Skip to main content

Robotizing the Bio-inspiration

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 5 (RiTA 2017)

Abstract

Imitating natural living beings remains a perpetual curiosity of human beings. The pursuit of replicating biological systems led humans to develop contemporary machines—the robots with diverse range of shapes, sizes, capabilities and applications. Such systems may exhibit strength, control and operation sustainability; however, rigidness of the hard underlying mechanical structures is one of the major constraints in achieving compliance like that of natural organisms and species. This constraint is required to be softened to create biological duos with enhanced structural compliance. This demarcation has led to a new corridor to craft biological mockups, and has made doors opened to exploit new materials, novel design methodologies and innovative control techniques. This paper is an exclusive appraisal to bio-inspired state-of-the-art developments conferring their design specific importance. The methodical study and survey of corresponding structural designs, actuation techniques, sensors, and materials is potentially useful to demonstrate the novelty of bio-inspired robotic developments. Keywords: Soft robotics, bio-inspiration, novelty, flexibility, softness and compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gellius, A., Beloe, W.: The Attic Nights of Aulus Gellius (Translated into English by the Rev. W. BELOE F.S.A., 1795, London), Book X, Chapter XII, vol. II, pp. 220–223. Printed for J. Johnson, London (1795)

    Google Scholar 

  2. Kostas, K.: The First Robot, Created in 400 BCE, Was A Steam-Powered Pigeon [Internet] (2014). Kostasvakouftsis.blogspot.it. https://kostasvakouftsis.blogspot.it/2014/04/first-robot-created-in-400-bce-was.html. Accessed 10 August 2016

  3. Kotsanas, K.: The flying pigeon of archytas [Internet]. Museum of the ancient Greek technology. http://kotsanas.com/gb/exh.php?exhibit=2001001. Accessed 10 August 2016

  4. Clarke, R.: Asimov’s laws of robotics: implications for information technology-Part I. Computer 26(12), 53–61 (1993)

    Article  Google Scholar 

  5. Industrial Robot Revenue Will Nearly Triple by 2025, Fueled by Chinese Demand [Internet]. http://www.prnewswire.com/news-releases/industrial-robot-revenue-will-nearly-triple-by-2025-fueled-by-chinese-demand-300389443.html. Accessed 22 June 2017

  6. Alex, G.: Sales of industrial robots are surging. So what does this mean for human workers? [Internet]. https://www.weforum.org/agenda/2017/05/sales-of-industrial-robots-are-surging-so-what-does-this-mean-for-human-workers/. Accessed 22 June 2017

  7. Akella, P., Cutkosky, M.: Manipulating with soft fingers: modeling contacts and dynamics. In: International Conference on Robotics and Automation, pp. 764–769. IEEE (1989)

    Google Scholar 

  8. Suzumori, K., Iikura, S., Tanaka, H.: Development of flexible microactuator and its applications to robotic mechanisms. In: International Conference on Robotics and Automation, pp. 1622–1627. IEEE (1991)

    Google Scholar 

  9. Suzumori, K., Iikura, S., Tanaka, H.: Flexible microactuator for miniature robots. In: Micro Electro Mechanical Systems, MEMS’91, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp. 204–209. IEEE (1991)

    Google Scholar 

  10. Suzumori, K.: Flexible microactuator: 1st report, static characteristics of 3 DOF actuator. Trans. Jpn Soc. Mech. Eng. Ser. C (in Japanese) 55, 2547–2552 (1989)

    Article  Google Scholar 

  11. Suzumori, K.: Flexible microactuator: 2nd report, dynamic characteristics of 3 DOF actuator. Trans. Jpn. Soc. Mech. Eng. Ser. C (in Japanese) 56, 1887–1893 1990

    Article  Google Scholar 

  12. Suzumori, K., Iikura, S., Tanaka, H.: Applying a flexible microactuator to robotic mechanisms. IEEE Control Syst. 12(1), 21–27 (1992)

    Article  Google Scholar 

  13. Suzumori, K., Kondo, F., Tanaka, H.: Micro-walking robot driven by flexible microactuator. J. Robot. Mechatron. 5(6), 537–541 (1993)

    Article  Google Scholar 

  14. Suzumori, K.: Elastic materials producing compliant robots. Robot. Auton. Syst. 18(1–2), 135–140 (1996)

    Article  Google Scholar 

  15. Toshiba Corporation: Press Releases 21 February, 1997 [Internet]. Toshiba.co.jp. (1997). https://www.toshiba.co.jp/about/press/1997_02/pr2101.htm. Accessed 13 September 2016

  16. Suzumori, K., Miyagawa, T., Kimura, M., Hasegawa, Y.: Micro inspection robot for 1-in pipes. IEEE/ASME Trans. Mechatron. 4(3), 286–292 (1999)

    Article  Google Scholar 

  17. Suzumori, K., Maeda, T., Wantabe, H., Hisada, T.: Fiberless flexible microactuator designed by finite-element method. IEEE/ASME Trans. Mechatron. 2(4), 281–286 (1997)

    Article  Google Scholar 

  18. Suzumori, K., Koga, A., Haneda, R.: Microfabrication of integrated FMAs using stereo lithography. In: IEEE Workshop on Micro Electro Mechanical Systems, MEMS’94, pp. 136–141. IEEE (1994)

    Google Scholar 

  19. Suzumori, K., Koga, A., Kondo, F., Haneda, R.: Integrated flexible microactuator systems. Robotica 14(05), 493 (1996)

    Article  Google Scholar 

  20. Chou, C.-P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Google Scholar 

  21. Hoggett, R.: 1957—“Artificial Muscle”—Joseph Laws McKibben (American) [Internet]. cyberneticzoo.com. (2012). http://cyberneticzoo.com/bionics/1957artificial-muscle-joseph-laws-mckibben-american/. Accessed 22 August 2016

  22. Pack, R.T., Iskarous, M.: The use of the soft arm for rehabilitation and prosthetic. In: Proceedings of the Annual Conference RESNA 1994, pp. 472–475. RESNA Press (1994)

    Google Scholar 

  23. Google Patents: Robotic fluid-actuated muscle analogue. US Patent no. 5,021,064, 1991

    Google Scholar 

  24. Hamerlain, M.: An anthropomorphic robot arm driven by artificial muscles using a variable structure control. In: International Conference on Intelligent Robots and Systems 95, Human Robot Interaction and Cooperative Robots, pp. 550–555. IEEE (1995)

    Google Scholar 

  25. Groen, F., van der Smagt, P., Schulten, K.: Analysis and control of a rubbertuator arm. Biol. Cybern. 75(5), 433–440 (1996)

    Article  Google Scholar 

  26. Alford, W., Wilkes, D., Kawamura, K., Pack, R.: Flexible human integration for holonic manufacturing systems. In: Proceedings of the World Manufacturing Congress, pp. 53–62 (1997)

    Google Scholar 

  27. Wilkes, D., Pack, R., Alford, A., Kawamura, K.: HuDL, A design philosophy for socially intelligent service robots. American Association for Artificial Intelligence, AAAI Press, Technical Report, FS-97–02, pp. 140–145 (1997)

    Google Scholar 

  28. Cambron, M., Peters, II R., Wilkes, D., Christopher, J., Kawamura, K.: Human-centered robot design and the problem of grasping. In: The 3rd International Conference on Advanced Mechatronics ICAM’98-Innovative Mechatronics for the 21st Century, JSME, pp. 191–196 (1998)

    Google Scholar 

  29. Yamaha, Y., Iwanaga, Y., Fukunaga, M., Fujimoto, N., Ohta, E., Morizono, T., et al.: Soft viscoelastic robot skin capable of accurately sensing contact location of objects. In: IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI’99, pp. 105–110. IEEE (1999)

    Google Scholar 

  30. Hakozaki, M., Nakamura, K., Shinoda, H.: Telemetric artificial skin for soft robot. In: Transducers’99, pp. 844–847 (1999)

    Google Scholar 

  31. Bubic, F.: Flexible robotic links and manipulator trunks made thereform. US Patent no. 5,080,000 (1992)

    Google Scholar 

  32. Rus, D., Tolley, M.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  33. Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput. Sci. 7, 99–102 (2011)

    Article  Google Scholar 

  34. Ilievski, F., Mazzeo, A., Shepherd, R., Chen, X., Whitesides, G.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)

    Article  Google Scholar 

  35. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  36. Trimmer, B.A., Ti Lin, H., Baryshyan, A., Leisk, G.G., Kaplan, D.L.: Towards a biomorphic soft robot: design constraints and solutions. In: 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 599–605. IEEE (2012)

    Google Scholar 

  37. Klute, G.K., Czerniecki, J.M., Hannaford, B.: McKibben artificial muscles: pneumatic actuators with biomechanical intelligence. In: Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 221–226. IEEE (1999)

    Google Scholar 

  38. Rieffel, J., Knox, D., Smith, S., Trimmer, B.: Growing and evolving soft robots. Artif. Life 20(1), 143–162 (2014)

    Article  Google Scholar 

  39. Suzumori, K., Maeda, T., Wantabe, H., Hisada, T.: Fiberless flexible microactuator designed by finite-element method. IEEE/ASME Trans. Mechatron. 2(4), 281–286 (1997)

    Article  Google Scholar 

  40. Stone, R.S.W., Brett, P.N.: A flexible pneumatic actuator for gripping soft irregular shaped objects. In: IEE Colloquium on Innovative Actuators for Mechatronic Systems, pp. 13/1–13/3. IEE (1995)

    Google Scholar 

  41. Bowler, C.J., Caldwell, D.G., Medrano-Cerda, G.A.: Pneumatic muscle actuators: musculature for an anthropomorphic robot arm. In: IEE Colloquium on Actuator Technology: Current Practice and New Developments, (Digest No: 1996/110), pp. 8/1–8/6. IEE (1996)

    Google Scholar 

  42. Akella, P., Cutkosky, M.: Manipulating with soft fingers: modeling contacts and dynamics. In: International Conference on Robotics and Automation, pp. 764–769. IEEE (1989)

    Google Scholar 

  43. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: International Conference on Robotics and Automation, pp. 4975–4980. IEEE (2007)

    Google Scholar 

  44. Pritts, M.B., Rahn, C.D.: Design of an artificial muscle continuum robot. In: International Conference on Robotics and Automation, ICRA’04, pp. 4742–4746. IEEE (2004)

    Google Scholar 

  45. McMahan, W., Chitrakaran, V., Csencsits, M., Dawson, D., Walker, I.D., Jones, B.A., et al.: Field trials and testing of the OctArm continuum manipulator. In: International Conference on Robotics and Automation, ICRA 2006, pp. 2336–2341. IEEE (2006)

    Google Scholar 

  46. Grissom, M.D., Chitrakaran, V., Dienno, D., Csencits, M., Pritts, M., Jones, B., et al.: Design and experimental testing of the OctArm soft robot manipulator. In: Defense and Security Symposium, Proceedings of the SPIE 6230, Unmanned Systems Technology VIII, pp. 62301F-62301F-10. International Society for Optics and Photonics (2006)

    Google Scholar 

  47. Trivedi, D., Dienno, D., Rahn, C.: Optimal, model-based design of soft robotic manipulators. J. Mech. Des. 130(9), 091402 (2008)

    Article  Google Scholar 

  48. Trivedi, D., Lotfi, A., Rahn, C.: Geometrically exact models for soft robotic manipulators. IEEE Trans. Rob. 24(4), 773–780 (2008)

    Article  Google Scholar 

  49. Trivedi, D., Rahn, C.: Model-based shape estimation for soft robotic manipulators: the planar case. J. Mech. Robot. 6(2), 021005 (2014)

    Article  Google Scholar 

  50. Udupa, G., Sreedharan, P., Aditya, K.: Robotic gripper driven by flexible microactuator based on an innovative technique. In: Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 111–116. IEEE (2010)

    Google Scholar 

  51. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. C 31(6), 1230–1239 (2011)

    Article  Google Scholar 

  52. Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., Laschi, C.: A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: 2012 International Conference on Robotics and Automation (ICRA), pp. 3819–3824. IEEE (2012)

    Google Scholar 

  53. Obaji, M.O., Zhang, S.: Investigation into the force distribution mechanism of a soft robot gripper modeled for picking complex objects using embedded shape memory alloy actuators. In: 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 84–90. IEEE (2013)

    Google Scholar 

  54. Robot and the Elastic Mind: Projects—Athlete Robot [Internet]. Isi.imi.i.u-tokyo.ac.jp. http://www.isi.imi.i.utokyo.ac.jp/~niiyama/projects/proj_athlete_en.html. Accessed 6 September 2016

  55. Sasaki, D., Noritsugu, T., Takaiwa, M.: Development of active support splint driven by pneumatic soft actuator (ASSIST). In: International Conference on Robotics and Automation, pp. 520–525. IEEE (2005)

    Google Scholar 

  56. Sasaki, D., Noritsugu, T., Takaiwa, M., Kataoka, Y.: Development of pneumatic wearable power assist device for human arm “ASSIST”. In: 2005 Proceedings of the JFPS International Symposium on Fluid Power, vol. 2005, no. 6, pp. 202–207 (2005)

    Article  Google Scholar 

  57. Jung, K., Koo, J., Nam, J., Lee, Y., Choi, H.: Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2(2), S42–S49 (2007)

    Article  Google Scholar 

  58. Yamamoto, Y., Kure, K., Iwai, T., Kanda, T., Suzumori, K.: Flexible displacement sensor using piezoelectric polymer for intelligent FMA. In: International Conference on Intelligent Robots and Systems IEEE/RSJ, pp. 765–770. IEEE (2007)

    Google Scholar 

  59. Kure, K., Kanda, T., Suzumori, K., Wakimoto, S.: Flexible displacement sensor using injected conductive paste. Sens. Actuators, A 143(2), 272–278 (2008)

    Article  Google Scholar 

  60. Cianchetti, M., Mattoli, V., Mazzolai, B., Laschi, C., Dario, P.: A new design methodology of electrostrictive actuators for bio-inspired robotics. Sens. Actuators B: Chem. 142(1), 288–297 (2009)

    Article  Google Scholar 

  61. Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., Dario, P.: Design of a biomimetic robotic octopus arm. Bioinspir. Biomim. 4(1), 015006 (2009)

    Article  Google Scholar 

  62. Follador, M., Cianchetti, M., Arienti, A., Laschi, C.: A general method for the design and fabrication of shape memory alloy active spring actuators. Smart Mater. Struct. 21(11), 115029 (2012)

    Article  Google Scholar 

  63. Cianchetti, M., Licofonte, A., Follador, M., Rogai, F., Laschi, C.: Bioinspired soft actuation system using shape memory alloys. Actuators 3(3), 226–244 (2014)

    Article  Google Scholar 

  64. Bao, G., Cai, S., Wang, Z., Xu, S., Huang, P., Yang, Q., et al.: Flexible pneumatic robotic actuator FPA and its applications. In: International Conference on Robotics and Biomimetics (ROBIO), pp. 867–872. IEEE (2013)

    Google Scholar 

  65. Shintake, J., Schubert, B., Rosset, S., Shea, H., Floreano, D.: Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1097–1102. IEEE (2015)

    Google Scholar 

  66. Feng, G.H., Yen, S.C.: Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms. In: 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1877–1880. IEEE (2015)

    Google Scholar 

  67. Bertetto, A.M., Ruggiu, M.: In-pipe inch-worm pneumatic flexible robot. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1226–1231. IEEE (2001)

    Google Scholar 

  68. Shepherd, R., Ilievski, F., Choi, W., Morin, S., Stokes, A., Mazzeo, A., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  69. Bogue, R.: Flexible and soft robotic grippers: the key to new markets? Ind. Robot: Int. J. 43(3), 258–263 (2016)

    Article  Google Scholar 

  70. Takashi, Y., Naoyuki, I., Makoto, M., Yoshinobu, A.: Picking up operation of thin objects by robot arm with two-fingered parallel soft gripper. In: Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 7–12. IEEE (2012)

    Google Scholar 

  71. Cianchetti, M.: The octopus as paradigm for soft robotics. In: 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 515–516. IEEE (2013)

    Google Scholar 

  72. Calisti, M., Arienti, A., Renda, F., Levy, G., Hochner, B., Mazzolai, B., et al.: Design and development of a soft robot with crawling and grasping capabilities. In: International Conference on Robotics and Automation (ICRA), pp. 4950–4955. IEEE (2012)

    Google Scholar 

  73. Margheri, L., Laschi, C., Mazzolai, B.: Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir. Biomim. 7(2), 025004 (2012)

    Article  Google Scholar 

  74. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir. Biomim. 7(2), 025005 (2012)

    Article  Google Scholar 

  75. Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., Laschi, C.: A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 7(2), 025006 (2012)

    Article  Google Scholar 

  76. Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., Laschi, C.: A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: International Conference on Robotics and Automation (ICRA), pp. 3819–3824. IEEE (2012)

    Google Scholar 

  77. Kang, R., Branson, D., Zheng, T., Guglielmino, E., Caldwell, D.: Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspir. Biomim. 8(3), 036008 (2013)

    Article  Google Scholar 

  78. Kang, R., Guglielmino, E., Zullo, L., Branson, D., Godage, I., Caldwell, D.: Embodiment design of soft continuum robots. Adv. Mech. Eng. 8(4), 1687814016643302 (2016)

    Article  Google Scholar 

  79. Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., et al.: Soft robotics technologies to address shortcomings in Today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robot. 1(2), 122–131 (2014)

    Article  Google Scholar 

  80. Noh, Y., Sareh, S., Back, J., Würdemann, H.A., Ranzani, T., Secco, E.L., et al.: A three-axial body force sensor for flexible manipulators. In: International Conference on Robotics and Automation (ICRA), pp. 6388–6393. IEEE (2014)

    Google Scholar 

  81. Ranzani, T., Cianchetti, M., Gerboni, G., Falco, I., Menciassi, A.: A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans. Rob. 32(1), 187–200 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mahmood Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tahir, A.M., Naselli, G.A., Zoppi, M. (2019). Robotizing the Bio-inspiration. In: Kim, JH., et al. Robot Intelligence Technology and Applications 5. RiTA 2017. Advances in Intelligent Systems and Computing, vol 751. Springer, Cham. https://doi.org/10.1007/978-3-319-78452-6_27

Download citation

Publish with us

Policies and ethics