1 The Approach

Consider the following stochastic minimization problem: minimize the function

$$\displaystyle \begin{aligned} F\left(x\right)=\mathbb{E} f\left(x,\xi_0 \right),\quad x\in X,\end{aligned} $$
(1)

where \(\left \{\xi _t,\, t\in {\mathbb R}\right \}\) is a stationary in the narrow sense stochastic process with continuous trajectories, defined on a complete probability space \(\left (\varOmega ,\mathcal {G},P\right )\) with values in some metric space \(\left (Y,\rho \right )\), where X is a non-empty compact subset of \({\mathbb R}\), and \(f:X\times Y\to {\mathbb R}\) is a continuous function.

Approximate the above problem by the following one: minimize the function

$$\displaystyle \begin{aligned} F_{T} \left(x\right)=\frac{1}{T} \int _{0}^{T}f\left(x,\xi_t\right)dt ,\end{aligned} $$

where \(\left \{\xi _t,0\le t\le T\right \}\) are the observations of the process ξ t , T > 0.

Clearly, there exists the minimum point \(x_{T} =x_{T} \left (\omega \right )\), which is a measurable function.

Suppose that

$$\displaystyle \begin{aligned} \mathbb{E} \max \left\{\left|f\left(x,\xi_0\right)\right|,x\in X\right\}<\infty .\end{aligned} $$

Then the function (1) is continuous, and has at least one minimum point x 0. Let us assume that this point is unique.

Theorem 1 ([1])

Let \(\left \{\xi _t,\; t\in R\right \}\) be a stationary in the narrow sense random process, defined on a probability space \(\left (\varOmega ,\Im ,P\right )\) , and assume that there exists the unique point x 0 ∈ X which is the unique minimum point of the function F(x).

Then for all T > 0 and ω  Ω′, \(P\left (\varOmega '\right )=1\) , there exists at least one vector x T  ∈ X, on which the minimal value of the function F T (x) is attained.

Moreover, for each T > 0 the function x T is \(\mathcal {G}^{\prime }_{T} \) -measurable, where \(\mathcal {G}^{\prime }_{T} =\mathcal {G}_{T} \bigcap \varOmega '\) , \(\mathcal {G}_{T} =\sigma \left \{\xi _t,\; 0\le t\le T\right \}\).

Then

$$\displaystyle \begin{aligned} P\left\{\mathop{\lim }_{T\to \infty } x_{T} =x_{0} \right\}=1, \quad \quad P\left\{\mathop{\lim }_{T\to \infty } F_{T} (x_{T} )=F(x_{0} )\right\}=1. \end{aligned} $$

Now we study the probability of large deviations of x T and the minimal value F T for \(x_{0} ,F\left (x_{0} \right )\).

For any y we can assume that \(f\left (\circ ,y\right )\) belongs to the space of continuous functions \(C\left (X\right )\). Suppose that there exists such compact convex \(K\subset C\left (X\right )\) that

$$\displaystyle \begin{aligned} f\left(\circ ,y\right)-F\left(\circ \right)\in K,\quad y\in Y. \end{aligned}$$

Then \(F_{T} \left (\circ \right )-F\left (\circ \right )\in K\).

In what follows F T  − F is considered as random elements on \(\left (\varOmega ,\mathcal {G},P\right )\) with values in the set K.

We use the well-known results from function analysis.

Definition 1 ([2])

Let \(\left (V,\left \| \circ \right \| \right )\) be a normed linear space, \(B\left (x,r\right )\) be a closed ball of radius r with center in x; \(f\_ :V\to \left [-\infty ,+\infty \right ]\) is some function, and x f is its minimum point on V. The improved function ψ for f in the point x f is a monotone non-decreasing function, such that \(\psi :\left [0,+\infty \right )\to \left [0,+\infty \right ],\psi \left (0\right )=0,\) and there exists r > 0, for which for any \(x\in B\left (x_{f} ,r\right )\) we have

$$\displaystyle \begin{aligned}f\left(x\right)\ge f\left(x_{f} \right)+\psi \left(\left\| x-x_{f} \right\| \right).\end{aligned}$$

Let V 0 ⊂ V . Define

$$\displaystyle \begin{aligned} \delta _{V_{0} } \left(x\right)= \begin{cases} 0,& x\in V_{0}, \\ +\infty ,& x\notin V_{0}. \end{cases} \end{aligned}$$

Theorem 2 ([2])

Let \(\left (V,\left \| \circ \right \| \right )\) be a linear normed space, V 0 ⊂ V is closed, and \(f_{0} ,g_{0} :V\to {\mathbb R}\) are continuous on V functions. Suppose that

$$\displaystyle \begin{aligned}\varepsilon =\sup \left\{\left|f_{0} \left(x\right)-g_{0} \left(x\right)\right|,\quad x\in V_{0} \right\}.\end{aligned}$$

Let \(f,g:V\to \left (-\infty ,+\infty \right ]:\)

$$\displaystyle \begin{aligned}f =f_{0} +\delta _{V_{0} } ,\quad g=g_{0} +\delta _{V_{0} } . \end{aligned}$$

Then

$$\displaystyle \begin{aligned}\left|\inf \left\{f\left(x\right),\,\, x\in V\right\}-\inf \left\{g\left(x\right),\,\, x\in V\right\}\right|\le \varepsilon .\end{aligned}$$

Let x f be the minimum point of f on V, ψ be the improving function for f at the point x f with coefficient r. If ε is small enough such that

$$\displaystyle \begin{aligned}\psi \left(\left\| x-x_{f} \right\| \right)\le 2\varepsilon \quad \Longrightarrow \quad \left\| x-x_{f} \right\| \le r,\end{aligned} $$

then for any \(x_{g} \in \arg \min \left \{g\left (x\right ),x\in B\left (x_{f} ,r\right )\right \}\) we have \(\psi \left (\left \| x_{f} -x_{g} \right \| \right )\le 2\varepsilon .\) For convex and strictly increasing on \(\left [0,r\right ]\) function ψ,

$$\displaystyle \begin{aligned}\psi ^{-1} \left(2\varepsilon \right)\le r \quad \Longrightarrow \quad \left\| x_{f} -x_{g} \right\| \le \psi ^{-1} \left(2\varepsilon \right)\end{aligned}$$
$$\displaystyle \begin{aligned}\forall x_{g} \in \arg \min \left\{g\left(x\right),\,\, x\in B\left(x_{f} ,r\right)\right\}.\end{aligned} $$

We need some statements from the large deviations theory.

Theorem 3 ([3, p. 53])

Let μ ε , ε > 0 be a family of probability measures on a compact closed subspace H of a separable Banach space E. Suppose that there exists

$$\displaystyle \begin{aligned}\varLambda \left(\lambda \right)\equiv \mathop{\lim }_{\varepsilon \to 0} \varepsilon \varLambda _{\mu _{\varepsilon } } \left(\frac{\lambda }{\varepsilon } \right)\end{aligned} $$

for any λ  E —the dual space of E, where

$$\displaystyle \begin{aligned}\varLambda _{\mu } \left(\lambda \right)=\ln \left(\int _{E}\exp \left\{\left\langle \lambda ,x\right\rangle \right\}\mu \left(dx\right) \right)\end{aligned} $$

for any probability measure μ on E, and \(\left \langle \lambda ,x\right \rangle \) is the duality relation. Define

$$\displaystyle \begin{aligned}\varLambda^*\left(q\right)=\sup \left\{\left\langle \lambda ,q\right\rangle -\varLambda \left(\lambda \right),\lambda \in E^*\right\},\quad q\in H.\end{aligned} $$

Then Λ is non-negative, convex, lower semi-continuous, and for any compact set A  H

$$\displaystyle \begin{aligned}\overline{\lim }\left\{\varepsilon \ln \left(\mu _{\varepsilon } \left(A\right)\right),\varepsilon \to 0\right\}\le -\inf \left\{\varLambda^*\left(q\right),\,\, q\in A\right\}.\end{aligned}$$

Definition 2 ([3])

Let Σ be a separable Banach space, \(\left \{\xi _t,t\in {\mathbb R}\right \}\) is a stationary in the narrow sense stochastic process on \(\left (\varOmega ,\mathcal {G},P\right )\) with values in Σ. Denote \(B_{t_{1} t_{2} } =\sigma \left \{\xi _t,t_{1} \le t\le t_{2} \right \}.\) For τ > 0 the random variables η 1, …, η p , p ≥ 2, are called τ-measurably separated, if

$$\displaystyle \begin{aligned}-\infty \le t_{1} \le s_{1} <t_{2} \le s_{2} <\ldots<t_{p} \le s_{p} \le +\infty; \quad t_{j} -s_{j-1} \ge \tau ,\end{aligned} $$

where η j is \(B_{t_{j} s_{j} } \)–measurable.

Definition 3 ([3])

A stochastic process \(\left \{\xi _t\right \}\) from Definition 2 is said to satisfy Hypothesis (H-1) of hypermixing, if there exist \(\tau _{0} \in {\mathbb N}\cup \left \{0\right \}\) and a non-increasing \(\alpha :\left \{\tau >\tau _{0} \right \}\to \left [1,+\infty \right )\), such that

$$\displaystyle \begin{aligned} \mathop{\lim }_{\tau \to \infty } \alpha \left(\tau \right)=1, \end{aligned}$$
$$\displaystyle \begin{aligned} \left\| \eta _{1} \times \ldots\times \eta _{p} \right\| _{L^{1} } \le \prod _{j=1}^{p}\left\| \eta _{j} \right\| _{L^{\alpha \left(\tau \right)} } \end{aligned} $$
(H-1)

for any p ≥ 2, τ > τ 0, η 1, …, η p τ-measurably separated,

$$\displaystyle \begin{aligned}\left\| \eta \right\| _{L^{r} } =\left(\mathbb{E} \left\{\left|\eta \right|{}^{r} \right\}\right)^{1/r} .\end{aligned}$$

Let X be a compact subset of \({\mathbb R}.\) It is known (cf. [4]), that \(\left (C\left (X\right )\right )^*=M\left (X\right )\), where M(X) is a collection of signed measures on X, and also for any \(g\in C\left (X\right ),Q\in M \left (X\right )\)

$$\displaystyle \begin{aligned} \left\langle g,Q\right\rangle =\int _{X}g\left(x\right)Q\left(dx\right). \end{aligned}$$

We need the following auxiliary statement.

