Skip to main content

Comparison of Methods for Real and Imaginary Motion Classification from EEG Signals

  • Chapter
  • First Online:
Intelligent Methods and Big Data in Industrial Applications

Part of the book series: Studies in Big Data ((SBD,volume 40))

Abstract

A method for feature extraction and results of classification of EEG signals obtained from performed and imagined motion are presented. A set of 615 features was obtained to serve for the recognition of type and laterality of motion using 8 different classifications approaches. A comparison of achieved classifiers accuracy is presented in the paper, and then conclusions and discussion are provided. Among applied algorithms the highest accuracy was achieved with: Rough Set, SVM and ANN methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi, K.: Electroencephalography (EEG)-based neurofeedback training for brain–computer interface (BCI). Exp. Brain Res. 231, 351–365 (2013). https://doi.org/10.1007/s00221-013-3699-6

    Article  Google Scholar 

  2. He, B., Gao, S., Yuan, H., Wolpaw, J.R.: Brain–computer interfaces. In: He, B. (ed.) Neural Engineering, pp. 87–151 (2012). https://doi.org/10.1007/978-1-4614-5227-0_2

    Google Scholar 

  3. Bek, J., Poliakoff, E., Marshall, H., Trueman, S., Gowen, E.: Enhancing voluntary imitation through attention and motor imagery. Exp. Brain Res. 234, 1819–1828 (2016). https://doi.org/10.1007/s00221-016-4570-3

    Article  Google Scholar 

  4. Doud, A.J., Lucas, J.P., Pisansky, M.T., He, B.: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE 6(10), e26322 (2011). https://doi.org/10.1371/journal.pone.0026322

    Article  Google Scholar 

  5. Kumar, S.U., Inbarani, H.: PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput. Appl. 1–20 (2016). https://doi.org/10.1007/s00521-016-2236-5

  6. LaFleur, K., Cassady, K., Doud, A.J., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface. J. Neural Eng. 10 (2013). https://doi.org/10.1088/1741-2560/10/4/046003

    Article  Google Scholar 

  7. Leeb, R., Pfurtscheller, G.: Walking through a virtual city by thought. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS (2004)

    Google Scholar 

  8. Leeb, R., Scherer, R., Lee, F., Bischof, H., Pfurtscheller, G.: Navigation in virtual environments through motor imagery. In: Proceedings of the 9th Computer Vision Winter Workshop, pp. 99–108 (2004)

    Google Scholar 

  9. Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31, 153–159 (2006)

    Article  Google Scholar 

  10. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain–computer communication. Proc. IEEE 89, 1123–1134 (2001). https://doi.org/10.1109/5.939829

    Article  Google Scholar 

  11. Velasco-Alvarez, F., Ron-Angevin, R., Lopez-Gordo, M.A.: BCI-based navigation in virtual and real environments. IWANN. LNCS 7903, 404–412 (2013)

    Google Scholar 

  12. Corralejo, R., Nicolas-Alonso, L.F., Alvarez, D., Hornero, R.: A P300-based brain–computer interface aimed at operating electronic devices at home for severely disabled people. Med. Biol. Eng. Comput. 52, 861–872 (2014). https://doi.org/10.1007/s11517-014-1191-5

    Article  Google Scholar 

  13. Faller, J., Scherer, R., Friedrich, E., Costa, U., Opisso, E., Medina, J., Müller-Putz, G.R.: Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment. Front. Neurosci. 8 (2014). https://doi.org/10.3389/fnins.2014.00320

  14. Bhattacharyya, S., Konar, A., Tibarewala, D.N.: Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose. Med. Biol. Eng. Comput. 52, 1007 (2014). https://doi.org/10.1007/s11517-014-1204-4

    Article  Google Scholar 

  15. Chen, S., Lai, Y.: A signal-processing-based technique for P300 evoked potential detection with the applications into automated character recognition, EURASIP. J. Adv. Signal Process. 152 (2014). https://doi.org/10.1186/1687-6180-2014-152

  16. Iscan, Z.: Detection of P300 wave from EEG data for brain-computer interface applications. Pattern Recognit. Image Anal. 21, 481 (2011)

    Article  Google Scholar 

  17. Postelnicu, C., Talaba, D.: P300-based brain-neuronal computer interaction for spelling applications. IEEE Trans. Biomed. Eng. 60, 534–543 (2013). https://doi.org/10.1109/TBME.2012.2228645

    Article  Google Scholar 

  18. Diez, P.F., Mut, V.A., Avila Perona, E.M.: Asynchronous BCI control using high-frequency SSVEP. J. NeuroEng. Rehabil. 8, 39 (2011). https://doi.org/10.1186/1743-0003-8-39

    Article  Google Scholar 

  19. Silva, J., Torres-Solis, J., Chau, T.: A novel asynchronous access method with binary interfaces. J. NeuroEng. Rehabil. 5, 24 (2008). https://doi.org/10.1186/1743-0003-5-24

    Article  Google Scholar 

  20. Xia, B., Li, X., Xie, H.: Asynchronous brain–computer interface based on steady-state visual-evoked potential. Cogn. Comput. 5, 243 (2013). https://doi.org/10.1007/s12559-013-9202-7

    Article  Google Scholar 

  21. Hajibabazadeh, M., Azimirad, V.: Brain-robot interface: distinguishing left and right hand EEG signals through SVM. In: Proceedings of the 2nd RSI/ISM International Conference on Robotics and Mechatronics, Tehran, Iran, 15–17 October 2014

    Google Scholar 

  22. Sun, H., Xiang, Y., Sun, Y., Zhu, H., Zeng, J.: On-line EEG classification for brain-computer interface based on CSP and SVM. In: 3rd International Congress on Image and Signal Processing (2010)

    Google Scholar 

  23. Sonkin, K., Stankevich, L., Khomenko, J., Nagornova, Z., Shemyakina, N.: Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand. Artif. Intell. Med. 63, 107–117 (2015)

    Article  Google Scholar 

  24. Kayikcioglu, T., Aydemir, O.: A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recognit. Lett. 31(11), 1207–1215 (2010)

    Article  Google Scholar 

  25. Schwarz, A., Scherer, R., Steyrl, D., Faller, J., Müller-Putz, G.: Co-adaptive sensory motor rhythms brain-computer interface based on common spatial patterns and random forest. In: 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (2015)

    Google Scholar 

  26. Siuly, S., Wang, H., Zhang, Y.: Detection of motor imagery EEG signals employing Naïve Bayes based learning process. J. Meas 86, 148–158 (2016)

    Article  Google Scholar 

  27. Siuly, S., Li, Y.: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 526–538 (2012)

    Article  Google Scholar 

  28. Zhang, R., Xu, P., Guo, L., Zhang, Y., Li, P., Yao, D.: Z-score linear discriminant analysis for EEG based brain–computer interfaces. PLoS ONE, 8:9, e74433 (2013)

    Google Scholar 

  29. Shan, H., Xu, H., Zhu, S., He, B.: A novel channel selection method for optimal classification in different motor imagery BCI paradigms. BioMed. Eng. OnLine 14 (2015). https://doi.org/10.1186/s12938-015-0087-4

  30. Suh, D., Sang Cho, H., Goo, J., Park, K.S., Hahn, M.: Virtual navigation system for the disabled by motor imagery. Adv. Comput. Inf. Syst. Sci. Eng. 143–148 (2006). https://doi.org/10.1007/1-4020-5261-8_24

  31. Yang, J., Singh, H., Hines, E., Schlaghecken, F., Iliescu, D.: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif. Intell. Med. 55, 117–126 (2012). https://doi.org/10.1016/j.artmed.2012.02.001

    Article  Google Scholar 

  32. Kasahara, T., Terasaki, K., Ogawa, Y.: The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients. BMC Neurosci. 13, 66 (2012). https://doi.org/10.1186/1471-2202-13-66

    Article  Google Scholar 

  33. Nakayashiki, K., Saeki, M., Takata, Y.: Modulation of event-related desynchronization during kinematic and kinetic hand movements. J. NeuroEng. Rehabil. 11, 90 (2014). https://doi.org/10.1186/1743-0003-11-90

    Article  Google Scholar 

  34. Yuan, H., He, B.: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans. Biomed. Eng. 61, 1425–1435 (2014). https://doi.org/10.1109/tbme.2014.2312397

    Article  Google Scholar 

  35. Krepki, R., Blankertz, B., Curio, G., Muller, K.R.: The Berlin brain-computer interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed. Tools Appl. 33, 73–90 (2007). https://doi.org/10.1007/s11042-006-0094-3

    Article  Google Scholar 

  36. Tesche, C.D., Uusitalo, M.A., Ilmoniemi, R.J., Huotilainen, M., Kajola, M., Salonen, O.: Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr. Clin. Neurophysiol. 95, 189–200 (1995)

