/187182.

    Google Scholar 

  90. The world Health Organization (WHO). Acupuncture: review and analysis of reports on controlled clinical trial. 1996. https://www.iama.edu/OtherArticles/acupuncture_WHO_full_report.pdf

  91. Richter A, Herlitz J, Hjalmarson A. Effect of acupuncture in patients with angina pectoris. Eur Heart J. 1991;12(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  92. Bartley EJ, Rhudy JL. The influence of pain catastrophizing on experimentally induced emotion and emotional modulation of nociception. J Pain. 2008;9:388–96.

    Article  PubMed  Google Scholar 

  93. Wasson L, Emeruwa O, Davidson KW. Tricyclic antidepressant for refractory angina pain. In: Lemos JA, Omland T, editors. Chronic coronary artery disease: a companion to Braunwald’s heart. 1st ed. Philadelphia: Elsevier; 2018. p. 303–21.

    Google Scholar 

  94. Lewin RJ, Furze G, Robinson J, et al. A randomized controlled trial of a self-management plan for patients with newly diagnosed angina. Br J Gen Pract. 2002;52:194–6, 199–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. McGillion M, Arthur H, Victor JC, et al. Effectiveness of psychoeducational interventions for improving symptoms, health-related quality of life, and psychological well being in patients with stable angina. Curr Cardiol Rev. 2008;4:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. La Cour P, Petersen M. Effects of mindfulness medication on chronic pain: a randomized controlled trial. Pain Med. 2015;16(4):641–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Mavrocordatos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mavrocordatos, P., Lages, G.R.C., Macrea, L.M. (2019). Neuromodulation for Chronic Refractory Angina. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics