Skip to main content

Manufacturing Techniques for Carbon Nanotube-Polymer Composites

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes
  • 71 Accesses

Abstract

Carbon nanotube incorporated polymer composites are very much important since they have enhanced mechanical, electrical, and tensile properties. It is found that different processing conditions, type of polymers used, and the amount of CNTs dictate the final properties of the composite material. Along with this exfoliation and uniform dispersion of the CNTs are also important factors. For the better mixing and linkage of the CNT to the polymer, two types of modifications called covalent and non-covalent modifications are suggested. In this chapter, different routes for manufacturing of CNT incorporated polymer composites such as solution mixing, in situ polymerization, melt mixing, and bulk mixing are reported. Novel techniques such as solid phase molding, electrospinning, and layer-by-layer assembly techniques also comes under the category of solution mixing technique. Methods of preparation for thermosetting as well as thermoplastic polymers are also discussed. Modified procedures were utilized for developing polymer composites with high filler dispersion and for the development of polymer composites containing aligned CNTs. Metal nanoparticle incorporated CNT polymer composites were also developed by using two methods such as direct attachment method and indirect attachment method. A full online route for developing CNT polymer composite is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin – nanotube composite. Science 265(5176):1212–1214

    Article  CAS  Google Scholar 

  • Alam J, Aslam K, Alam M, Mohan R (2015) Electroactive shape memory property of a cu-decorated CNT dispersed PLA/ESO nanocomposite. Materials (Basel) 8(9):6391–6400

    Article  CAS  Google Scholar 

  • Basheer BV, George JJ, Siengchin S, Parameswaranpillai J (2020) Polymer grafted carbon nanotubes – synthesis, properties and applications: a review. Nano-Structures & Nano-Objects 22:100429

    Article  CAS  Google Scholar 

  • Beheraa RP, Rawat P, Tiwari SK, Singh KK (2020) A brief review on the mechanical properties of carbon nanotube reinforced polymer composites. Materials Today: Proceedings 22:2109–2117

    Google Scholar 

  • Bhattacharya M (2016) Polymer nanocomposites – a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9:262

    Article  Google Scholar 

  • Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51(5):975–993

    Article  CAS  Google Scholar 

  • Chen H, Roy A, Baek JB, Zhu L, Qu J, Dai LM (2010) Controlled growth and modification of vertically aligned carbon nanotubes for multifunctional applications. Materials Science and Engineering: R:Reports 70(3–6):63–91

    Article  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  • Deng S, Lin Z, Xu B, Lin H, Du C (2015) Effects of carbon fillers on crystallization properties and thermal conductivity of poly (phenylenesulfide). Polym-Plast Technol Eng 54(10):1017–1024

    Article  CAS  Google Scholar 

  • Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing singlewalled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. Journal of Polymer Science : Part B 41:3333–3338

    CAS  Google Scholar 

  • Tibbetts G, Beetz C (1987) Mechanical-properties of vapor-grown carbon-fibers. J Phys D Appl Phys 20:292–297

    Article  CAS  Google Scholar 

  • Guo Z, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10(9):701–703

    Article  CAS  Google Scholar 

  • Hagenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/ polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 39:2964–2971

    Article  Google Scholar 

  • Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey I (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330(3–4):219–225

    Article  CAS  Google Scholar 

  • Hajializadeh S, Barikani M, Bellah SM (2017) Synthesis and characterization of multiwall carbon nanotube/waterborne polyurethane nanocomposites. Polym Int 66(7):1074–1083

    Article  CAS  Google Scholar 

  • Hata K, Futaba D, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700):1362–1364

    Article  CAS  Google Scholar 

  • Homenick CM, Lawson G, Adronov A (2007) Polymer grafting of carbon nanotubes using living free-radical polymerization. Polym Rev 47(2):265–290

    Article  CAS  Google Scholar 

  • Ibrahim SS, Ayesh AS, Rahem RAA (2017) Investigation on the physical properties of multiwalled carbon nanotube–polystyrene nanocomposites treated with 2,3-hydroxy-2-naphthoic acid. J Thermoplast Compos Mater 30(8):1–16

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199

    Article  CAS  Google Scholar 

  • Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behaviour of melt-processed multiwalled carbon nanotube/poly(methylmethacrylate) composites. Chem Phys Lett 337(1–3):43–47

    Article  CAS  Google Scholar 

  • Jon CS, Meng LY, Li D (2019) Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. Trends Anal Chem 120:115641

    Article  CAS  Google Scholar 

  • Keteklahijani YZ, Shayesteh Zeraati A, Sharif F, Roberts EPL, Sundararaj U (2020) In situ chemical polymerization of conducting polymer nanocomposites: effect of DNA-functionalized carbon nanotubes and nitrogen-doped graphene as catalytic molecular templates. Chem Eng J 389:124500

    Article  Google Scholar 

  • Kim YH, Hayashi T, Endo M, Gotoh Y, Wada N, Seiyama J (2006) Fabrication of aligned carbon nanotube-filled rubber composite. Scr Mater 54(1):31–35

    Article  CAS  Google Scholar 

  • Kimura T, Ago H, Tobita M, Ohshima S, Kyotani M, Yumura M (2002) Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater 14(19):1380–1383

    Article  CAS  Google Scholar 

  • Kumar S, Li B, Caceres S, Maguire RG, Zhong WH (2009) Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multi-walled carbon nanotubes via a facile solution processing method. Nanotechnology 20:465708

    Article  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  • Li Y, Li R, Fu X, Wang Y, Zhong W (2018) A biosurfactant for defect control: multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Compos Sci Technol 159:216–224

    Article  CAS  Google Scholar 

  • Liang GD, Tjong SC (2012) Manufacturing and electrical properties of carbon nanotube reinforced polymer composites. Synthetic Polymer-Polymer Composites:193–224

    Google Scholar 

  • Martinez-Rubi Y, Ashrafi B, Jakubinek M, Zou S, Laqua K, Barnes M, Simard B (2017) Fabrication of high content carbon nanotube polyurethane sheets with tailorable properties. ACS Appl Mater Interfaces 9(36):30840–30849

    Article  CAS  Google Scholar 

  • Mayoral B, Lopes J, McNally T (2014) Influence of processing parameters during small-scale batch melt mixing on the dispersion of MWCNTs in a poly-(propylene) matrix. Macromolecular Materials Engineering 299(5):609–621

    Article  CAS  Google Scholar 

  • Mecklenburg M, Mizushima D, Ohtake N, Bauhofer W, Fiedler B, Schulte K (2015) On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned MWCNT and randomly oriented CNT epoxy composites. Carbon 91:275–290

    Article  CAS  Google Scholar 

  • Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszka J (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105:158–168

    Article  CAS  Google Scholar 

  • Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  • Moniruzzaman R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chemical Physical Letters 330(3–4):219–225

    Google Scholar 

  • Patel KD, Kim TH, Mandakhbayar N, Singh RK, Jang JH, Lee JH, Kim HW (2020) Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomater 108:97–110

    Article  CAS  Google Scholar 

  • Ma P, Tang J, Kim J (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT polymer composites. Carbon 46:1497–1505

    Article  CAS  Google Scholar 

  • Peng H (2008) Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency and excellent conductivity. J Am Chem Soc 130(1):42–43

    Article  CAS  Google Scholar 

  • Pierard N, Fonseca A, Konya Z, Willems I, van Tendeloo G, Nagy JB (2001) Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett 335(1–2):1–8

    Article  CAS  Google Scholar 

  • Podsiadlo P, Shim BS, Kotov NA (2009) Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films. Coord Chem Rev 253:2835–2851

    Article  CAS  Google Scholar 

  • Potschke P, Fornes TD, Paul DR (2002) Rheological behaviour of multiwalled carbon nanotubes/polycarbonate composites. Polymer 43:3247–3255

    Article  CAS  Google Scholar 

  • Poulin P, Vigolo B, Launois P (2002) Films and fibres of oriented single wall nanotubes. Carbon 40(10):1741–1749

    Article  CAS  Google Scholar 

  • Pyo M, Bae EG, Cho Y, Jung YS, Zong K (2010) Composites of low bandgap conducting polymer-wrapped MWNT and poly(methyl methacrylate) for low percolation and high transparency. Synth Met 160(19–20):2224–2227

    Article  CAS  Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl Phys Lett 76(20):2868–2870

    Article  CAS  Google Scholar 

  • Ravanbakhsh H, Bao G, Latifi N, Mongeau LG (2019) Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity. Material Science and Engineering: C 103:109861

    CAS  Google Scholar 

  • Riggs JE, Guo Z, Carroll DL, Sun YP (2000) Strong luminescence of solubilized carbon nanotubes. Journal of American Chemical Society 122(24):5879–5880

    Article  CAS  Google Scholar 

  • Ghose S, Watson KA, Sun KJ, Criss JM, Siochi EJ, Connell JW (2006) High temperature resin carbon nanotube composite fabrication. Compos Sci Technol 66(13):1995–2002

    Article  CAS  Google Scholar 

  • Sato Y, Hasegawa K, Nodasaka Y, Motomiya K, Namura M, Ito N, Jeyadevan B, Scotti K, Dunand DC (2018) Freeze casting—a review of processing, microstructure and properties via the open data repository. Prog Mater Sci 94:243–305

    Article  Google Scholar 

  • Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11(11):937–941

    Article  CAS  Google Scholar 

  • Shamsi R, Mahyari M, Koosha M (2017) Synthesis of CNT-polyurethane nanocomposites using ester-based polyols with different molecular structure: mechanical, thermal, and electrical properties. J Appl Polym Sci 134(10):44567

    Article  Google Scholar 

  • Shin MK, Oh J, Lima M, Kozlov ME, Kim SJ, Baughman RH (2010) Elastomeric conductive composites based on carbon nanotube forests. Adv Mater 22:2663–2667

    Article  CAS  Google Scholar 

  • Singh KK, Rawat P (2018) Mechanical behaviour of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings. Materials Research Express 5(5):055012

    Article  Google Scholar 

  • Skakalova V, Dettlaff-Weglikowska U, Roth S (2005) Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met 152(1–3):349–352

    Article  CAS  Google Scholar 

  • Socher R, Krause B, Müller MT, Boldt R, Pӧtschke P (2012) The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 53(2):495–504

    Article  CAS  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites:chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  CAS  Google Scholar 

  • Stoller MD, Park S, Zhu Y (2008) Graphene-based Ultracapacitors. Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  • Szymczyk A (2012) Poly(trimethylene terephthalate-block-tetramethylene oxide) elastomer /singlewalledcarbon nanotubes nanocomposites: synthesis, structure, and properties. J Appl Polym Sci 126(3):796–807

    Article  CAS  Google Scholar 

  • Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  • Treacy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  CAS  Google Scholar 

  • Tzitzios VK, Georgakilas V, Oikonomou E, Karakassides M, Petridis D (2006) Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media. Carbon 44(5):848–853

    Article  CAS  Google Scholar 

  • Verge P, Peeterbroeck S, Bonnaud L, Dubois P (2010) Investigation on the dispersion of carbon nanotubes in nitrile butadiene rubber: role of polymer-to-filler grafting reaction. Compos Sci Technol 70:1453–1459

    Article  CAS  Google Scholar 

  • Wang D, Song PC, Liu CC, Wu W, Fan SS (2008) Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7):075609

    Article  Google Scholar 

  • Weisenberger MC, Grulke EA, Jacques D, Rantell AT, Andrewsa R (2003) Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J Nanosci Nanotechnol 3(6):535–539

    Article  CAS  Google Scholar 

  • Wu G, Zhan H, Shi QQ, Wang JN (2020) Full on-line preparation of polymer composites reinforced with aligned carbon nanotubes. Compos Sci Technol 200:108472

    Article  CAS  Google Scholar 

  • Wu H, Jia L, Yan D, Gao J, Zhang X, Ren P, Li Z (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94

    Article  CAS  Google Scholar 

  • Xia H, Wang Q, Li K, Hu GH (2004) Preparation of CNT/polypropylene composite powder with a solid state mechanochemical pulverization process. J Appl Polym Sci 93(1):378–386

    Article  CAS  Google Scholar 

  • Xie S, Li W, Pan Z, Chang B, Sun L (2000) Mechanical and physical properties on carbon nanotube. J Phys Chem Solids 61(7):1153–1158

    Article  CAS  Google Scholar 

  • Yu MF, Lourie O, Dyer MJ, Molani K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rosemary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rosemary, M.J. (2021). Manufacturing Techniques for Carbon Nanotube-Polymer Composites. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics