Keywords

2000 Mathematics Subject Classification AMS

1 Introduction and Setting of the Problem

We are given a separable Hilbert space H with norm \(|\cdot |\) and inner product \(\langle \cdot , \cdot \rangle .\) We denote by \(\mathcal B(H)\) the set of all Borel subsets of H and by \( \mathcal P(H)\) the set of all Borel probability measures on H. If \(\psi :H\rightarrow [0,+\infty ]\) is convex and lower semi-continuous we denote by \(\mathcal P_\psi (H)\) the set of all elements \(\zeta \in \mathcal P(H)\) such that \( \int _H \psi (x)\zeta (dx)<\infty . \) Clearly \(\mathcal P_\psi (H)\) is a convex subset of \(\mathcal P(H)\). We shall assume throughout the paper the following

Hypothesis 1

(i) \(A:D(A)\subset H\rightarrow H\) is self-adjoint and there exists \(\omega >0\) such that \(\langle Ax,x \rangle \le -\omega |x|^2,\;\forall \;x\in D(A).\)

(ii) There exists \(\epsilon _0\in (0,1/2)\) such that \((-A)^{-1+2\epsilon _0}\) is of trace class.

(iii) \(C:H\rightarrow H\) is bounded, symmetric and nonnegative.

(iv) \(F:D(F)\subset [0,T]\times H\rightarrow H\) is Borel, whereas D(F) is a Borel subset of \([0,T]\times H\).

We have taken A and C time independent and A self-adjoint for the sake of simplicity, but more general cases (including: A infinitesimal generator of a \(C_0\) semigroup and time dependent and equations with multiplicative noise) could be considered without important changes in the proofs.

For any \(\beta \in (0,1)\) we shall use the notation \( \Vert x\Vert _{\beta }:=|(-A)^\beta x|,\;\forall \;x\in D((-A)^\beta ). \) We recall that for any \(\beta >0\) the embedding \(D((-A)^\beta )\subset H\) is compact and that there exists \(k_\beta >0\) such that

$$\begin{aligned} \Vert (-A)^\beta e^{tA}\Vert \le k_\beta t^{-\beta },\quad \forall \;t>0. \end{aligned}$$
(1)

A probability kernel \( [0,T]\rightarrow \mathcal P(H),\; t\mapsto \mu _t, \) is a mapping \( [0,T]\rightarrow \mathbb R,\; t\mapsto \mu _t(I) \) such that is measurable for any \(I\in \mathcal B(H)\). We identify a probability kernel \((\mu _t)_{t\in [0,T]} \) with the measure \(\underline{\mu }(dx\,dt)=\mu _t(dx)dt\) on \(([0,T]\times H, \mathcal B([0,T])\times H))\) defined as

$$ \underline{\mu }([a,b]\times I)=\int _a^b\mu _t(I)dt,\quad \forall \;a,b\in \mathbb R,\;I\in \mathcal B(H). $$

Let us introduce the space of exponential functions; they will play the role of test functions. For any \(h\in H\) we set \(\varphi _h=e^{i\langle h,x \rangle },\; x\in H.\) Moreover, we denote by \(\mathcal E_A(H)\) the linear span of the real parts of functions \( \varphi _h\) such that \(h\in D(A)\) and by \(\mathcal E_A([0,T]\times H)\) the linear span of all functions of the form \(u(t,x)=g(t)\varphi (x),\;(t,x)\in [0,T]\times H,\) where \(g\in C^1([0,T]), \, g(T)=0\) and \(\varphi \in \mathcal E_A(H)\). Finally, we define the Kolmogorov operator \(K_F\), by setting

$$\begin{aligned} K_Fu(t,x)=D_tu(t,x)+\frac{1}{2}\,\text{ Tr }\;[CD^2_x u(t,x)]+ \langle x, AD_x u(t,x)\rangle + \langle F(t,x),D_x u(t,x)\rangle , \end{aligned}$$
(2)

for any \(u\in \mathcal E_A([0,T]\times H)\) and \((t,x)\in [0,T]\times H. \)

We consider the following problem. Given \(\zeta \in \mathcal P(H)\), we want to find a probability kernel \(\underline{\mu }=(\mu _t)_{t\in [0,T]}\) such that \(\mu _0=\zeta \) and for all \(u\in \mathcal E_A([0,T]\times H)\), \(K_F u\) is \(\underline{\mu }\)-integrable and it results

$$\begin{aligned} \int _{H_T} K_F u(t,x)\,\mu _t(dx) dt=-\int _Hu(0,x)\,\zeta (dx), \end{aligned}$$
(3)

where \(H_T=[0,T]\times H.\) \(\underline{\mu }\) will be called a solution of the Fokker–Planck equation (3).

Let us describe the content of the paper. Section 2 is devoted to some preliminaries about the Ornstein–Uhlenbeck semigroup, following [2]. In Sect. 3 we present some existence result for the Fokker–Planck equation (3) under additional assumptions, Hypotheses 2 or 3. The first one is closely related to the paper [3], whereas the slightly different second one allows us to consider more general nonlinearities as Burgers and 2D-Navier–Stokes equations. Finally, Sect. 4 is devoted to uniqueness. Here we start from a basic rank condition, introduced in [1] and distinguish two cases: (i) C is invertible and \(C^{-1}\) is bounded and (ii) C is of trace class. We note that an important consequence of uniqueness is that in this case the Chapman–Kolmogorov equation is well posed, see [3] for a thorough discussion of this fact.

We end this section with some notations used in what follows. By \(C_b(H)\) we mean the space of all real continuous and bounded mappings \(\varphi :H\rightarrow \mathbb R\) endowed with the sup norm \(\Vert \cdot \Vert _{0}\). Moreover, \(C^1_b(H)\) is the subspace of \(C_b(H)\) of all continuously differentiable functions with bounded derivatives. Finally, \(B_b(H)\) is the space of all real Borel mappings \(\varphi :H\rightarrow \mathbb R\) endowed with the sup norm \(\Vert \cdot \Vert _{0}\).

2 Preliminaries on the Ornstein–Uhlenbeck Semigroup

It is well known (see e.g. [8] or [13]) that under Hypothesis 1 the equation

$$\begin{aligned} \left\{ \begin{array}{l} dZ=AZ dt+\sqrt{C}\,dW(t),\quad t\ge 0\ \\ X(s)=x,\quad s\le t, \end{array}\right. \end{aligned}$$
(4)

has a unique mild solution given by

$$\begin{aligned} Z(t,s,x)=e^{(t-s)A}x+ W_A(t,s), \end{aligned}$$
(5)

where the stochastic convolution \(W_A(t,s)\) is defined as

$$\begin{aligned} W_A(t,s)=\int _s^t e^{(t-r)A}\sqrt{C}\,dW(r),\quad \forall \;0\le s\le t. \end{aligned}$$
(6)

The following lemma will be used later

Lemma 1

For all \(\beta \in [0,\epsilon _0]\) and \(0\le s\le t\le T\) we have

$$\begin{aligned} \mathbb E|(-A)^\beta \,W_A(t,s)|^2\le \Vert C\Vert \,\text{ Tr }\,[(-A)^{-1+2\beta }]=:C(\beta ) \end{aligned}$$
(7)

Proof

We have in fact

$$\begin{aligned} \mathbb E|(-A)^\beta W_A(t,s)|^2&=\text{ Tr }\,\left[ C\int _s^t(-A)^{2\beta }e^{2rA}dr\right] \\&\le \frac{1}{2}\,\Vert C\Vert \, \text{ Tr }\, [(-A)^{2\beta -1}(e^{2sA}-e^{2tA})] \le \Vert C\Vert \, \text{ Tr }\, [(-A)^{2\beta -1}. \end{aligned}$$

\(\square \)

Let us consider the transition evolution operator \(R_{s,t}\), corresponding to Eq. (4), which acts, in particular, on \(C_{b,1}(H)\), the space of all real continuous mappings \(\varphi \) in H such that \(\sup _{x\in H}\,\tfrac{|\varphi (x)|}{1+|x|}<\infty \). For \(0\le s\le t\le T\) we have

$$\begin{aligned} R_{s,t}\varphi (x):=\displaystyle \int _H\varphi (y)N_{e^{(t-s)A}x,Q_{t-s}}(dy)= \mathbb E[\varphi (Z(t,s,x))],\quad \forall \;\varphi \in C_{b,1}(H). \end{aligned}$$
(8)

Here \(N_{e^{(t-s)A}x,Q_{t-s}}\) represents the Gaussian measure in H with mean \(e^{(t-s)A}x\) and covariance

$$ Q_{t-s}=\int _0^{t-s} e^{rA}Ce^{rA}dr. $$

See e.g. [8]. Let us define a semigroup \(S^{0,1}_\tau ,\,\tau \ge 0,\) in the space

$$C_T([0,T];C_{b,1}(H))=\{u\in C([0,T];C_{b,1}(H)):\;u(T,x)=0,\forall \;x\in H \},$$

by setting

$$\begin{aligned} (S^{0,1}_\tau u)(t,x)&= (R_{t,t+\tau }u(t+\tau ,\cdot )(x)\,{\mathbbm {1}}_{[0,T-\tau ]}(t) \nonumber \\&=\mathbb E[u(t+\tau ,Z(t+\tau ,t,x))]\,{\mathbbm {1}}_{[0,T-\tau ]}(t), \quad \forall \,u\in C_T([0,T];C_{b,1}(H)). \end{aligned}$$
(9)

Note that \(S^{0,1}_\tau =0,\; \forall \;\tau \ge T.\) Let denote by \(\mathcal K^1_0\)Footnote 1 the infinitesimal generator of \(S^{0,1}_\tau \), defined through its resolvent following [7] (see (10) below). The resolvent set of \(\mathcal K^1_0\) coincides with \(\mathbb R\) and its resolvent is given, for all \(f\in C_T([0,T];C_{b,1}(H))\) and all \(\lambda \in \mathbb R\), by

$$\begin{aligned} \displaystyle R(\lambda ,\mathcal K^1_0)f(t,x)&=\int _0^\infty e^{-\lambda \tau }S^{0,1}_\tau f(t,x)d\tau \displaystyle \nonumber \\&=\int _t^{T} e^{-\lambda (r-t)}\mathbb E[f(Z(r,t,x))]dr, \quad \forall \;(t,x)\in [0,T]\times H. \end{aligned}$$
(10)

\(\mathcal K^1_0\) can also be defined as follows, following [14]. We say that a function \(u\in C_T([0,T];C_{b,1}(H))\) belongs to the domain of \(\mathcal K^1_0\) if there exists a function \(f\in C_T([0,T];C_{b,1}(H))\) such that

(i)

\(\displaystyle \lim _{\tau \rightarrow 0}\frac{1}{\tau }\;(S^{0,1}_\tau u(t,x)-u(t,x))=f(t,x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(ii) There exists \(C_u>0\) such that

$$ \left| \frac{1}{\tau }\;(S^{0,1}_\tau u(t,x)-u(t,x))\right| \le C_u,\quad \forall \;(t,x)\in [0,T]\times H,\,\forall \;\tau \in [0,1]. $$

We set \(\mathcal K^1_0 u=f\) and call \(\mathcal K^1_0\) the infinitesimal generator of \(S_\tau \) on \(C_T([0,T];C_{b,1}(H))\). It is not difficult to check that \(\mathcal E_A([0,T]\times H)\subset D(\mathcal K^1_0)\) and that for all \(u\in \mathcal E_A([0,T]\times H)\) it results \(\mathcal K^1_0 \,u=K_0\,u\). So, the abstract operator \(\mathcal K^1_0\) is an extension of the differential Kolmogorov operator \(K_0\). If, in particular, \(u(t,x)=e^{i\langle x,h \rangle }\,g(t),\) \(t\in [0,T],\) \(x\in H,\) where \(h\in D(A),\) \(g\in C^1([0,T])\) and \(g(T)=0\), we have

$$ K_0u(t,x)=[g'(t)-(\tfrac{1}{2}\,|C^{1/2}h|^2+ i\langle x, Ah\rangle )g(t)]e^{i\langle x,h \rangle }. $$

So, \(K_0u\) has a linear growth in x; this is the reason for introducing the space \(C_{b,1}(H)\) and for requiring that \(h\in D(A)\).

One can show that functions from \(C_T([0,T];C_{b,1}(H))\) can be approximated point-wise by sequences (more precisely multi-sequences) of elements of \(\mathcal E_A([0,T]\times H).\) To describe this approximation, we shall use the following notation

$$ \lim _{n_1\rightarrow \infty }\lim _{n_2\rightarrow \infty }\lim _{n_3\rightarrow \infty }u_{n_1,n_2,n_3}=\lim _{\mathbf {n}\rightarrow \infty }u_{\mathbf {n}}. $$

The following three propositions were proven in [2], see also [9].

Proposition 2

For all \(u\in C_T([0,T];C_{b,1}(H))\) there exists \((u_{\mathbf {n}})\subset \mathcal E_A([0,T]\times H)\) such that

(i) \(\displaystyle \lim _{\mathbf {n}\rightarrow \infty }u_{\mathbf {n}}(t,x)=u(t,x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(ii) \(|u_{\mathbf {n}}(t,x)|\le \Vert u\Vert _{C_T([0,T];C_{b,1}(H))}(1+|x|),\quad \forall \;(t,x)\in [0,T]\times H. \)

Proposition 3

For any \(u\in D(\mathcal K^1_0)\) there exists \((u_{\mathbf {n}})\subset \mathcal E_A([0,T]\times H)\) and \(C>0\) such that

(i) \(\displaystyle \lim _{\mathbf {n}\rightarrow \infty }u_{\mathbf {n}}(t,x)=u(t,x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(ii) \(\displaystyle \lim _{\mathbf {n}\rightarrow \infty }K_0\,u_{\mathbf {n}}(t, x)=\mathcal K^1_0\,u(t, x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(iii) \(\displaystyle |u_{\mathbf {n}}(x)|+| K_0u_{\mathbf {n}}(t, x)|\le C(1+|x|),\quad \forall \;(t,x)\in [0,T]\times H\)

We say that \(\mathcal E_A([0,T]\times H)\) is a core for \(\mathcal K^1_0\).

Proposition 4

Let \(f, D_xf\in C_T([0,T];C_{b,1}(H;H))\), \(\lambda \in \mathbb R\) and let \(u=R(\lambda ,\mathcal K^1_0)f\). Then there exists \(u_{\mathbf {n}}\subset \mathcal E_A([0,T]\times H) \) and \(C>0\) such that

(i) \(\displaystyle \lim _{\mathbf {n}\rightarrow \infty }u_{\mathbf {n}}(t,x)=u(t,x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(ii) \(\displaystyle \lim _{\mathbf {n}\rightarrow \infty }K_0\,u_{\mathbf {n}}(t,x)=\mathcal K^1_0 u(t,x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(iii) \(\displaystyle \lim _{\mathbf {n}\rightarrow \infty }D_xu_{\mathbf {n}}(t,x)=D_xu(t,x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(iv) \(\displaystyle |u_{\mathbf {n}}(t,x)|+|K_0u_{\mathbf {n}}(t,x)|+|D_x\varphi _{\mathbf {n}}(t,x)|\le C(1+|x|), \forall \,(t,x)\in [0,T]{\times } H.\)

3 Existence

3.1 Basic Assumptions

We shall first introduce a suitable approximation \(F_\alpha \) of F, \(\alpha \in (0,1]\), such that the problem

$$\begin{aligned} \left\{ \begin{array}{l} dX_\alpha =(AX_\alpha +F_\alpha (t,X_\alpha ))dt+\sqrt{C}\,dW(t),\quad t\in [0,T],\\ X_\alpha (s)=x,\quad 0\le s\le t\le T \end{array}\right. \end{aligned}$$
(11)

has a unique mild solution \(X_\alpha (t,s,x)\), that is

$$\begin{aligned} X_\alpha (t,s,x)=e^{(t-s)A}x+\int _s^te^{(t-r)A}F_\alpha (r, X_\alpha (r,s,x))dr+W_A(t,s). \end{aligned}$$
(12)

More precisely, we shall assume that

Hypothesis 2

For any \(\alpha \in (0,1]\) there exists a mapping \( F_\alpha :[0,T]\times H\rightarrow H, (t,x)\rightarrow F_\alpha (t,x) \) with the following properties:

(i) \( F_\alpha \) is continuous and bounded and Eq. (11) has a unique mild solution.

(ii) There exists a convex and lower semicontinuous mapping \(V:H\rightarrow [1,+\infty ]\) such that

$$\begin{aligned} |F_\alpha (t,x)|^2\le |F(t,x)|^2\le V(x),\quad \forall \;(t,x)\in [0,T]\times H, \end{aligned}$$
(13)

and

$$\begin{aligned} |F(t,x)-F_\alpha (t,x)|\le \alpha \,V(x) ,\quad \forall \;(t,x)\in [0,T]\times H,\;\alpha \in (0,1]. \end{aligned}$$
(14)

(iii) There exists \(M>0\) such that

$$\begin{aligned} P^\alpha _{s,t}\,V(x)\le MV(x),\quad \forall \;0\le s\le t\le T,\, \alpha \in (0,1],\,x\in H, \end{aligned}$$
(15)

where \(P^\alpha \) is the transition evolution operator, \(P^\alpha _{s,t}\,\varphi (x)=\mathbb E[\varphi (X_\alpha (t,s,x))]\), \(0\le s\le t\le T,\) \(\varphi \in B_b(H).\)

Now, fix \(\zeta \in \mathcal P(H);\) then for any \(t\in (0,T]\) and any \(\alpha \in (0,1]\) we define a probability measure \(\mu _t^\alpha \) in H such that (we take here \(s=0\) for simplicity)

$$\begin{aligned} \int _H\varphi (x)\mu _t^\alpha (dx)&=\int _H P^\alpha _{0,t}\,\varphi (x)\zeta (dx)\nonumber \\&= \int _H \mathbb E[\varphi (X_\alpha (t,0,x))]\zeta (dx),\quad \forall \;\varphi \in \mathcal E_A(H) \end{aligned}$$
(16)

and set \( \underline{\mu }^\alpha (dt\,dx)=\mu _t^\alpha (dx)dt.\) Let us deduce some consequences of Hypothesis 2 assuming that \(\int _HV(x)\,\zeta (dx)<\infty \). First from (15) and (16) we find

$$\begin{aligned} \int _H V(x)\,\mu ^\alpha _t(dx)=\int _HP_{0,t}V(x)\,\zeta (dx)\le M\int _HV(x)\,\zeta (dx) \end{aligned}$$
(17)

and so, from (13)

$$\begin{aligned} \int _H |F_\alpha (t,x)|^2\,\mu ^\alpha _t(dx)\le \int _H |F(t,x)|^2\,\mu ^\alpha _t(dx)\le M\int _HV(x)\,\zeta (dx). \end{aligned}$$
(18)

Other useful estimates are provided by the following lemma.

Lemma 5

Assume that Hypotheses 1 and 2 are fulfilled. Let \(x\in H\), \(0<s\le t\le T\) and \(\alpha \in (0,1]\); then \(X_\alpha (t,s,x)\in D((-A)^{\epsilon _0})\), \(\mathbb P\)-a.s.Footnote 2 Moreover there exists \(C>0\) such that

$$\begin{aligned} P^\alpha _{s,t}(|x|^2)=\mathbb E[| X_\alpha (t,s,x)|^2]\le C (1+|x|^2+ V(x)) \end{aligned}$$
(19)

and

$$\begin{aligned} P^\alpha _{s,t}(\Vert x\Vert _{\epsilon _0})=\mathbb E[|(-A)^{\epsilon _0} X_\alpha (t,s,x)|]\le Ct-s)^{-\epsilon _0}(1+|x|^2+ V(x)). \end{aligned}$$
(20)

Proof

Let us write \(X_\alpha (t,s,x)=X_\alpha (t)\) for short. Then by (12) and Hölder’s inequality we have

$$ |X_\alpha (t)|^2\le 3 |x|^2+3T\int _s^t|F_\alpha (r,X_\alpha (r))|^2dr+3|W_A(t,s)|^2. $$

Now, taking expectation, recalling (7) and invoking (13) we obtain

$$ \mathbb E|X_\alpha (t)|^2\le 3 |x|^2+3T\int _s^t\mathbb E[V_\alpha (X_\alpha (r)]dr+3C(0). $$

Finally, taking into account (15), yields

$$ \mathbb E|X_\alpha (t)|^2\le 3 |x|^2+3T^2MV(x)+3C(0), $$

which implies (19) with a suitable \(C>0\). To prove (20) write

$$ (-A)^{\epsilon _0} X_\alpha (t)=(-A)^{\epsilon _0} e^{(t-s)A}x+\int _s^t(-A)^{\epsilon _0} e^{(t-r)A}F_\alpha (r,X_\alpha (r))dr\ +(-A)^{\epsilon _0} W_A(t,s), $$

from which, recalling (1) and using that \(|F_\alpha (r,X_\alpha (r))|\le 1+|F_\alpha (r,X_\alpha (r))|^2\), we have

$$\begin{aligned} |(-A)^{\epsilon _0} X_\alpha (t)|&\le \kappa _{\epsilon _0} \,(t-s)^{-\epsilon _0}|x|+\kappa _{\epsilon _0}\int _s^t(t-r)^{-\epsilon _0}(1+|F_\alpha (r,X_\alpha (r))|^2)dr\\&\quad +|(-A)^{\epsilon _0} W_A(t,s)|. \end{aligned}$$

Taking expectation and proceeding as before, we obtain

$$\begin{aligned} \displaystyle \mathbb E[|(-A)^{\epsilon _0} X_\alpha (t)|]&\le \displaystyle \kappa _{\epsilon _0} \,(t-s)^{-\epsilon _0}|x|+\kappa _{\epsilon _0}\int _s^t(t-r)^{-\epsilon _0}(1+V(X_\alpha (r))dr\\&\quad +(\mathbb E|(-A)^{\epsilon _0} W_A(t,s)|^2)^{1/2}\\&\le \displaystyle \kappa _{\epsilon _0}\,(t-s)^{-\epsilon _0} |x|^2+\kappa _{\epsilon _0}\,\frac{T^{1-\epsilon _0}}{1-\epsilon _0}(1+MV_\alpha (x))+C^{1/2}(\epsilon _0) \end{aligned}$$

which easily yields (20). \(\square \)

In the following we set

$$\begin{aligned} \psi (x):=1+|x|^2+V(x),\quad \forall \;x\in H. \end{aligned}$$
(21)

\(\psi \) is convex and lower semicontinuous.

Corollary 6

Assume that Hypotheses 1 and 2 are fulfilled and let \(\zeta \in \mathcal P_\psi (H)\). Then we have

$$\begin{aligned} \int _H|x|^2\,\mu _t^\alpha (dx)\le C \int _H \psi (x) \zeta (dx),\quad \forall \;\alpha \in (0,1] \end{aligned}$$
(22)

and

$$\begin{aligned} \int _H\Vert x\Vert _{\epsilon _0}\,\mu _t^\alpha (dx)\le C t^{-\epsilon _0}\int _H \psi (x) \zeta (dx),\quad \forall \;\alpha \in (0,1]. \end{aligned}$$
(23)

Proof

The proof follows by integrating both sides of (19) and (20) (with \(s=0\)) with respect to \(\zeta \) over H. \(\square \)

We notice now that by Itô’s formula the measure \(\underline{\mu }^\alpha (dt\,dx)=\mu ^\alpha _t(dx)\) solves the approximating equation

$$\begin{aligned} \int _{H_T} K_{F_\alpha } u(t,x)\mu _t^\alpha (dx)\,dt=-\int _H u(0,x)\, \zeta (dx) ,\quad \forall \;u\in \mathcal E_A([0,T]\times H), \end{aligned}$$
(24)

where \(K_{F_\alpha }\) is the Kolmogorov operator

$$\begin{aligned} K_{F_\alpha }u =D_tu +\frac{1}{2}\,\text{ Tr }\;[CD^2_x u ]+ \langle x, AD_x u \rangle + \langle F_\alpha ,D_x u \rangle ,\quad \forall \,u\in \mathcal E_A([0,T]\times H). \end{aligned}$$
(25)

We are going to construct a sequence \((\mu ^{\alpha _h}_t)\) of measures weakly convergent to a measure \(\mu _t\) for all \(t\in [0,T]\) and finally, we shall pass to the limit as \(h\rightarrow \infty \) in (24) (with \(\alpha _h\) replacing \(\alpha \)) and prove that \(\underline{\mu }(dx\,dt)=\mu _t(dx)\,dt\) is a solution of the Fokker–Planck equation (3).

3.2 Tightness

Proposition 7

Assume that \(\zeta \in \mathcal P_{\psi }(H)\). Then \((\mu _t^\alpha )_{\alpha \in (0,1]}\) is tight for all \(t\in (0,T]\) and we have

$$\begin{aligned} \mu _t^\alpha (\Vert x\Vert _{\epsilon _0}\ge R)\le \frac{Ct^{-\epsilon _0}}{R} \int _H \psi (x) \zeta (dx),\quad \forall \;R>0. \end{aligned}$$
(26)

Proof

Thanks to (23), we have for all \(R>0\)

$$ \begin{array}{l} \displaystyle \mu _t^\alpha (\Vert x\Vert _{\epsilon _0}\ge R)=\int _{\Vert x\Vert _{\epsilon _0}\ge R}\mu _t^\alpha (dx)\le \frac{1}{R}\int _H\Vert x\Vert _{\epsilon _0}\,\mu _t^\alpha (dx)\le \frac{Ct^{-\epsilon _0}}{R} \int _H \psi (x) \zeta (dx). \end{array} $$

The conclusion follows from the arbitrariness of R because balls in the topology of \(D((-A)^{\epsilon _0})\) are compact in H. \(\square \)

Theorem 8

Assume that Hypotheses 1 and 2 are fulfilled and let \(\zeta \in \mathcal P_{\psi }(H)\).Footnote 3 Then there is a probability kernel \(\underline{\mu }(dt\,dx)=\mu _t(dx)\,dt\) solving (3) and such that \(\mu _t\in \mathcal P_\psi \) for all \(t\in [0,T]\), where \(\psi \) is defined by (21).

Proof

Since for any \(t\in (0,T]\), \((\mu ^\alpha _t)_{\alpha \in (0,1]}\) is tight, there exists a sequence \(\alpha _{h}(t)\rightarrow 0\) and \(\mu _t\in \mathcal P(H)\) such that

$$ \lim _{h\rightarrow \infty }\int _{H}\varphi \,d\mu ^{\alpha _{h}(t)}_t=\int _{H}\varphi \,d\mu _t,\quad \forall \;\varphi \in C_b(H)\,t\in [0,T]. $$

By a diagonal extraction argument we can find a sequence \((\alpha _h)\rightarrow 0\) and a family of measures \((\mu _t)_{t\in \mathbb Q}\) such thatFootnote 4

$$\begin{aligned} \lim _{h\rightarrow \infty }\int _{H}\varphi \,d\mu ^{\alpha _h}_t=\int _{H}\varphi \,d\mu _t,\quad \forall \;\varphi \in C_b(H),\quad \forall \;t\in [0,T]\cap \mathbb Q. \end{aligned}$$
(27)

Now we are going to extend the family \((\mu ^{\alpha _h}_t)_{t\in \mathbb Q}\) to the whole interval (0, T] in such a way that the extension is a solution of (3). We shall proceed in three steps.

Step 1. For each \(\varphi \in \mathcal E_A(H)\) there exists \(C(\varphi )>0\) such that for all \(\alpha \in (0,1]\) we have

$$\begin{aligned} \left| \int _H\varphi \,d\mu ^\alpha _t-\int _H\varphi \,d\mu ^\alpha _s\right| \le C(\varphi ) (t-s)\int _H\psi \,d\zeta ,\quad 0\le s\le t\le T. \end{aligned}$$
(28)

In fact by Itô’s formula we have

$$\begin{aligned} \mathbb E[\varphi (X_\alpha (t,0,x))]-\mathbb E[\varphi (X_\alpha (s,0,x))]=\mathbb E\int _s^t(L_r^\alpha \varphi )(X_\alpha (r,0,x))dr, \end{aligned}$$
(29)

where \(L_t^\alpha ,\,t\in [0,T],\) is the Kolmogorov operator

$$ L_t^\alpha \varphi =\tfrac{1}{2}\,\text{ Tr }\,[CD^2\varphi ]+\langle x, AD\varphi \rangle +\langle F_\alpha (t,x), D\varphi \rangle ,\quad \forall \varphi \in \mathcal E_A(H). $$

Now, taking into account (16), write

$$\begin{aligned} \begin{array}{lll} \displaystyle \int _H\varphi \,d\mu ^\alpha _t-\int _H\varphi \,d\mu ^\alpha _s&{}=&{}\displaystyle \int _H(\mathbb E[\varphi (X_\alpha (t,0,x))]-\mathbb E[\varphi (X_\alpha (s,0,x))])\zeta (dx)\\ \\ &{}=&{}\displaystyle \mathbb E\int _H\int _s^t ( L_t^\alpha \varphi )(X(r,0,x))\,\zeta (dx)\,dr. \end{array} \end{aligned}$$
(30)

Let \(C_1(\varphi )>0\) be such that

$$\begin{aligned}|( L_t^\alpha \varphi )(x)|&\le C_1(\varphi )(1+|x|+|F_\alpha (t,x)|)\\&\le 3C_1(\varphi )(1+|x|^2+|F_\alpha (t,x)|^2),\quad \forall \;x\in H. \end{aligned}$$

Therefore from (30), taking into account (15), (13) and (22), we find

$$\begin{aligned} \displaystyle \left| \int _H\varphi \,d\mu ^\alpha _t-\int _H\varphi \,d\mu ^\alpha _s\right|&\le \displaystyle 3C_1(\varphi )\int _H\int _s^t (1+ \mathbb E|X_\alpha (t,0,x))|^2\\&\quad +\mathbb E|F_\alpha (X_\alpha (t,0,x))|^2)\zeta (dx)dr\\&\le \displaystyle 3C_1(\varphi )(t-s)\int _H(1+C((1+|x|^2+V(x))\\&\quad +MV(x))\zeta (dx). \end{aligned}$$

So, (28) follows with a suitable constant \(C(\varphi )\).

Step 2. Construction of \(\mu _t\) for all \(t\in (0,T]\).

Let \(t_0\in (0,T]\setminus \mathbb Q\) and let \((t_j)\) be a sequence in \((0,T]\cap \mathbb Q\) convergent to \(t_0\). The sequence \((\mu _{t_j})\) is tight by Proposition 7. Let us choose a limit point of \((\mu _{t_j})\) which we call \(\mu _{t_0}\), that is (for a subsequence which we still call \((t_j)\))

$$\begin{aligned} \lim _{j\rightarrow \infty }\int _H\varphi \,d\mu _{t_j}=\int _H\varphi \,d\mu _{t_0},\quad \forall \;\varphi \in C_b(H). \end{aligned}$$
(31)

Claim. We have

$$\begin{aligned} \lim _{h\rightarrow \infty }\int _H\varphi \,d\mu ^{\alpha _h}_{t_0}=\int _H\varphi \,d\mu _{t_0},\quad \forall \;\varphi \in C_b(H). \end{aligned}$$
(32)

To prove the claim it is enough to show that

$$\begin{aligned} \lim _{h\rightarrow \infty }\int _H\varphi \,d\mu ^{\alpha _h}_{t_0}=\int _H\varphi \,d\mu _{t_0},\quad \forall \;\varphi \in \mathcal E_A(H). \end{aligned}$$
(33)

In fact, assume that we have proved (33). Since \((\mu ^{\alpha _h}_{t_0})\) is tight by (26), there exists a subsequence \((\mu ^{\alpha _{h_k}}_{t_0})\) weakly convergent to a probability measure \(\nu \), that is such that

$$ \lim _{k\rightarrow \infty }\int _H\varphi \,d\mu ^{\alpha _{h_k}}_{t_0}=\int _H\varphi \,d\nu ,\quad \forall \;\varphi \in C_b(H). $$

On the other hand, by (33) it follows that

$$ \lim _{k\rightarrow \infty }\int _H\varphi \,d\mu ^{\alpha _{h_k}}_{t_0}=\int _H\varphi \,d\mu _{t_0},\quad \forall \;\varphi \in \mathcal E_A(H) $$

so that

$$ \int _H\varphi \,d\nu =\int _H\varphi \,d\mu _{t_0},\quad \forall \;\varphi \in \mathcal E_A(H), $$

which implies \(\nu =\mu _{t_0}\) because \( \mathcal E_A(H)\) is dense in \(L^1(H,\nu )\).

Now we can prove the Claim. Let \(\varphi \in \mathcal E_A(H)\). Then we have for any \(j\in \mathbb N\)

$$\begin{aligned} \displaystyle \left| \int _H\varphi \,d\mu _{t_0}-\int _H\varphi \,d\mu ^{\alpha _h}_{t_0}\right|&\le \left| \int _H\varphi \,d\mu _{t_0}-\int _H\varphi \,d\mu _{t_j}\right| \displaystyle \\&\quad +\left| \int _H\varphi \,d\mu _{t_j}-\int _H\varphi \,d\mu ^{\alpha _h}_{t_j}\right| +\left| \int _H\varphi \,d\mu ^{\alpha _h}_{t_j}-\int _H\varphi \,d\mu ^{\alpha _h}_{t_0}\right| . \end{aligned}$$

Taking into account (28), yields

$$\begin{aligned} \displaystyle \left| \int _H\varphi \,d\mu _{t_0}-\int _H\varphi \,d\mu ^{\alpha _h}_{t_0}\right|&\le \displaystyle \left| \int _H\varphi \,d\mu _{t_0}-\int _H\varphi \,d\mu _{t_j}\right| \nonumber \\&\quad \displaystyle +\left| \int _H\varphi \,d\mu _{t_j}-\int _H\varphi \,d\mu ^{\alpha _h}_{t_j}\right| \nonumber \\&\quad +C(\varphi )|t_j-t_0|\int _H\,\psi \,d\zeta =:J_1+J_2+J_3. \end{aligned}$$
(34)

Given \(\delta >0\) there is \(j_\delta \in \mathbb N\) such that \( J_1+J_3<\delta . \) Therefore by (34) we have

$$ \left| \int _H\varphi \,d\mu _{t_0}-\int _H\varphi \,d\mu ^{\alpha _h}_{t_0}\right| \le \left| \int _H\varphi \,d\mu _{t_{j_\delta }}-\int _H\varphi \,d\mu ^{\alpha _h}_{t_{j_\delta }}\right| +\delta . $$

Now the conclusion follows from (27) and the arbitrariness of \(\delta \).

Step 3. Conclusion

Let \((\mu _t)_{t\in [0,T]}\) be the family defined in Step 2. We are going to prove that for all \(u\in \mathcal E_A([0,T]\times H)\)

$$\begin{aligned} \lim _{h\rightarrow \infty } \int _{H_T} K_{F_{\alpha _h}}\,u(t,x)\,\mu ^{\alpha _h}_t(dx) dt =\int _{H_T} K_F\,u(t,x) \,\mu _t(dx) dt. \end{aligned}$$
(35)

This will imply

$$\begin{aligned} \int _{H_T} K_F u(t,x) \,\mu _t(dx) dt=-\int _H u(0,x)\zeta (dx), \end{aligned}$$
(36)

so that \((\mu _t)_{t\in [0,T]}\) is a solution of (3). To prove (35) is enough to show that

$$\begin{aligned} \lim _{h\rightarrow \infty } \int _{H_T} \langle AD_xu(t,x),x\rangle \,\mu ^{\alpha _h}_t(dx) dt =\int _{H_T} \langle AD_xu(t,x),x\rangle \,\mu _t(dx) dt \end{aligned}$$
(37)

and

$$\begin{aligned} \lim _{h\rightarrow \infty } \int _{H_T} \langle D_xu(t,x),F_{\alpha _h}(t,x)\rangle \,\mu ^{\alpha _h}_t(dx) dt =\int _{H_T} \langle D_xu(t,x),F(t,x)\rangle \,\mu _t(dx) dt. \end{aligned}$$
(38)

Let us prove (37). Recalling that \(D_xu(t,x)\in D(A)\), that Au is bounded and that \( |x|\,|\langle AD_xu(t,x),x\rangle |\le \Vert ADu\Vert _0\,|x|^2, \) we have for any \(\epsilon >0\), thanks to (19),

$$ \begin{array}{l} \displaystyle \left| \int _{H_T} \langle AD_xu(t,x),x\rangle \,\mu ^{\alpha _h}_t(dx) dt -\int _{H_T} \langle AD_xu(t,x),x\rangle \,\mu _t(dx) dt \right| \le \epsilon \left| \int _{H_T} \frac{|x|\langle AD_xu(t,x),x\rangle }{1+\epsilon |x|}\,\mu ^{\alpha _h}_t(dx)dt\right| \\ \\ \displaystyle +\left| \int _{H_T} \frac{\langle AD_xu(t,x),x\rangle }{1+\epsilon |x|}\,\mu ^{\alpha _h}_t(dx) dt -\int _{H_T} \frac{\langle AD_xu(t,x),x\rangle }{1+\epsilon |x|}\,\mu _t(dx) dt \right| +\epsilon \left| \int _{H_T} \frac{|x|\langle AD_xu(t,x),x\rangle }{1+\epsilon |x|}\,\mu _t(dx)dt\right| \\ \\ \displaystyle \le 2 \epsilon C \Vert ADu\Vert _\infty \int _{H_T} \psi (x)\,\zeta (x)\,(dx)+\left| \int _{H_T} \frac{\langle AD_xu(t,x),x\rangle }{1+\epsilon |x|}\,\mu ^{\alpha _h}_t(dx) dt -\int _{H_T} \frac{\langle AD_xu(t,x),x\rangle }{1+\epsilon |x|}\,\mu _t(dx) dt \right| \end{array}. $$

Now (37) follows letting first \(h\rightarrow \infty \) and then \(\epsilon \rightarrow 0\).

Next let us prove (38). Set \(g_h(t,x):= \langle Du(t,x),F_{\alpha _h}(t,x)\rangle \) and \( g(t,x):= \langle Du(t,x),F(t,x)\rangle ,\) so that (38) is equivalent to

$$\begin{aligned} \lim _{h\rightarrow \infty } \int _{H_T} g_h(t,x)\,\mu ^{\alpha _h}_t(dx) dt =\int _{H_T}g(t,x)\,\mu _t(dx) dt. \end{aligned}$$
(39)

Notice that by (14) we have

$$\begin{aligned} |g(t,x)-g_h(t,x)|\le \alpha _h \Vert Du\Vert _0\,(1+V(x)). \end{aligned}$$
(40)

Now write

$$\begin{aligned} \left| \int _{H_T} g\,d\mu _t\,dt- \int _{H_T}g_h\,d\mu ^{\alpha _h}_t\,dt \right|&\le \left| \int _{H_T} g\,d\mu _t\,dt- \int _{H_T}g\,d\mu ^{\alpha _h}_t \right| \\&\quad +\left| \int _{H_T} (g-g_h)\,d\mu ^{\alpha _h}_t\,dt \right| =:I_{h}+J_h. \end{aligned}$$

As far as \(I_h\) is concerned, we have for any \(j\in \mathbb N\),

$$\begin{aligned} \displaystyle I_h&:=\left| \int _{H_T} g\,d\mu _t\,dt- \int _{H_T}g\,d\mu _t^{\alpha _h}\,dt \right| \le \left| \int _{H_T}(g-g_j)\,d\mu _t\,dt \right| \\&\quad \displaystyle + \left| \int _{H_T}g_j\,d\mu _t\,dt- \int _Hg_j\,d\mu _t^{\alpha _h}\,dt \right| + \left| \int _{H_T}(g-g_j)\,d\mu _t^{\alpha _h}\,dt \right| . \end{aligned}$$

Therefore, taking into account (40), yields

$$ \begin{array}{l} \displaystyle I_h\le 2\alpha _j M\Vert Du\Vert _0\int _{H_T}(1+V(x))\,d\mu _t\,dt+ \left| \int _{H_T}g_j\,d\mu _t\,dt- \int _{H_T}g_j\,d\mu _t^ {\alpha _h}\,dt \right| . \end{array} $$

Now, given \(\epsilon >0\), choose \(j_0\) such that \( 2\alpha _{j_0} \Vert Du\Vert _0\int _{H_T}(1+V(x))\,d\mu _t\,dt<\frac{\epsilon }{2}. \) Then

$$ I_h\le \frac{\epsilon }{2}+ \left| \int _{H_T}g_{j_0}\,d\mu _t\,dt- \int _{H_T}g_{j_0}\,d\mu _t^ {\alpha _h}\,dt \right| , $$

so that \( \lim _{h\rightarrow \infty }I_h=0, \) for the arbitrariness of \(\epsilon \). Finally, as far as \(J_h\) is concerned, we have

$$ J_h\le \alpha _hM\Vert Du\Vert _0\int _H(1+V(x))\,\mu _t^ {\alpha _h}(dx)\,dt\rightarrow 0, $$

as \(h\rightarrow \infty \). The proof is complete. \(\square \)

Let us present now some examples.

Example 9

(Tr \(C<\infty \)) We assume here that Tr \(C<\infty \), \(F:[0,T]\times H\rightarrow H\) is continuous and there exist \(k>0\) and \(N\in \mathbb N\) such that

$$\begin{aligned} \langle F(t,x),x \rangle \le k,\quad |F(t,x)|\le k(1+|x|^{2N_1}),\quad \forall \;(t,x)\in [0,T]\times H. \end{aligned}$$
(41)

Then we set

$$\begin{aligned} F_\alpha (t,x)=\frac{F(t,x)}{1+\alpha |F(t,x)|},\quad \forall \;(t,x)\in [0,T]\times H, \end{aligned}$$
(42)

so that

$$\begin{aligned} |F(t,x)-F_\alpha (t,x)|\le \alpha |F(t,x)|^2,\quad \forall \;(t,x)\in [0,T]\times H, \end{aligned}$$
(43)

Let \(X_\alpha \) be the solution to (11). Then by Itô’ formula and (41), for any \(m\in \mathbb N\) there exists \(a_m>0\) such that

$$\begin{aligned} \mathbb E[|X_\alpha (t,s,x)|^{2m}]\le e^{-2m\omega (t-s)}|x|^{2m}+a_m,\quad \forall \;(t,x)\in [0,T]\times H,\,\alpha \in (0,1]. \end{aligned}$$
(44)

Therefore Hypothesis 2 is fulfilled with \(V(x)=C(1+|x|^{4N}),\;x\in H\).

Example 10

(\(C=I\)) We assume here that \(C=I\), \(F:[0,T]\times H\rightarrow H\) is continuous and there exist \(k >0\), \(N_1,\,N\in \mathbb N\) such that for all \((t,x)\in [0,T]\times H\) we have

$$\begin{aligned} \langle F(t,x+z),x \rangle \le k(1+|z|^{2N_1}),\quad \forall \;z\in H\quad ,\quad |F(t,x)|\le k(1+|x|^{2N}). \end{aligned}$$
(45)

Then we define \(F_\alpha \) by (42). Let \(X_\alpha \) be the solution to (11). Set \(Y_\alpha (t,s,x):=X_\alpha (t,s,x)-W_A(t,s),\) so that

$$\begin{aligned} \frac{d}{dt}\,Y_\alpha (t,s,x)=AY_\alpha (t,s,x)+F_\alpha (t,Y_\alpha (t,s,x)). \end{aligned}$$
(46)

Now, setting \(Y(t)=Y_\alpha (t,s,x)\), it follows by a simple computation that for any \(m\in \mathbb N\) we have

$$\begin{aligned} \frac{1}{2m}\,\frac{d}{dt}\,|Y(t)|^{2m}&=-|(-A)^{1/2}Y(t)|^2\,|Y(t)|^{2m-2}+|Y(t)|^{2m-2} \langle Y(t)+W_A(t,s),Y(t)\rangle \\&\le k(1+|W_A(t,s)|^{2N_2}). \end{aligned}$$

Recalling [8, Proposition 4.3] it follows that there is \(C(T)>0\) such that \( \frac{d}{dt}\,\mathbb E|Y(t)|^{2m}\le C(T), \) which implies

$$\begin{aligned} \mathbb E|Y_\alpha (t,s,x)|^{2m}\le |x|^{2m}+C(T),\quad \forall \;x\in H. \end{aligned}$$
(47)

Therefore Hypothesis 2 is fulfilled with \(V(x)=C(1+|x|^{4N})\).

Example 11

(Reaction–diffusion equations) Here we take \(H=L^2(0,1)\), \(Ax=D^2_\xi \) for all \(x\in D(A)=H^2(0,1)\cap H^1_0(0,1) \) and \( F(t,x)(\xi )=\sum _{i=0}^Na_i(t)(x(\xi ))^i,\; t\in [0,T],\;\xi \in [0,1],\,x\in L^2(0,1), \) where \(N\in \mathbb N\) is odd and greater than 1, \(a_i\in C([0,T])\), \(i=1,\ldots ,N\), and \(a_N(t)<0\) for all \(t\in [0,T].\) Then Hypothesis 1 is fulfilled. Moreover, setting

$$\begin{aligned} F_\alpha (t,x)=\frac{F(t,x)}{1+\alpha |F(t,x)|},\quad (t,x)\in [0,T]\times [0,1], \end{aligned}$$
(48)

we have

$$\begin{aligned} |F_\alpha (t,x)|_{L^2(0,1)}\le C\left( 1+|x|^{2N}_{L^{2N}(0,1)}\right) \end{aligned}$$
(49)

and

$$\begin{aligned} |F(t,x)-F_\alpha (t,x)|_{L^2(0,1)}\le C\alpha |F(t,x)|_{L^2(0,1)}^2\le C_1\left( 1+|x|^{4N}_{L^{2N}(0,1)}\right) . \end{aligned}$$
(50)

Now Hypothesis 2(i)(ii) are fulfilled with \( V(x)=C\left( 1+|x|^{4N}_{L^{2N}(0,1)}\right) . \) Finally, Hypothesis 2(iii) is fulfilled as well, see [8, Theorem 4.8] and [3, p. 505] where a more general example is also presented. Then Theorem 8 applies.

3.3 Other Assumptions

In this section we set \(G(t,x)=(-A)^{-1/2}F(t,x)\), \(J_\alpha =(1-\alpha A)^{-1}\), \(\alpha \in (0,1].\)

Hypothesis 3

We set \(F_\alpha (t,x)=(-A)^{1/2}J_\alpha G_\alpha (t,x)\) and assume that:

(i) \(G_\alpha \) is continuous and bounded. and the mild equation

$$\begin{aligned} X_\alpha (t,s,x)=e^{(t-s)A}x+\int _s^t(-A)^{1/2}e^{(t-r)A}J_\alpha G _\alpha (r, X_\alpha (r,s,x))dr+W_A(t,s), \end{aligned}$$
(51)

has a unique solution.

(ii) There exists a convex and lower semicontinuous mapping \(V:H\rightarrow [1,+\infty ]\) such that

$$\begin{aligned} |G_\alpha (t,x)|^2\le |G(t,x)|^2\le V(x) ,\quad \forall \;(t,x)\in [0,T]\times H, \end{aligned}$$
(52)

and

$$\begin{aligned} |G(t,x)-G_\alpha (t,x)|\le \alpha \,V(x) ,\quad \forall \;(t,x)\in [0,T]\times H. \end{aligned}$$
(53)

(iii) There exists \(M\ge 0\) such that

$$\begin{aligned} P^\alpha _{0,t}|x|^2\le M|x|^2,\quad P^\alpha _{0,t}V(x)\le MV(x),\quad \forall \;t\in [0,T],\, \alpha \in (0,1], \end{aligned}$$
(54)

where \(P^\alpha \) is the transition evolution operator \( P^\alpha _{s,t}\varphi (x)=\mathbb E[\varphi (X_\alpha (t,s,x))],\; 0\le s\le T,\;\varphi \in B_b(H). \)

(Note the difference between Hypothesis 2(iii) and Hypothesis 3(iii); the reason is that from (51) we are not able to estimate \(\mathbb E|X_\alpha (t,s,x)|^2\) independently of \(\alpha \).)

Now fix \(\zeta \in \mathcal P(H)\) and for any \(t\in (0,T]\) and any \(\alpha \in (0,1]\) define the probability measure \(\mu _t^\alpha \) in H setting as in Sect. 3.1

$$\begin{aligned} \int _H\varphi (x)\mu _t^\alpha (dx)=\int _H P^\alpha _{0,t}\,\varphi (x)\zeta (dx)= \int _H \mathbb E[\varphi (X_\alpha (t,0,x))]\zeta (dx),\quad \forall \;\varphi \in \mathcal E_A(H) \end{aligned}$$
(55)

and \(\underline{\mu }^\alpha (dt\, dx)=\mu _t^\alpha (dx)dt.\)

Let us deduce some estimates from Hypothesis 3. First from (54) we have

$$\begin{aligned} \int _H |x|^2\,\mu ^\alpha _t(dx)=\int _HP_{0,t}|x|^2\,\zeta (dx)\le M\int _H|x|^2\,\zeta (dx) \end{aligned}$$
(56)

and

$$ \int _H V(x)\,\mu ^\alpha _t(dx)=\int _H P_{0,t}V(x)\,\zeta (dx)\le M\int _HV(x)\,\zeta (dx) $$

and so, from (52)

$$\begin{aligned} \int _H |F(t,x)|^2\,\mu ^\alpha _t(dx)\le M\int _HV(x)\,\zeta (dx). \end{aligned}$$
(57)

Lemma 12

Assume that Hypotheses 1 and 3 are fulfilled and let \(x\in H\), \(0<s\le t\le T\) and \(\alpha \in (0,1]\). Then \(X_\alpha (t,s,x)\in D((-A)^{\epsilon _0})\), \(\mathbb P\)-a.s. and there exists \(C>0\) such that

$$\begin{aligned} \mathbb E[|(-A)^{\epsilon _0} X_\alpha (t,s,x)|]\le Ct-s)^{-\epsilon _0}(1+|x|^2+ V(x)). \end{aligned}$$
(58)

Proof

Writing \(X_\alpha (t,s,x)=X_\alpha (t)\) we have

$$\begin{aligned} (-A)^{\epsilon _0} X_\alpha (t)&=(-A)^{\epsilon _0} e^{(t-s)A}x+\int _s^t (-A)^{\epsilon _0+1/2}J_\alpha e^{(t-r)A}G_\alpha (r,X_\alpha (r))dr \nonumber \\&\quad +(-A)^{\epsilon _0} W_A(t,s). \end{aligned}$$
(59)

Therefore, since \(\Vert J_\alpha \Vert \le 1\) and using that \(|G_\alpha (r,X_\alpha (r))|\le 1+ |G_\alpha (r,X_\alpha (r))|^2\), we have

$$\begin{aligned} \displaystyle |(-A)^{\epsilon _0} X_\alpha (t)|&\le \kappa _ {\epsilon _0}(t-s)^{-\epsilon _0}\,|x|+\kappa _{(\epsilon _0+1/2)}\int _s^t(t-r)^{-\epsilon _0-1/2}(1+ |G_\alpha (r,X_\alpha (r))|^2)dr \\&\quad +|(-A)^{\epsilon _0} W_A(t,s)|. \end{aligned}$$

Taking expectation, yields

$$\begin{aligned} \mathbb E|(-A)^{\epsilon _0} X_\alpha (t)|&\le \kappa _ {\epsilon _0}(t-s)^{-\epsilon _0}\,|x|+\kappa _{(\epsilon _0+1/2)}\int _s^t(t-r)^{-\epsilon _0-1/2}(1+ \mathbb E|G_\alpha (r,X_\alpha (r))|^2)dr\\&\quad +(\mathbb E|(-A)^{\epsilon _0} W_A(t,s)|^2)^{1/2}. \end{aligned}$$

Consequently, taking into account (7) and (52) we find

$$\begin{aligned} \mathbb E|(-A)^{\epsilon _0} X_\alpha (t)|&\le \kappa _ {\epsilon _0}(t-s)^{-\epsilon _0}\,|x|+\kappa _{(\epsilon _0+1/2)}\int _s^t(t-r)^{-\epsilon _0-1/2}(1+ MV(x))dr \\&\quad +(\mathbb E|(-A)^{\epsilon _0} W_A(t,s)|^2)^{1/2} \end{aligned}$$

and (58) follows. \(\square \)

In the following we shall set as before

$$\begin{aligned} \psi (x):=1+|x|^2+V(x),\quad \forall \;x\in H. \end{aligned}$$
(60)

Now, integrating (58) with respect to \(\zeta \) we obtain

Corollary 13

Assume that Hypotheses 1 and 3 are fulfilled. Then for all \(\zeta \in \mathcal P_\psi (H)\), \(t\in (0,T]\), \(x\in H\) and \(\alpha \in (0,1]\) we have

$$\begin{aligned} \int _H\Vert x\Vert _{\epsilon _0}\,\mu _t^\alpha (dx)\le C t^{- \epsilon _0}\int _H \psi (x) \zeta (dx). \end{aligned}$$
(61)

Now by Itô’s formula we see that \(\underline{\mu }^\alpha (dt\,dx)=\mu _t^\alpha (dx)dt\) solves the approximating Fokker–Planck equation (24) where \(K_{F_\alpha }\) is the Kolmogorov operator (25), moreover the tightness of \(\mu _t^\alpha \) follows as in the proof of Proposition 7.

Proposition 14

Assume that \(\zeta \in \mathcal P_{\psi }(H)\). Then \((\mu _t^\alpha )_{\alpha \in (0,1]}\) is tight for all \(t\in (0,T]\) and we have

$$\begin{aligned} \mu _t^\alpha (\Vert x\Vert _{\epsilon _0}\ge R)\le \frac{Ct^{-\epsilon _0}}{R} \int _H \psi (x) \zeta (dx),\quad \forall \;R>0. \end{aligned}$$
(62)

Theorem 15

Assume that Hypotheses 1 and 3 are fulfilled and let \(\zeta \in \mathcal P_{\psi }(H)\).Then there is a probability kernel \(\underline{\mu }(dt\,dx)=\mu _t(dx)\,dt\) solving (3) and such that \(\mu _t\in \mathcal P_\psi \) for all \(t\in [0,T]\), where \(\psi \) is defined by (60).

Proof

We proceed as in the proof of Theorem 8. The Step 1 is similar: we construct a sequence \((\alpha _h)\rightarrow 0\) and a family of measures \((\mu _t)_{t\in \mathbb Q}\) such that

$$\begin{aligned} \lim _{h\rightarrow \infty }\int _{H}\varphi \,d\mu ^{\alpha _h}_t=\int _{H}\varphi \,d\mu _t,\quad \forall \;\varphi \in C_b(H),\quad \forall \;t\in [0,T]\cap \mathbb Q. \end{aligned}$$
(63)

Then we extend the family \((\mu ^{\alpha _h}_t)_{t\in \mathbb Q}\) to the whole interval (0, T] in such a way that the extension is a solution of (3) proving that

Step 2. For each \(\varphi \in \mathcal E_A(H)\) there exists \(C(\varphi )>0\) such that for all \(\alpha \in (0,1]\) we have

$$\begin{aligned} \left| \int _H\varphi \,d\mu ^\alpha _t-\int _H\varphi \,d\mu ^\alpha _s\right| \le C(\varphi ) (t-s)\int _H\psi \,d\zeta ,\quad 0\le s\le t\le T. \end{aligned}$$
(64)

In fact by Itô’s formula we have

$$\begin{aligned} \mathbb E[\varphi (X_\alpha (t,0,x))]-\mathbb E[\varphi (X_\alpha (s,0,x))]=\mathbb E\int _s^t(L_r^\alpha \varphi )(X_\alpha (r,0,x))dr, \end{aligned}$$
(65)

where \(L_t^\alpha ,\,t\in [0,T],\) is the Kolmogorov operator

$$ L_t^\alpha \varphi =\tfrac{1}{2}\,\text{ Tr }\,[CD^2\varphi ]+\langle x, AD\varphi \rangle +\langle G_\alpha (t,x), (-A)^{1/2}J_\alpha D\varphi \rangle ,\quad \forall \varphi \in \mathcal E_A(H). $$

Now we write

$$\begin{aligned} \begin{array}{lll} \displaystyle \int _H\varphi \,d\mu ^\alpha _t-\int _H\varphi \,d\mu ^\alpha _s= & {} \displaystyle \mathbb E\int _H\int _s^t ( L_t^\alpha \varphi )(X(r,0,x))\,d\zeta \,dr \end{array} \end{aligned}$$
(66)

and choose \(C_1(\varphi )>0\) such that

$$ \begin{array}{l} |( L_t^\alpha \varphi )(x)|\le \tfrac{1}{2}\,\Vert \text{ Tr }\,[CD^2\varphi ]\Vert _0+|x|\, \Vert AD\varphi \Vert _0+|G_\alpha (t,x)|\,\Vert (-A)^{1/2}J_\alpha D\varphi \Vert _0\\ \\ \le C_1(\varphi )(1+|x|+|G_\alpha (t,x)|)\le 3C_1(\varphi )(1+|x|^2+|G_\alpha (t,x)|^2),\quad \forall \;x\in H. \end{array} $$

Therefore (64) follows arguing as before as well as Step 2. We go now to the Step 3. We have still to show statements (37) and (38); the proof of (37) is exactly the same, whereas for the proof of (38) we have just to write

$$ \langle D_xu(t,x), F_{\alpha _h}(t,x) \rangle = \langle (-A)^{1/2}J_{\alpha _h} D_xu(t,x), G_{\alpha _h}(t,x) \rangle $$

and notice that \( (-A)^{1/2}D_xu\) is bounded. Then the proof ends as before. \(\square \)

Example 16

(Burgers type equations) We take here \(H=L^2(0,1)\), C of trace class and denote by A the realisation of the Laplace operator in [0, 1] with periodic boundary conditions: \(Ax=D^2_\xi ,\quad D(A)=H^2_\#(0,1),\) where

$$H^2_\#(0,1)=\{x\in H^2(0,1):\,x(0)=x(1),\,D_\xi x(0)=D_\xi x(1)\}.$$

Moreover we take \(F(t,x)(\xi )=D_\xi (g(t, x(\xi )),\;\;x\in H^1_\#(0,1)\), where \(g:[0,T]\times \mathbb R\rightarrow \mathbb R\) is continuous. Then Hypothesis 1 is fulfilled. Set \(G(t,x)(\xi )=g(t, x(\xi ))\), so that \(F(t,x)(\xi )=(-A)^{1/2}G(t,x),\;\forall \;x\in H^1_\#(0,1). \) Set moreover for \(\alpha \in (0,1]\)

$$\begin{aligned} F_\alpha (t,x)(\xi )=(-A)^{1/2} J_\alpha G_\alpha (t,x)=(-A)^{1/2}J_\alpha \left( \frac{G(t,x)}{1+\alpha |G(t,x)|} \right) ,\quad \forall \;x\in H^1_\#(0,1). \end{aligned}$$
(67)

To check Hypothesis 3(i)(ii) we need suitable estimates of the solution \(X_\alpha (t,s,x)\) of Eq. (11). For any \(m\in \mathbb N\) set \( \varphi _m(x)=\frac{1}{2m}\int _0^1|x(\xi )|^{2m}d\xi . \) By Itô’s formula we have

$$\begin{aligned} \displaystyle d\varphi _m(X(t))&=(2m-1)\langle X(t)^{2m-1},AX(t)+F_\alpha (t,X(t))dt+\sqrt{C}\,dW(t)\rangle \displaystyle \nonumber \\&\quad +\frac{1}{2}\,(2m-1)\sum _{h=1}^\infty c_h\int _0^1X(t)^{2m-2}e_h^2\,d\xi \;dt, \end{aligned}$$
(68)

where \((e_h)\) is an orthonormal basis in H and \(Ce_h=c_he_h,\;h\in \mathbb N\). Therefore

$$\begin{aligned} \displaystyle \frac{d}{dt}\,\mathbb E[\varphi _m(X(t))]&\le (2m-1)\mathbb E\langle X(t)^{2m-1},AX(t)+F_\alpha (t,X(t))\rangle \displaystyle \nonumber \\&\quad +\frac{1}{2}\,(2m-1)\text{ Tr }\,C\,\mathbb E\int _0^1X(t)^{2m-2}\,d\xi \end{aligned}$$
(69)

In particular, we have \(\displaystyle \frac{d}{dt}\,\mathbb E|X(t)|^2\le -2\omega \mathbb E|X(t)|^2+\text{ Tr }\,C,\) so that

$$\begin{aligned} \mathbb E|X(t)|^2\le e^{-2\omega t}|x|^2+\frac{\text{ Tr }\,C}{2\omega } \end{aligned}$$
(70)

Moreover by (69)

$$\begin{aligned} \begin{array}{l} \displaystyle \frac{1}{4}\,\frac{d}{dt}\,\mathbb E[|X(t)|_{L^4(0,1)}^4]= 3\mathbb E\langle X(t)^3,AX(t)+D_\xi F(t,X(t))\rangle \displaystyle +\frac{3}{2}\,\text{ Tr }\,C\,\mathbb E[|X(t)|^{2}]. \end{array} \end{aligned}$$
(71)

But

$$ \langle X(t)^3,AX(t)\rangle =-3\int _0^1 X(t)^2(D_\xi X(t)^2d\xi \le 0 $$

and

$$ \langle X(t)^3,D_\xi F(t,X(t))\rangle =-3\int _0^1D_\xi X(t)\,X(t)^2g(t,X(t))d\xi =0. $$

So,

$$\begin{aligned} \frac{1}{4}\,\frac{d}{dt}\,\mathbb E\left[ |X(t)|_{L^4(0,1)}^4\right] \le \frac{3}{2}\,\text{ Tr }\,C\,\mathbb E[|X(t)|^{2}] \end{aligned}$$
(72)

and taking into account (70) we have

$$\displaystyle \frac{d}{dt}\,\mathbb E\left[ |X(t)|_{L^4(0,1)}^4\right] \le 6\,\text{ Tr }\,C\,\left( e^{-2\omega t}|x|^2+\frac{\text{ Tr }\,C}{2\omega }\right) .$$

It follows that

$$\begin{aligned} \mathbb E\left[ |X(t)|_{L^4(0,1)}^4\right] \le |x|^4+ 6T\,\text{ Tr }\,C\,\left( |x|^2+\frac{\text{ Tr }\,C}{2\omega }\right) \end{aligned}$$
(73)

Iterating this procedure we find that there exists \(C_m(T)>0\) such that \( \mathbb E[|X(t)|_{L^{2m}(0,1)}^{2m}]\le C_m(T)(1+ |x|^{2m}). \) Therefore Hypothesis 3(i)(ii)(iii) is fulfilled with \( V(x)=C(1+|x|^4_{L^4(0,1)}).\)

Example 17

(Burgers equation perturbed by white noise) We take here \(H\,{=}\,L^2(0,1),\) \(A\,{=}\,Ax\,{=}\,D^2_\xi ,\quad D(A)\,{=}\,H^2_\#(0,1),\) and \(F(t,x)(\xi )=D_\xi (x^2(\xi )),\;\forall \;x\in H^1_\#(0,1)\).Footnote 5 Then Hypothesis 1 is fulfilled. Set \(G(t,x)(\xi )= x^2(\xi ),\;\forall \;x\in H^1_\#(0,1),\) so that \( F(t,x)(\xi )=(-A)^{1/2}G(t,x),\;\forall \;x\in H^1_\#(0,1).\) Set moreover for \(\alpha \in (0,1]\)

$$\begin{aligned} F_\alpha (t,x)(\xi )=(-A)^{1/2}J_\alpha G_\alpha (t,x)=(-A)^{1/2}J_\alpha \left( \frac{x^2}{1+\alpha x^2} \right) ,\quad \forall \;x\in H^1_\#(0,1). \end{aligned}$$
(74)

Then Hypothesis 3(i)(ii) is fulfilled with \( V(x)=C(1+|x|^4_{L^4(0,1)}).\) Finally, Hypothesis 3(iii) follows from [10, Proposition 2.2].Footnote 6

Example 18

(2D-Navier–Stokes equation perturbed by coloured noise) Let us consider the space \(L_\#^2\) of all real \(2\pi \)-periodic functions in the real variables \(\xi _1\) and \(\xi _2,\) which are measurable and square integrable on \([0,2\pi ]\times [0,2\pi ]\) endowed with the usual scalar product \(\langle \cdot ,\cdot \rangle \) and norm \(|\cdot |\). We denote by \((L_\#^2)^2\) the space consisting of all pairs \( x=\left( \begin{array}{c} x^1\\ x^2 \end{array}\right) \) of elements of \(L_\#^2\) endowed with the inner product \( \displaystyle \langle x,y \rangle =\int _\mathcal O [x^1(\xi )y^1(\xi )+x^2(\xi )y^2(\xi )]d\xi ,\; x,y\in (L_\#^2)^2. \) Moreover, for any \(x\in (L_\#^2)^2\) we set \( |x|= \langle x,x \rangle ^\frac{1}{2}. \) (We shall consider everywhere also the corresponding complexified spaces). Let \( f_{h,k}=\left( \begin{array}{c} e_h\\ e_k \end{array} \right) ,\;h,k\in \mathbb Z^2, \) be the complete orthonormal system of \((L_\#^2)^2,\) where \( e_k(\xi )=\tfrac{1}{2\pi }\;e^{i\langle k,\xi \rangle },\; k=(k_1,k_2)\in \mathbb Z^2,\;\xi =(\xi _1,\xi _2), \) and \(\langle k,\xi \rangle =k_1\xi _1+k_2\xi _2\). Then we shall denote by H the closed subspace of \((L_\#^2)^2\) of all divergence free vectors, that is: \( H=\text{ linear } \text{ span }\;\{g_k:\;k\in \mathbb Z^2\}, \) where

$$ g_k=\frac{k^\perp }{|k|}\; e_k=\left( \begin{array}{c} -\frac{k_2}{|k|}\; e_k\\ \\ \frac{k_1}{|k|}\; e_k \end{array} \right) ,\quad \quad k^\perp =\left( \begin{array}{c} -k_2\\ k_1 \end{array} \right) ,\quad k\in \mathbb Z^2. $$

Note in fact that \( \text {div}\;g_k(\xi )=\frac{i}{|k|}\;e_k(-k_1k_2+k_1k_2)=0,\; k\in \mathbb Z^2. \) Any element \(x=\left( \begin{array}{c} x^1\\ x^2 \end{array} \right) \) of H can be developed as a Fourier series \(\displaystyle x=\sum _{k\in \mathbb Z^2}x_k g_k,\) where

$$\begin{aligned} \displaystyle x_k=\langle x,g_k \rangle _2&=-\frac{k_2}{|k|}\;\langle x^1,e_k \rangle _2+\frac{k_1}{|k|}\; \langle x^2,e_k \rangle _2 \displaystyle \nonumber \\&= \frac{1}{2\pi |k|}\;\int _\mathcal O[-k_2x^1(\eta )+k_1x^2(\eta )]e^{-i\langle k,\eta \rangle }d\eta . \end{aligned}$$
(75)

Moreover, we shall denote by \(L^p_\#\), \(p\ge 1\), the subspace of \((L_\#^p)^2\) of all divergence free vectors and by \(|\cdot |_{p}\) the norm in \(L^p_\#\). Let us define the Stokes operator \(A:D(A)\rightarrow H\) setting \(Ax=\mathcal P(\varDelta _\xi x-x),\; x\in D(A)=H_\#^{2}, \) A is self-adjoint and \( A g_k=-(1+|k|^2)g_k,\;k\in \mathbb Z^2. \) We also define the non linear operator F setting

$$ F(x)=\mathcal P(D_\xi x\cdot x),\quad x\in H^1_\#. $$

For any \(\sigma > 0\) we have

$$ H^{2\sigma }_\#:=\left\{ x\in H:\;\Vert (-A)^\sigma x\Vert ^2=\sum _{k\in \mathbb Z^2}(1+|k|^2)^{\sigma /2}|x_k|^2\right\} . $$

see [8, Chap. 6] for details. If \(x\in H^{1}_\#\), taking into account that div \(x=0\), we have

$$\begin{aligned} F(x)=\begin{pmatrix} x_1D_{\xi _1}x_1+x_2D_{\xi _2}x_1\\ x_1D_{\xi _1}x_2+x_2D_{\xi _2}x_2 \end{pmatrix}= \begin{pmatrix} D_{\xi _1}(x^2_1)+D_{\xi _2}(x_1x_2)\\ D_{\xi _1}(x_1x_2)+D_{\xi _2}(x^2_2). \end{pmatrix} \end{aligned}$$
(76)

Set \(G(x)=(-A)^{1/2}F(x), \) and moreover for \(\alpha \in (0,1]\)

$$ F_\alpha (x)= \begin{pmatrix} D_{\xi _1}(\tfrac{x^2_1}{1+\alpha (x^2_1+x^2_2)})+D_{\xi _2}(\tfrac{x_1x_2}{1+\alpha (x^2_1+x^2_2)})\\ D_{\xi _1}(\tfrac{x_1x_2}{1+\alpha (x^2_1+x^2_2)})+D_{\xi _2}(\tfrac{x^2_2}{1+\alpha (x^2_1+x^2_2)}) \end{pmatrix} $$

and \( G_\alpha (x)=(-A)^{-1/2} F_\alpha (x). \) Then for \(h\in H^{1}_\#\) and \(\alpha \in (0,1]\) we have

$$ \begin{array}{l} \langle F_\alpha (x),h \rangle = \left\langle \begin{pmatrix} D_{\xi _1}(\tfrac{x^2_1}{1+\alpha (x^2_1+x^2_2)})+D_{\xi _2}(\tfrac{x_1x_2}{1+\alpha (x^2_1+x^2_2)})\\ D_{\xi _1}(\tfrac{x_1x_2}{1+\alpha (x^2_1+x^2_2)})+D_{\xi _2}(\tfrac{x^2_2}{1+\alpha (x^2_1+x^2_2)}) \end{pmatrix},\begin{pmatrix} h_1\\ h_2 \end{pmatrix}\right\rangle \\ \\ =-\langle \tfrac{x^2_1}{1+\alpha (x^2_1+x^2_2)},D_{\xi _1}h_1 \rangle -\langle \tfrac{x_1x_2}{1+\alpha (x^2_1+x^2_2)}, D_{\xi _2}h_1 +D_{\xi _1}h_2 \rangle -\langle \tfrac{x^2_2}{1+\alpha (x^2_1+x^2_2)},D_{\xi _2}h_2 \rangle \end{array} $$

Finally, assume that Tr \([CA^{-1]}<\infty \). then it is easy to see that, thanks to [8, Lemma 6.7], Hypothesis 3 is fulfilled with \(G(x)=(1+|x|^4_{L^4_\#})\).

4 Uniqueness

4.1 The Rank Condition

We start with the following crucial result, proved in [1].