    Article  Google Scholar 

  37. Uusitalo, M.A., Ilmoniemi, R.J.: Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Comput. 35, 135–140 (1997)

    Article  Google Scholar 

  38. Solana, A., Martinez, K., Hernandez-Tamames, J.A., San Antonio-Arce, V., Toledano, R.: Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy. Brain Imaging Behav. 10, 373–386 (2016). https://doi.org/10.1007/s11682-015-9404-6

    Article  Google Scholar 

  39. Wu, C.C., Hamm, J.P., Lim, V.K., Kirk, I.J.: Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies. Exp. Brain Res. 234, 2133–2139 (2016). https://doi.org/10.1007/s00221-016-4615-7

    Article  Google Scholar 

  40. Alotaiby, T., El-Samie, F.E., Alshebeili, S.A.: A review of channel selection algorithms for EEG signal processing. EURASIP. J. Adv. Signal Process. 66 (2015). https://doi.org/10.1186/s13634-015-0251-9

  41. Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)

    Article  Google Scholar 

  42. Ungureanu, M., Bigan, C., Strungaru, R., Lazarescu, V.: Independent component analysis applied in biomedical signal processing. Meas. Sci. Rev. 4, 1–8 (2004)

    Google Scholar 

  43. Vidaurre, C., Blankertz, B.: Towards a cure for BCI illiteracy. Brain Topogr. 23, 194–198 (2010). https://doi.org/10.1007/s10548-009-0121-6

    Article  Google Scholar 

  44. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, 215–220 (2000). [ocirc.ahajournals.org/cgi/content/full/101/23/e215c]; physionet.org/pn4/eegmmidb. Accessed 2 Feb 2017

    Article  Google Scholar 

  45. BCI2000 instrumentation system project. www.bci2000.org. Accessed 2 Feb 2017

  46. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)

    Article  Google Scholar 

  47. Marple, S.L.: Computing the discrete-time analytic signal via FFT. IEEE Trans. Signal Proc. 47, 2600–2603 (1999)

    Article  Google Scholar 

  48. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Series in Data Management Systems (2011). www.cs.waikato.ac.nz/ml/weka/. Accessed 2 Feb 2017

  49. Gardener, M.: Beginning R: The Statistical Programming Language (2012). https://cran.r-project.org/manuals.html. Accessed 2 Feb 2017

  50. Riza, S.L., Janusz, A., Ślęzak, D., Cornelis, C., Herrera, F., Benitez, J.M., Bergmeir, C., Stawicki, S.: RoughSets: data analysis using rough set and fuzzy rough set theories (2015). https://github.com/janusza/RoughSets. Accessed 2 Feb 2017

  51. https://cran.r-project.org/web/packages/RoughSets/index.html. Accessed 2 Feb 2016

  52. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: 11th Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338–345 (1995)

    Google Scholar 

  53. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., et al. (eds.) Advances in Kernel Methods—Support Vector Learning (1998)

    Google Scholar 

  54. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637–649 (2001)

    Article  Google Scholar 

  55. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  56. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, pp. 148–156 (1996)

    Google Scholar 

  57. Martin, B.: Instance-Based Learning: Nearest Neighbour with Generalization. Hamilton, New Zealand (1995)

    Google Scholar 

  58. Roy, S.: Nearest Neighbor with Generalization. Christchurch, New Zealand (2002)

    Google Scholar 

  59. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  60. Janusz, A., Stawicki, S.: Applications of approximate reducts to the feature selection problem. Proc. Int. Conf. Rough Sets Knowl. Technol. (RSKT) 6954, 45–50 (2011)

    Article  Google Scholar 

  61. Szczuko, P.: Rough set-based classification of EEG signals related to real and imagery motion. In: Proceedings of the Signal Processing Algorithms, Architectures, Arrangements, and Applications, Poznań (2016)

    Google Scholar 

  62. Szczuko, P.: Real and Imagery Motion Classification Based on Rough Set Analysis of EEG Signals for Multimedia Applications. Multimedia Tools and Applications (2017)

    Google Scholar 

  63. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley (1977)

    Google Scholar 

Download references

Acknowledgements

The research is funded by the National Science Centre of Poland on the basis of the decision DEC-2014/15/B/ST7/04724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Szczuko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szczuko, P., Lech, M., Czyżewski, A. (2019). Comparison of Methods for Real and Imaginary Motion Classification from EEG Signals. In: Bembenik, R., Skonieczny, Ł., Protaziuk, G., Kryszkiewicz, M., Rybinski, H. (eds) Intelligent Methods and Big Data in Industrial Applications. Studies in Big Data, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-77604-0_18

Download citation

Publish with us

Policies and ethics