Theorem 19

Let \(\psi :H\rightarrow [0,+\infty ]\) be convex and lover semi-continuous and let \(\zeta \in \mathcal P_\psi (H)\). Assume that for any solution \(\underline{\mu }=(\mu _t)_{t\in [0,T]}\) of (3) such that \(\mu _0=\zeta \) the following statement holds

$$\begin{aligned} K_F(\mathcal E_A([0,T]\times H))\;\text{ is } \text{ dense } \text{ in }\;L^1([0,T]\times H, \underline{\mu }). \end{aligned}$$
(77)

Then Eq. (3) has at most one solution.

The condition (77) is called the rank condition.

Proof

Assume that \(\underline{\mu }_1 =(\mu _{1,t})\) and \(\underline{\mu }_2 =(\mu _{2,t})\) are solution of (3) such that \(\mu _{1,0}=\mu _{2,0}=\zeta \in \mathcal P_\psi (H)\) and set

$$\underline{\lambda }:=\frac{1}{2}\;(\underline{\mu }_1+\underline{\mu }_2). $$

Then \(\lambda _0=\zeta \) and \( \underline{\mu }_1\ll \underline{\lambda },\quad \underline{\mu }_2\ll \underline{\lambda }. \) Denote by \(\rho _1\) and \(\rho _2\) the respective densities

$$ \rho _1:=\frac{d\underline{\mu }_1}{d\underline{\lambda }},\quad \rho _2:=\frac{d\underline{\mu }_2}{d\underline{\lambda }}. $$

We claim that

$$\begin{aligned} 0\le \rho _1(t,x)\le 2,\quad 0\le \rho _2(t,x)\le 2,\quad \underline{\lambda }\;\text{-a.s. },\quad \forall \;(t,x)\in [0,T]\times H. \end{aligned}$$
(78)

Let us show for instance that \(0\le \rho _1(t,x)\le 2\). In fact, for any \(A\in \mathcal B([0,T]\times H)\) we have \( \underline{\mu }_2(A)=2\underline{\lambda }(A)-\underline{\mu }_1(A), \) so that \( \underline{\mu }_2(A)=\int _A(2-\rho _1)d\underline{\lambda }\), which implies that \(0\le \rho _1(t,x)\le 2\), \(\underline{\lambda }\)-a.e. by the arbitrariness of A.

Now for any \(u\in \mathcal E_A([0,T]\times H)\) we have (recall that \(H_T=[0,T]\times H\)))

$$ \int _{H_T} K_F u\,(d\underline{\mu }_1-d\underline{\mu }_2)=\int _{H_T} K_F u\,(\rho _1-\rho _2)d\underline{\lambda }=0. $$

Since \(\rho _1-\rho _2\in L^\infty ([0,T]\times H;\underline{\lambda }),\) by the rank condition it follows that \(\rho _1=\rho _2\)\(\square \)

A useful remark for dealing with the rank condition is that for any solution \(\underline{\mu }\) to Eq. (3) such that \(\mu _0\in \mathcal P_\psi (H)\), \(K_F\) is dissipative in \(L^1([0,T]\times H;\underline{\mu })\), as the next proposition shows.

Proposition 20

Let \(F:D(F)\subset [0,T]\times H\rightarrow H\) be Borel and \(\zeta \in \mathcal P(H)\). Assume that \(\underline{\mu }\) is a solution to (3). Then \(K_F\) is dissipative in \(L^p([0,T]\times H;\underline{\mu })\) for all \(p\ge 1\).

Proof

First we show that for any \(u\in \mathcal E_A([0,T]\times H)\) we have

$$\begin{aligned} \displaystyle \int _{H_T} K_F u(t,x)\;u(t,x)\;\mu _t(dx)\,dt \displaystyle&= -\frac{1}{2}\int _{H_T}|C^{1/2}D_x u(t,x)|^2\;\mu _t(dx)\,dt\nonumber \\&\quad -\frac{1}{2}\int _{ H}u^2(0,x)\;\zeta (dx). \end{aligned}$$
(79)

In fact if \(u\in \mathcal E_A([0,T]\times H)\) we have \(u^2\in \mathcal E_A([0,T]\times H)\) as well and

$$ D_t(u^2)=2uD_tu,\quad D_x(u^2)=2uD_xu,\quad D^2_x(u^2)=2D_xu\otimes D_xu+2uD^2_xu. $$

It follows that

$$\begin{aligned} K_F(u^2(t,x))=2u(t,x)\; K_F u(t,x)+|C^{1/2}D_xu(t,x)|^2. \end{aligned}$$
(80)

Integrating both sides of (80) with respect to \(\underline{\mu }\) over \([0,T]\times H\), yields (79). Now, by (79) we have

$$ \int _{H_T}K_F\,u(t,x)\;u(t,x)\;\mu _t(dx)\,dt\le 0,\quad \forall \;u\in \mathcal E_A([0,T]\times H), $$

which implies the dissipativity of \(K_F\) in \(L^2([0,T]\times H,\underline{\mu })\). The case \(p\ne 2\) follows from standard arguments about diffusions operators, see [12]. \(\square \)

Remark 21

Assume that \(\underline{\mu }\) is a solution to (3). By Proposition 20 it follows that \(K_F\) is closable in \(L^1([0,T]\times H,\underline{\mu })\). We shall denote by \(\overline{K_F}\) its closure. Clearly, if \(\psi :H\rightarrow [0,+\infty ]\) is convex lover semi-continuous and

$$ \overline{K_F}\,(D(\overline{K_F}))\,\text{ is } \text{ dense } \text{ in }\,L^1([0,T]\times H,\underline{\mu })\;\text{ for } \text{ all }\; \underline{\mu }\; \text{ such } \text{ that } \;\mu _0\in \mathcal P_\psi (H),$$

then the rank condition (77) is fulfilled.

4.2 The Semigroup Associated to a Non Autonomous Problem

We assume here that Hypothesis 2 (resp. Hypothesis 3) is fulfilled. As usual in studying non autonomous systems, it is convenient to consider, besides (11) (resp. (51)), a problem in the unknowns \((H(\tau ),y(\tau ))\) (intended in the mild sense.)Footnote 7

$$\begin{aligned} \left\{ \begin{array}{l} dH(\tau )=AH(\tau )d\tau +F_\alpha (y(\tau ),H(\tau ))d\tau +\sqrt{C}\,W(\tau ),\quad \tau \ge 0,\\ dy(\tau )=d\tau ,\quad \tau \ge 0 \\ H(0)=x,\quad y(0)=t. \end{array}\right. \end{aligned}$$
(81)

(resp. a similar problem for (51)). To solve problem (81) we set \(y(\tau ,t)=t+\tau \), so that (81) reduces to

$$\begin{aligned} \left\{ \begin{array}{l} dH(\tau )=AH(\tau )d\tau +F_\alpha (t+\tau ,H(\tau ))d\tau +\sqrt{C}\,dW(\tau )\\ \\ H(0)=x. \end{array}\right. \end{aligned}$$
(82)

We denote by \(H(\tau )=H(\tau ,t,x)\) the mild solution of (81) which, however, is only defined for \(\tau \in [0,T-t]\).

Let us define a semigroup \(S^{F_\alpha }_\tau ,\,\tau \ge 0,\) in the space \(C_T([0,T]\times H)=\{u\in C([0,T]\times H):\;u(T,x)=0,\forall \;x\in H \}\) by setting

$$ (S^{F_\alpha }_\tau u)(t,x)= \mathbb E[u(t+\tau ,H(\tau + t,x))]\,{\mathbbm {1}}_{[0,T-\tau ]}(t), \;u\in C_T([0,T]\times H). $$

Notice that \( S^{F_\alpha }_\tau =0,\; \forall \;\tau \ge T. \) Since the law of \( H(\tau ,t,x)\) coincides, as easily seen, with that of \(X_\alpha (t+\tau ,t,x)\), for any \(x\in H\) and any \(\tau \) such that \(t+\tau \le T\), it results

$$\begin{aligned} (S^{F_\alpha }_\tau u)(t,x)&= (P^\alpha _{t,t+\tau }u(t+\tau ,\cdot )(x)\,{\mathbbm {1}}_{[0,T-\tau ]}(t)\nonumber \\&=\mathbb E[u(t+\tau ,X_\alpha (t+\tau ,t,x))]\,{\mathbbm {1}}_{[0,T-\tau ]}(t), \quad \forall \,u\in C_T([0,T]\times H). \end{aligned}$$
(83)

Let denote by \(\mathcal K_{F_\alpha }\) the infinitesimal generator of \(S^{F_\alpha }_\tau \), defined through its resolvent (see (84) below). Then the resolvent set of \(\mathcal K_{F_\alpha }\) coincides with \(\mathbb R\) and its resolvent is given, for all \(f\in C_T([0,T]\times H)\) and all \(\lambda \in \mathbb R\), by

$$\begin{aligned} \displaystyle R(\lambda ,\mathcal K_{F_\alpha })f(t,x)&=\int _0^\infty e^{-\lambda \tau }S^{F_\alpha }_\tau f(t,x)d\tau \nonumber \\&=\int _t^{T} e^{-\lambda (r-t)}\mathbb E[f(X_\alpha (r,t,x))]dr, \quad (t,x)\in [0,T]\times H. \end{aligned}$$
(84)

\(\mathcal K_{F_\alpha }\) can also be defined as follows (following [14]). We say that a function \(u\in C_T([0,T]\times H)\) belongs to the domain of \(\mathcal K_{F_\alpha }\) if there exists a function \(f\in C_T([0,T]\times H)\) such that

(i)

\(\displaystyle \lim _{\tau \rightarrow 0}\frac{1}{\tau }\;(S^{F_\alpha }_\tau u(t,x)-u(t,x))=f(t,x),\quad \forall \;(t,x)\in [0,T]\times H.\)

(ii) There exists \(M_u>0\) such that

$$ \left| \frac{1}{\tau }\;(S^{F_\alpha }_\tau u(t,x)-u(t,x)))\right| \le M_u,\quad \forall \;(t,x)\in [0,T]\times H,\,\tau \in [0,1]. $$

We set \(\mathcal K_{F_\alpha }u=f\) and call \(\mathcal K_{F_\alpha }\) the infinitesimal generator of \(S_\tau \) on \(C_T([0,T]\times [0,H])\). As easily seen, the abstract operator \(\mathcal K_{F_\alpha }\) is an extension of the differential Kolmogorov operator \(K_{F_\alpha }\) defined by (2) (with \(F_\alpha \) replacing F).

4.3 The Case When \(C^{-1}\) is Bounded

Theorem 22

Assume, besides Hypotheses 1 and 2 that there exists \(M_1>0\) such that

$$\begin{aligned} P_{0,t}V^2(x)\le M_1V^2(x),\quad \forall \;x\in H. \end{aligned}$$
(85)

Let moreover \(\zeta \in \mathcal P_{\psi +V^2}(H)\), where \(\psi \) is defined by (21). Then the Fokker–Planck equation (3) has a unique solution \(\underline{\mu }=(\mu _t)_{t\in [0,T]}\) and \(\mu _t\in \mathcal P_{\psi +V^2}(H)\) for any \(t\ge 0\).

Proof

Let \(f\in \mathcal E_A([0,T]\times H))\) and consider the approximating equation

$$\begin{aligned} \mathcal K_{F_\alpha }\, u_\alpha =f. \end{aligned}$$
(86)

Thanks to (84) Eq. (86) has a unique solution \(u_\alpha \) given by

$$\begin{aligned} u_\alpha (t,x)=-\int _0^{T-t} \mathbb E[f(t+\tau ,X_\alpha (t+\tau ,t,x))]d\tau ,\quad (t,x)\in [0,T]\times H \end{aligned}$$
(87)

and therefore

$$\begin{aligned} |u_\alpha (t,x)|\le T\Vert f\Vert _0,\quad \forall \;(t,x)\in [0,T]\times H,\, \alpha \in (0,1]. \end{aligned}$$
(88)

Step 1. \(u_\alpha \in D(\mathcal K^1_0)\cap C^1_b(H)\) and it results

$$\begin{aligned} \mathcal K_{F_\alpha }u_\alpha = \mathcal K^1_0\,u_\alpha +\langle F_\alpha (t,x),D_xu_\alpha \rangle =f. \end{aligned}$$
(89)

Fix in fact \(t\in [0,T]\) and \(h>0\) such that \(t+h\le T\). Then, recalling (12) we write

$$\begin{aligned} X_\alpha (t+h,t,x)=Z(t+h,t,x)+g_\alpha (t+h,t,x), \end{aligned}$$
(90)

where

$$ Z(t+h,t,x)=e^{hA}x+\int _t^{t+h}e^{(t+h-r)A}\sqrt{C}\,\;dW(r) $$

and

$$ g_\alpha (t+h,t,x)=\int _t^{t+h}e^{(t+h-r)A}F_\alpha (r,X(r,t,x))dr. $$

Then by (9) and (83) we have

$$ S^{0,1}_hu_\alpha (t,x)=\mathbb E[u_\alpha (t+h,Z(t+h,t,x))] $$

and

$$\begin{aligned} S^{F_\alpha }_hu_\alpha (t,x)&=\mathbb E[u_\alpha (t+h,X(t+h,t,x))] \\&=\mathbb E[u_\alpha [t+h,\!Z(t+h,t,x)\!+\!g_\alpha (t+h,t,x))]. \end{aligned}$$

Consequently,

$$\begin{aligned} S^{F_\alpha }_hu_\alpha (t,x)&=S^{0,1}_hu_\alpha (t,x) \displaystyle +\mathbb E\int _0^1\langle D_xu_\alpha (t+h,Z(t+h,t,x)\\&\quad +\xi g_\alpha (t+h,t,x)),g_\alpha (t+h,t,x)\rangle \,d\xi , \end{aligned}$$

which implies

$$ \begin{array}{l} \displaystyle \frac{1}{h}(S^{F_\alpha }_hu_\alpha (t,x)-u_\alpha (t,x))=\frac{1}{h}(S^{0,1}_hu_\alpha (t,x)-u_\alpha (t,x))\\ \\ \displaystyle +\frac{1}{h}\mathbb E\int _0^1\langle D_xu_\alpha (t+h,Z(t+h,t,x)+\xi g_\alpha (t+h,t,x)),g_\alpha (t+h,t,x)]\,d\xi . \end{array} $$

Now, letting \(h\rightarrow 0\) and taking into account that \( \lim _{h\rightarrow 0}\frac{1}{h}\;g(t+h,t,x)=F_\alpha (t,x), \) yields (89).

Notice that from Step 1 does not follow that \(u_\alpha \in D(K_F)= \mathcal E_A([0,T]\times H\)), but we are going to show in the next step that \(u_\alpha \) belongs to the domain of the closure \(\overline{ K_F}\) of \(K_F.\) (Recall Remark 21).

Step 2. \(u_\alpha \in D(\overline{ K_F})\) and we have

$$\begin{aligned} \overline{ K_F}u_\alpha =\mathcal K^1_0u_\alpha +\langle F(t,x) ,D_xu_\alpha \rangle =f+\langle F(t,x)-F_\alpha (t,x),D_xu_\alpha \rangle . \end{aligned}$$
(91)

By Proposition 4 there is a multi-sequence \((u_{\alpha ,\mathbf {j}})\) in \(\mathcal E_A([0,T]\times H)\) such that for all \((t,x)\in [0,T]\times H\)

  1. (i)

    \(\displaystyle \lim _{\mathbf {j}\rightarrow \infty }u_{\alpha ,\mathbf {j}}(t,x)= u_\alpha (t,x),\)

  2. (ii)

    \(\displaystyle \lim _{\mathbf {j}\rightarrow \infty }K_0 u_{\alpha ,\mathbf {j}}(t,x)= \mathcal K^1_0u_\alpha (t,x), \)

  3. (iii)

    \(\displaystyle \lim _{\mathbf {j}\rightarrow \infty }D_xu_{\alpha ,\mathbf {j}}(t,x)= D_xu_\alpha (t,x),\)

  4. (iv)

    \(\displaystyle |u_{\alpha ,\mathbf {j}}(t,x)|+| K_0\, u_{\alpha ,\mathbf {j}}(t,x)|+|D_xu_{\alpha ,\mathbf {j}}(t,x)|\le C(1+|x|),\quad x\in H .\)

Then we have

$$ \begin{array}{lll} \displaystyle \lim _{\mathbf {j}\rightarrow \infty }K_{F} u_{\alpha ,\mathbf {j}}(t,x)&{}=&{}\displaystyle \lim _{\mathbf {j}\rightarrow \infty }(K_0u_{\alpha ,\mathbf {j}}(t,x)+\langle D_xu_{\alpha ,\mathbf {j}}(t,x), F(t,x)\rangle )\\ &{}=&{}\displaystyle \mathcal K^1_0u_{\alpha }(t,x)+\langle D_xu_{\alpha }(t,x),F(t,x)\rangle ,\quad \forall \;(t,x)\in [0,T]\times H. \end{array} $$

Since

$$\begin{aligned} |K_{F}\, u_{\alpha ,\mathbf {j}}(t,x)| \le C(1+|x|)+ C(1+|x|)|F(t,x)|,\quad \forall \;(t,x)\in [0,T]\times H, \end{aligned}$$
(92)

we have by Hypothesis 2

$$\begin{aligned} \displaystyle \int _{H_T}|K_{F}\, u_{\alpha ,\mathbf {j}}(t,x)|\,d\mu _t\,dt&\le \int _{H_T}[C(1+|x|)+ C(1+|x|)|F(t,x)|]\,d\mu _t\,dt \displaystyle \\&\le C'\int _{H_T} (1+|x|)V(x)\mu _t(dx)\,dt. \end{aligned}$$

By the dominated convergence theorem it follows that \(u_\alpha \in D(\overline{K_F})\) and

$$ \lim _{\mathbf {j}\rightarrow \infty }K_{F} u_{\alpha ,\mathbf {j}}= \overline{ K_{F}}\,u_\alpha =\mathcal K^1_0u_\alpha +\langle F(t,x) ,D_xu_\alpha \rangle \quad \text{ in }\;L^1([0,T]\times H;\underline{\mu }). $$

Therefore \(u_\alpha \in D(\overline{ K_F})\) and (91) is fulfilled .

Step 3. There is \(C(T)>0\) such that

$$\begin{aligned} \int _{H_T}|D_xu_\alpha |^2\,d\underline{\mu }\le C(T)\Vert f\Vert _0^2\left( 1+\int _{H_T}|F-F_\alpha |^2\,d\underline{\mu }\right) . \end{aligned}$$
(93)

Multiplying both sides of Eq. (91) by \(u_\alpha \) and integrating in \(\underline{\mu }\) over \(H_T\), yields

$$ \begin{array}{l} \displaystyle \int _{H_T}\overline{K_F}u_\alpha \,u_\alpha \,d\underline{\mu }\displaystyle =\int _{H_T}f\,u_\alpha \,d\underline{\mu }+ \int _{H_T}\langle F-F_\alpha ,D_xu_\alpha \rangle \,u_\alpha \,d\underline{\mu }. \end{array} $$

Taking into account (79), we obtain

$$\begin{aligned} \displaystyle \frac{1}{2}\int _{H_T}|C^{1/2}D_x u_\alpha |^2\,d\underline{\mu }&\le -\int _{H_T}\overline{K_F}u_\alpha \,u_\alpha \,d\underline{\mu }\displaystyle \\&=- \int _{H_T}f\,u_\alpha \,d\underline{\mu }+ \int _{H_T}\langle F_\alpha -F,D_xu_\alpha \rangle \,u_\alpha \,d\underline{\mu }. \end{aligned}$$

Now, recalling (88), we obtain

$$\begin{aligned} \begin{array}{lll} \displaystyle \frac{1}{2}\int _{H_T}|C^{1/2}D_x u_\alpha |^2\,d\underline{\mu }&{}\le &{}\displaystyle T^2\Vert f\Vert _0^2+T\Vert f\Vert _0 \int _{H_T}|F_\alpha -F|\,|D_xu_\alpha |\,d\underline{\mu }\\ \\ &{}\le &{}\displaystyle T^2\Vert f\Vert _0^2+T\Vert f\Vert _0\Vert C^{-1/2}\Vert \int _{H_T}|F_\alpha -F|\,|C^{1/2}D_xu_\alpha |\,d\underline{\mu }. \end{array} \end{aligned}$$
(94)

Now the conclusion follows by standard arguments.

Step 4.

$$ \overline{ K_F} (D( K_F))\;\text{ is } \text{ dense } \text{ in }\; L^1([0,T]\times H,\underline{\mu }). $$

In view of (91) it is enough to show that

$$\begin{aligned} \lim _{\alpha \rightarrow 0} \int _{H_T}|\langle F_\alpha -F,D_xu_\alpha \rangle |\,d\underline{\mu }=0. \end{aligned}$$
(95)

We have in fact by Hölder’s inequality, taking into account (85), (88) and (94) that,

$$ \begin{array}{l} \displaystyle \left( \int _{H_T}|\langle F_\alpha -F,D_xu_\alpha \rangle |\,d\underline{\mu }\right) ^2 \le \int _{H_T}| F_\alpha -F|^2\,d\underline{\mu }\; \int _{H_T}|D_xu_\alpha |^2\,d\underline{\mu }\\ \\ \displaystyle \le C(T)\Vert f\Vert _0^2\left( 1+\int _{H_T}|F-F_\alpha |^2\,d\underline{\mu }\right) \int _{H_T}| F_\alpha -F|^2\,d\underline{\mu }\\ \\ \displaystyle \le C(T)\Vert f\Vert _0^2\left( 1+\alpha ^2M_1\int _{H_T}V^2(x)\,d\underline{\mu }\right) \alpha ^2M_1\int _{H_T}V^2(x)\,d\underline{\mu }\rightarrow 0 \end{array} $$

as \(\alpha \rightarrow 0\). The proof is complete. \(\square \)

Example 23

We continue here Example 10 using notations and assumptions there. As we have seen, Hypothesis 3 is fulfilled in this case. To apply Theorem 22 it remains to check that (85) is fulfilled. This clearly holds by (47), thus Theorem 22 applies.

Now we assume Hypotheses 1 and 3. Then, to repeat the proof of Theorem 22 we should find an estimate for \(|(-A)^{1/2}D_xu_\alpha |^2\) rather than for \(|D_xu_\alpha |^2\) which seems to be difficult. So, we shall assume (95) and, arguing as before, we can prove

Theorem 24

Assume, besides Hypotheses 1 and 3 that

$$\begin{aligned} \lim _{\alpha \rightarrow 0} \int _{H_T}|\langle F_\alpha -F,D_xu_\alpha \rangle |\,d\underline{\mu }=0. \end{aligned}$$
(96)

Let moreover \(\zeta \in \mathcal P_{\psi }(H)\), where \(\psi \) is defined by (21). Then the Fokker–Planck equation (3) has a unique solution \(\underline{\mu }=(\mu _t)_{t\in [0,T]}\) and \(\mu _t\in \mathcal P_{\psi }(H)\) for any \(t\ge 0\).

Example 25

(Burgers equation) We consider here the setting of Example 17. Then statement (96) follows from [10, Lemma 4.1] and so Theorem 24 applies.

4.4 The Case When Tr \(C<\infty \)

Trying to repeat the proof of Theorem 22, whereas Steps 1 and 2 can be repeated without anyproblems, there is a difficulty for the proof of step 3 which requires \(C^{-1}\in L(H)\). The key point is again to prove the statement (95).

Theorem 26

Assume, besides Hypotheses 1 and 3 that

$$\begin{aligned} \lim _{\alpha \rightarrow 0} \int _{H_T}|\langle F_\alpha -F,D_xu_\alpha \rangle |\,d\underline{\mu }=0. \end{aligned}$$
(97)

Then there is a unique solution \(\underline{\mu }\) of the Fokker–Planck equation (3).

Example 27

Consider the 2D-Navier–Stokes equation from Example 18 and assume that Tr\( [(-A)C]<\infty \). Then (97) is fulfilled by [8, Eq. 5.4.8]. So, Theorem 26 applies.