Theorem 4

Let \(\left \{\xi _t,t\in {\mathbb R}\right \}\) be a stationary in the narrow sense ergodic stochastic process with continuous trajectories, which satisfies the hyper-mixing hypothesis (H-1) on \(\left (\varOmega ,\mathcal {G},P\right ),\) with values in a compact convex set \(K\subset C\left (X\right )\) , ξ t (x) ⊂ K and \(\mathcal {G}_t\) -measurable. Then for any measure \(Q\in M \left (X\right )\) there exists

$$\displaystyle \begin{aligned}\varLambda \left(Q\right)=\mathop{\lim }_{T\to \infty } \frac{1}{T} \ln \left(\mathbb{E} \exp \left\{\int _{X}\int _{0}^{T}\xi_t(x)dtQ\left(dx\right) \right\}\right),\end{aligned}$$

and for any closed A  K

$$\displaystyle \begin{aligned}\overline{\lim }\left\{\frac{1}{T} \ln P\left\{\frac{1}{T} \int _{0}^{T}\xi_tdt \in A\right\},T\to \infty \right\}\le -\inf \left\{\varLambda^*\left(g\right),g\in A\right\},\end{aligned}$$

where \(\varLambda ^*\left (g\right )=\sup \left \{\int _{X}g\left (x\right )Q\left (dx\right ) -\varLambda \left (Q\right ),Q\in M \left (X\right )\right \}\) is a non-negative convex lower semi-continuous function.

Proof

Fix \(Q\in M \left (X\right ).\) Let τ 0 be a constant from the hyper-mixing condition, τ > τ 0, S > τ, S < T. Then

$$\displaystyle \begin{aligned}T=N_{T} S+r_{T} ,\quad N_{T} \in {\mathbb N},\quad r_{T} <S.\end{aligned}$$

Define

$$\displaystyle \begin{aligned} \begin{aligned}{} f_{T} &=\ln \mathbb{E} \exp \left\{\int _{X}\int _{0}^{T}\xi_t(x)dtQ\left(dx\right) \right\},\\ c&=\max \left\{\left\| g\right\| ,g\in K\right\},\quad \left\| g\right\| =\max \left\{\left|g\left(x\right)\right|,x\in X\right\}, \quad g\in C\left(X\right). \end{aligned} \end{aligned} $$
(2)

Denote (cf. also [4])

$$\displaystyle \begin{aligned}v\left(Q,X\right)=\sup \left\{\sum _{i=1}^{k}\left|Q\left(E_{i} \right)\right| ,E_{i} \cap E_{j} =\emptyset ,i\ne j,E_{i} \in B\left(X\right),k\in {\mathbb N}\right\}{<}\,\infty ,Q\in M \left(X\right).\end{aligned} $$

We have

$$\displaystyle \begin{aligned}f_{T} =\ln \mathbb{E} \exp \left\{\int _{X}\left(\sum _{j=0}^{N_{T} -1}\int _{jS}^{\left(j+1\right)S-\tau }\xi_t(x)dt +\right. \right. \end{aligned}$$
$$\displaystyle \begin{aligned} +\sum _{j=0}^{N_{T} -1}\int _{\left(j+1\right)S-\tau }^{\left(j+1\right)S}\xi_t(x)dt +\int _{N_{T} S}^{T}\xi_t(x)dt \left. \right)Q\left(dx\right)\left. \right\}. \end{aligned} $$
(3)

By (2),

$$\displaystyle \begin{aligned}\max \left\{\left|\xi_t(x)\right|,\, x\in X\right\}\le c.\end{aligned}$$

Therefore, for all ω

$$\displaystyle \begin{aligned} \left|\int _{X}\int _{0}^{T}\xi_t(x)dtQ\left(dx\right) \right|\le cTv\left(Q,X\right). \end{aligned} $$
(4)

It follows from (4) that for any ω

$$\displaystyle \begin{aligned} \sum _{j=0}^{N_{T} -1}\int _{X}\int _{\left(j+1\right)S-\tau }^{\left(j+1\right)S}\xi_t(x)dtQ\left(dx\right) \le cv\left(Q,X\right)\tau N_{T} , \end{aligned} $$
(5)
$$\displaystyle \begin{aligned} \int _{X}\int _{N_{T} S}^{T}\xi_t(x) dtQ\left(dx\right) \le cr_{T} v\left(Q,X\right). \end{aligned} $$
(6)

For any ω denote

$$\displaystyle \begin{aligned}A_{1} =\sum _{j=0}^{N_{T} -1}\int _{X}\int _{jS}^{\left(j+1\right)S-\tau }\xi_t(x)dtQ\left(dx\right) ,\end{aligned}$$
$$\displaystyle \begin{aligned}A_{2} =\sum _{j=0}^{N_{T} -1}\int _{X}\int _{\left(j+1\right)S-\tau }^{\left(j+1\right)S}\xi_t(x)dtQ\left(dx\right) ,\end{aligned}$$
$$\displaystyle \begin{aligned}A_{3} =\int _{X}\int _{N_{T} S}^{T}\xi_t(x)dtQ\left(dx\right) .\end{aligned}$$

By (5) and (6), for any ω

$$\displaystyle \begin{aligned} \begin{aligned}{} \exp \big(A_{1}& +A_{2} +A_{3} \big)=\exp A_{1} \exp A_{2} \exp A_{3}\\ &\le \exp A_{1} \exp \left\{cv\left(Q,X\right)\tau N_{T} \right\}\exp \left\{cv\left(Q,X\right)r_{T} \right\}. \end{aligned} \end{aligned} $$
(7)

Further,

$$\displaystyle \begin{aligned}\exp A_{1} =\prod _{j=0}^{N_{T} -1}\exp \left\{\int _{X}\int _{jS}^{\left(j+1\right)S-\tau }\xi_t(x)dtQ\left(dx\right) \right\} ,\omega \in \varOmega.\end{aligned}$$

We have

$$\displaystyle \begin{aligned}\mathbb{E} \prod _{j=0}^{N_{T} -1}\exp \left\{\int _{X}\int _{jS}^{\left(j+1\right)S-\tau }\xi_t(x)dtQ\left(dx\right) \right\} \end{aligned}$$
$$\displaystyle \begin{aligned} \le \prod _{j=0}^{N_{T} -1}\left(\mathbb{E} \left\{\left(\exp \int _{X}\int _{jS}^{\left(j+1\right)S-\tau }\xi_t(x)dtQ\left(dx\right) \right)^{\alpha \left(\tau \right)} \right\}\right)^{1/\alpha \left(\tau \right)}. \end{aligned} $$
(8)

Inequality (8) follows from the hyper-mixing hypothesis (H-1). Further, due to the stationarity of ξ t ,

$$\displaystyle \begin{aligned}\mathbb{E} \exp \left\{\alpha \left(\tau \right)\int _{X}\int _{jS}^{\left(j+1\right)S-\tau }\xi_t(x)dtQ\left(dx\right) \right\}\end{aligned}$$
$$\displaystyle \begin{aligned} =\mathbb{E} \exp \left\{\alpha \left(\tau \right)\int _{X}\int _{0}^{S-\tau }\xi_t(x)dtQ\left(dx\right) \right\} \end{aligned} $$
(9)

for \(j=\overline {0,N_{T} -1}\). From (8), (9) we have

$$\displaystyle \begin{aligned}\mathbb{E} \exp A_{1} \le \left(\mathbb{E} \exp \left\{\alpha \left(\tau \right)\int _{X}\int _{0}^{S-\tau }\xi_t(x)dtQ\left(dx\right) \right\}\right)^{\frac{N_{T} }{\alpha \left(\tau \right)} } .\end{aligned}$$

By (3),

$$\displaystyle \begin{aligned}\begin{aligned}{} f_{T}& \le cv\left(Q,X\right)\tau N_{T}+cv\left(Q,X\right)r_{T} +\frac{N_{T} }{\alpha \left(\tau \right)} \ln \mathbb{E} \exp \left\{\alpha \left(\tau \right)\int _{X}\int _{0}^{S-\tau }\xi_t(x)dtQ\left(dx\right) \right\}\\ &=cv\left(Q,X\right)\tau N_{T} +cv\left(Q,X\right)r_{T} \\ &\quad +\frac{N_{T} }{\alpha \left(\tau \right)} \ln \mathbb{E} \exp \left\{\left(\alpha \left(\tau \right)-1\right)\int _{X}\int_{0}^{S-\tau }\xi_t(x)dtQ\left(dx\right) +\int_{X}\int _{0}^{S-\tau }\xi_t(x)dtQ\left(dx\right) \right\} \\ &\le cv\left(Q,X\right)\tau N_{T} +cv\left(Q,X\right)r_{T} +\frac{N_{T} }{\alpha \left(\tau \right)} \left(\alpha \left(\tau \right)-1\right)\left(S-\tau \right)cv\left(Q,X\right)\\ &\quad +\frac{N_{T} }{\alpha \left(\tau \right)} \ln \mathbb{E} \exp \int_{X}\int_{0}^{S-\tau }\xi_t(x)dtQ\left(dx\right)\\ &\le cv\left(Q,X\right)\tau N_{T} +cv\left(Q,X\right)r_{T} +\frac{N_{T} }{\alpha \left(\tau \right)} \left(\alpha \left(\tau \right)-1\right)\left(S-\tau \right)cv\left(Q,X\right)\\ &\quad +\frac{N_{T} }{\alpha \left(\tau \right)} \ln \mathbb{E} \exp \int _{X}\left(\int _{0}^{S}\xi_t(x)dt -\int _{S-\tau }^{S}\xi_t(x)dt \right)Q\left(dx\right)\\ &\le cv\left(Q,X\right)\tau N_{T} +cv\left(Q,X\right)r_{T} +\frac{N_{T} }{\alpha \left(\tau \right)} \left(\alpha \left(\tau \right)-1\right)\left(S-\tau \right)cv\left(Q,X\right)\\ &\quad +\frac{N_{T} }{\alpha \left(\tau \right)} cv\left(Q,X\right)\tau +\frac{N_{T} }{\alpha \left(\tau \right)} \ln \mathbb{E} \exp \int _{X}\int _{0}^{S}\xi_t(x)dtQ\left(dx\right)\\ &=cv\left(Q,X\right)\tau N_{T} +cv\left(Q,X\right)r_{T} +\frac{N_{T} }{\alpha \left(\tau \right)} \left(\alpha \left(\tau \right)-1\right)\left(S-\tau \right)cv\left(Q,X\right)\\ &\quad +\frac{N_{T} }{\alpha \left(\tau \right)} cv\left(Q,X\right)\tau +\frac{N_{T} }{\alpha \left(\tau \right)} f_{S}. \end{aligned}\end{aligned} $$
(10)

By (10),

$$\displaystyle \begin{aligned}\frac{f_{T} }{T} &\le\frac{2cv\left(Q,X\right)\tau N_{T} }{T} +\frac{cv\left(Q,X\right)r_{T} }{T} +\frac{\left(\alpha \left(\tau \right)-1\right)N_{T} \left(S-\tau \right)cv\left(Q,X\right)}{T} +\frac{N_{T} }{\alpha \left(\tau \right)} \frac{f_{S} }{T}\\ &\le \frac{2cv\left(Q,X\right)\tau N_{T} }{N_{T} S} +\frac{cv\left(Q,X\right)r_{T} }{T} +\frac{\left(\alpha \left(\tau \right)-1\right)N_{T} Scv\left(Q,X\right)}{N_{T} S} +\frac{N_{T} f_{S} }{\alpha \left(\tau \right)N_{T} S}\\ &=\frac{2cv\left(Q,X\right)\tau }{S} +\frac{cv\left(Q,X\right)r_{T} }{T} +\left(\alpha \left(\tau \right)-1\right)cv\left(Q,X\right)+\frac{f_{S} }{\alpha \left(\tau \right)S}. \end{aligned} $$

Then

$$\displaystyle \begin{aligned}\overline{\lim_{T\to\infty} }\frac{f_{T} }{T} \le \frac{2cv\left(Q,X\right)\tau }{S} +\left(\alpha \left(\tau \right)-1\right)cv\left(Q,X\right)+\frac{f_{S} }{\alpha \left(\tau \right)S} .\end{aligned}$$

Letting S →, we derive

$$\displaystyle \begin{aligned}\overline{\lim_{T\to\infty} }\frac{f_{T} }{T}\le \left(\alpha \left(\tau \right)-1\right)cv\left(Q,X\right)+\frac{1}{\alpha \left(\tau \right)} \underset{{S\to\infty}}{\underline{\lim}}\frac{f_{S} }{S} .\end{aligned}$$

Passing to the limit as τ →, we get

$$\displaystyle \begin{aligned}\overline{\lim_{T\to\infty} }\frac{f_{T} }{T}\le \underset{{S\to\infty}}{\underline{\lim}}\frac{f_{S} }{S}.\end{aligned}$$

Therefore,

$$\displaystyle \begin{aligned}\mathop{\lim }_{T\to \infty } \frac{f_{T} }{T} =\varLambda \left(Q\right).\end{aligned}$$

We use Theorem 3. We have

$$\displaystyle \begin{aligned}H=K,\quad E=C\left(X\right),\quad E^*=\mathbb{E} \left(X\right),\quad \left\langle Q, g\right\rangle =\int _{X}g\left(x\right)Q\left(dx\right) ,\quad \varepsilon =\frac{1}{T} .\end{aligned}$$

Further, μ ε  = μ 1/T is the probability measure on K, defined by the distribution \(\frac {1}{T} \int _{0}^{T}\xi _tdt\). We get

$$\displaystyle \begin{aligned} \begin{aligned}{} \mathop{\lim }_{\varepsilon \to 0} \varepsilon \varLambda _{\mu _{\varepsilon } } \left(\frac{Q}{\varepsilon } \right)&=\mathop{\lim }_{T\to \infty } \frac{1}{T} \ln \int _{K}\exp \left\{\int _{X}g\left(x\right)TQ\left(dx\right) \right\}\mu _{1/T} \left(dg\right)\\ &=\mathop{\lim }_{T\to \infty } \frac{1}{T} \ln \mathbb{E} \exp \int _{X}\int _{0}^{T}\xi_t(x)dtTQ\left(dx\right) =\mathop{\lim }_{T\to \infty } \frac{f_{T} }{T} \\ &=\varLambda \left(Q\right). \end{aligned} \end{aligned} $$
(11)

By (11), the proof follows from Theorem 2.

Let us come back to problem (1).

Theorem 5

Suppose that the process ξ t satisfies the hyper-mixing hypothesis (H-1). Then for any ε > 0

$$\displaystyle \begin{aligned}\overline{\lim_{T\to\infty}} \frac{1}{T} \ln P\left\{\left\| F_{T} -F\right\| \ge \varepsilon \right\}\le -\inf \left\{I\left(z\right),\,\,z\in A_{\varepsilon } \right\},\end{aligned}$$

where \(I\left (z\right )=\varLambda ^*\left (z\right )=\sup \left \{\int _{X}z\left (x\right )Q\left (dx\right ) -\varLambda \left (Q\right ),\,\,Q\in M \left (X\right )\right \}\) is a non-negative lower semi-continuous convex function,

$$\displaystyle \begin{aligned}\varLambda \left(Q\right)=\mathop{\lim }_{T\to \infty } \frac{1}{T} \ln \mathbb{E}\Big\{ \exp \int _{X}\int _{0}^{T}\left(f\left(x,\xi_t\right)-F\left(x\right)\right)dt Q\left(dx\right)\Big\} ,\end{aligned}$$
$$\displaystyle \begin{aligned}A_{\varepsilon } =\left\{z\in K:\left\| z\right\| \ge \varepsilon \right\}.\end{aligned}$$

Proof

Note that A ε is a closed subspace of K. The process

$$\displaystyle \begin{aligned}\zeta \left(t\right)=f\left(\circ ,\xi_t\right)-F\left(\circ \right),\quad t\in {\mathbb R},\end{aligned}$$

taking values in K, is a measurable function of ξ t and hence, satisfies the conditions of Theorem 4. Therefore, the statement of the theorem follows from Theorem 4. Theorem is proved.

Theorem 6

Suppose that the conditions of Theorem 5 are satisfied. Then

$$\displaystyle \begin{aligned} \begin{aligned}{} \overline{\lim_{T\to\infty}} \frac{1}{T} \ln P\left\{\left|\mathop{\min }_{x\in X} F\left(x\right)-\mathop{\min }_{x\in X} F_{T} \left(x\right)\right|\ge \varepsilon \right\} \le -\inf \left\{I\left(z\right),z\in A_{\varepsilon } \right\}, \end{aligned} \end{aligned} $$
(12)

where \(I\left (\circ \right ),A_{\varepsilon } \) is defined in Theorem 5.

Suppose that there exists an improving function ψ for F at the point x 0 with some constant r. Let x T be the minimum point of F T on the set \(B\left (x_{0} ,r\right ).\) If ε is small enough, such that the condition

$$\displaystyle \begin{aligned} \psi \left(\left|x-x_{0} \right|\right)\le 2\varepsilon \quad \Rightarrow \quad \left|x-x_{0} \right|\le r, \end{aligned}$$

is satisfied, then

$$\displaystyle \begin{aligned} \overline{\lim_{T\to\infty}} \frac{1}{T} \ln P\left\{\psi \left(\left|x_{T} -x_{0} \right|\right)\ge 2\varepsilon \right\} \le -\inf \left\{I\left(z\right),z\in A_{\varepsilon } \right\}. \end{aligned} $$
(13)

Proof

By Theorem 2, for all ω

$$\displaystyle \begin{aligned} \left|\min \left\{F\left(x\right),x\in X\right\}-\min \left\{F_{T} \left(x\right),x\in X\right\}\right|\le \left\| F_{T} -F\right\| . \end{aligned}$$

Then by Theorem 5 we derive (12).

Further, by Theorem 2, for any ω

$$\displaystyle \begin{aligned} \psi \left(\left|x_{0} -x_{T} \right|\right)\le 2\left\| F_{T} -F\right\| , \end{aligned}$$

and by Theorem 5 we get (13). Theorem is proved.

Remark 1

If, besides of conditions of Theorem 6, the function ψ is convex an strictly increasing on \(\left [0,r\right ],\) then we get

$$\displaystyle \begin{aligned} \overline{\lim_{T\to\infty}} \frac{1}{T} \ln P\left\{\left|x_{T} -x_{0} \right|\ge \psi ^{-1} \left(2\varepsilon \right)\right\} \le -\inf \left\{I\left(z\right),z\in A_{\varepsilon } \right\}. \end{aligned} $$
(14)

Indeed, by Theorem 2, for all ω

$$\displaystyle \begin{aligned}\left|x_{T} -x_{0} \right|\le \psi ^{-1} \left(2\left\| F_{T} -F\right\| \right).\end{aligned}$$

Then

$$\displaystyle \begin{aligned}P\left\{\left|x_{T} -x_{0} \right|\ge \psi ^{-1} \left(2\varepsilon \right)\right\} \end{aligned}$$
$$\displaystyle \begin{aligned}\le P\left\{\psi ^{-1} \left(2\left\| F_{T} -F\right\| \right)\ge \psi ^{-1} \left(2\varepsilon \right)\right\}=P\left\{\left\| F_{T} -F\right\| \ge \varepsilon \right\},\end{aligned}$$

and (14) follows from Theorem 5.

2 Non-stationary Version

In this part we consider the non-stationary version of the method of empirical means with continuous time observations.

Let {ξ(t), t ∈ [0, T]} be a strictly stationary random process defined on a probability space \((\varOmega , \mathcal {F}, \mathbb {P})\) with values in some metric space (Y, ), \(X=[a,b]\subset \mathbb {R}\), and the function \(h(t,x,y): (0,\infty )\times X\times Y\mapsto \mathbb {R}\) is convex with respect to the second variable and measurable with respect to the third one.

Consider the following problem:

$$\displaystyle \begin{aligned} \min_{x\in X} \Big\{ F_T(x)\equiv F_T(x,\xi)= \frac{1}{T} \int_0^T h(t,x,\xi(t)) dt\Big\}. \end{aligned} $$
(15)

Assume that the following conditions are satisfied.

  1. 1.

    \(\mathbb {E} |h(t,x,\xi (0)|<\infty \) for all t > 0, x ∈ X;

  2. 2.

    For all x ∈ X there exists

    $$\displaystyle \begin{aligned} F(x)= \lim_{T\to\infty} F_T(x); \end{aligned}$$
  3. 3.

    There exists \(\bar x\in X\), c > 0 such that

    $$\displaystyle \begin{aligned} F(x) \geq F(\bar x) + c|x-\bar x| \quad \text{for all} \ x\in X. \end{aligned}$$

From condition 3 it follows that there exists a unique solution to the minimization problem

$$\displaystyle \begin{aligned} \min_{x\in X} F(x), \end{aligned}$$

and this solution is achieved at some point \(\bar x\). Besides, for any T and w the function F T (x) = F T (x, w) is convex, and for any T the function \(\mathbb {E} F_T(x)\) is convex.

For any function g :→ define

$$\displaystyle \begin{aligned} g_+(x)= \lim_{\varDelta \to 0} \frac{g(x+\varDelta)-g(x)}{\varDelta}, \end{aligned} $$
(16)
$$\displaystyle \begin{aligned} g_-(x)= \lim_{\varDelta \to 0} \frac{g(x-\varDelta)-g(x)}{\varDelta}. \end{aligned} $$
(17)

Put \(g_T(x)=\mathbb {E} F_T(x)\), x ∈ X. Since by convexity of h(t, x, y) the limits in (16) and (17) exist, the following limits exist as well:

  • for all t, y for the function h(t, x, y);

  • for each t for the function \(\mathbb {E} h(t,\cdot , \xi (t))\);

  • for any t, w for the function F T (⋅);

  • for each t for g T (⋅).

The following lemma holds true.

Lemma 1

Suppose that there exists a function u : X × Ω , convex with respect to the first argument and measurable with respect to the second one. Assume that \(\mathbb {E} |u(x,\omega )|<\infty \) for any x  X. Denote \(v(x)= \mathbb {E} u(x,\omega )\) . Then

$$\displaystyle \begin{aligned} v^{\prime}_+(x)= \mathbb{E} u^{\prime}_+(x,\omega),\quad v^{\prime}_- (x) = \mathbb{E} u^{\prime}_-(x,\omega). \end{aligned}$$

Proof

We have

$$\displaystyle \begin{aligned} v^{\prime}_+(x) =\lim_{\varDelta \to +0} \frac{\mathbb{E} u(x+\varDelta,\omega)- \mathbb{E} u(x,\omega)}{\varDelta}= \lim_{\varDelta \to +0}\mathbb{E} \frac{u(x+\varDelta,\omega)- \mathbb{E} u(x,\omega)}{\varDelta}. \end{aligned}$$

Since u is convex with respect to x for all ω,

$$\displaystyle \begin{aligned} u^{\prime}_+ (x,\omega) =\inf_{\varDelta>0} \frac{u(x+\varDelta,\omega)- u(x,\omega)}{\varDelta}, \end{aligned} $$
(18)
$$\displaystyle \begin{aligned} u^{\prime}_- (x,\omega) =\inf_{\varDelta>0} \frac{u(x-\varDelta,\omega)- u(x,\omega)}{\varDelta},\end{aligned} $$
(19)

the fractions in the right-hand sides of (18) and (19) are decreasing monotone as Δ → +0. Then by the monotone convergence theorem

$$\displaystyle \begin{aligned} \lim_{\varDelta \to +0}\mathbb{E} \frac{u(x+\varDelta,\omega)- \mathbb{E} u(x,\omega)}{\varDelta}= \mathbb{E} u^{\prime}_+(x,\omega), \quad \varDelta \to + 0.\end{aligned} $$

The same arguments is applie to v. Lemma is proved.

By Lemma 1 we have that

$$\displaystyle \begin{aligned} \big(\mathbb{E} h(t,x,\xi(t))\big)^{\prime}_+ = \mathbb{E} h^{\prime}_+ (t,x,\xi(t)), \end{aligned}$$
$$\displaystyle \begin{aligned} \big(\mathbb{E} h (t,x,\xi(t))\big)^{\prime}_- = \mathbb{E} h^{\prime}_- (t,x,\xi(t)),\end{aligned} $$

and for any small t ∈ [0, T], x ∈ X

$$\displaystyle \begin{aligned} g^{\prime}_{T+} = \mathbb{E} F^{\prime}_{T+}(x), \quad g^{\prime}_{T-} = \mathbb{E} F^{\prime}_{T-}(x). \end{aligned}$$

Lemma 2

Suppose that conditions 1–3 and the statements a)–c) below hold true:

  1. a)

    \(h^{\prime }_+(t,\bar x, \xi (t))- \mathbb {E} h^{\prime }_+(t,\bar x, \xi (t))\) and \(h^{\prime }_-(t,\bar x, \xi (t))- \mathbb {E} h^{\prime }_-(t,\bar x, \xi (t))\) , t ∈ [0, T]

    satisfy the strong mixing condition with the mixing coefficient [ 1 ]

    $$\displaystyle \begin{aligned} \alpha(\tau)\leq \frac{c_0}{ 1+ \tau^{1+\epsilon}}, \quad \epsilon>0,\quad \tau>0. \end{aligned}$$
  2. b)

    there exists δ > 2/𝜖 such that for any t > 0

    $$\displaystyle \begin{aligned} \mathbb{E} |h^{\prime}_+(t,\bar x, \xi(0))|{}^{2+\delta} <\infty, \quad \mathbb{E} |h^{\prime}_-(t,\bar x, \xi(0))|{}^{2+\delta} <\infty. \end{aligned}$$
  3. c)
    $$\displaystyle \begin{aligned} g^{\prime}_{T+} (\bar x) \to F^{\prime}_+(\bar x), \quad g^{\prime}_{T-}(\bar x) \to F^{\prime}_- (\bar x), \quad T\to \infty. \end{aligned}$$

Then

$$\displaystyle \begin{aligned} \mathbb{P} \{ F^{\prime}_{T+} (\bar x) \to F^{\prime}_+ (\bar x), \quad T\to\infty\}=1, \end{aligned}$$
$$\displaystyle \begin{aligned} \mathbb{P} \{ F^{\prime}_{T-} (\bar x) \to F^{\prime}_- (\bar x), \quad T\to\infty\}=1. \end{aligned}$$

The proof is analogous to that of Lemma 2 [5] in the discrete time setting.

Theorem 7

Suppose that conditions of Lemma 2 hold true. Then with probability 1 there exists T  = T (ω) such that for any T > T problem (15) has the unique solution x T and \(x_T= \bar x\).

Proof

By assumption 2,

$$\displaystyle \begin{aligned} F^{\prime}_{+}(\bar x ) \geq e, \quad F^{\prime}_-(\bar x)\geq e. \end{aligned}$$

By Lemma 2,

$$\displaystyle \begin{aligned} F^{\prime}_{T+}(\bar x) >0, \quad F^{\prime}_{T-} >0 \end{aligned}$$

with probability 1, starting from some T . Since the function F T (x) is convex, \(\bar x\) is the unique minimum point of the function F T (x). Theorem is proved.

Now we turn to the large deviation problem for (15).

Theorem 8

Suppose that condition 2 and the assumptions below hold true:

  1. a)

    the family {ξ(t), t ∈ [0, T]} satisfies the conditions of hypothesis (H-1).

  2. b)

    there exists L > 0 such that for all t ∈ [0, T] and y  Y 

    $$\displaystyle \begin{aligned} |h^{\prime}_+(t,\bar x, y)|\leq L, \quad |h^{\prime}_-(t,\bar x, y)|\leq L. \end{aligned}$$

Then

$$\displaystyle \begin{aligned} \lim_{T\to \infty} \sup \frac{1}{T} \ln \big( \mathbb{P}\{ B_T^c \}\big) \leq -\inf_{g\in F} \varLambda^+(g), \end{aligned}$$

where

$$\displaystyle \begin{aligned} \varLambda^+(g) = \sup \{ g(x)- \varLambda(\varOmega), \quad \varOmega \in \mathbb{E} (x)\}, \end{aligned}$$
$$\displaystyle \begin{aligned} \varLambda(\varOmega)= \lim_{T\to \infty} \frac{1}{T} \ln \left[ \int_\varOmega \exp \Big\{ \varOmega(x)\int_0^T \min [ h^{\prime}_+ (t,\bar x, \xi(t)), h^{\prime}_- (t,\bar x, \xi(t))] \Big\} d\mathbb{P}\right], \end{aligned}$$
$$\displaystyle \begin{aligned} B_T:=\{ \omega: arg\min_{x\in X} F_T (x)=\{\bar x\}\}, \end{aligned}$$
$$\displaystyle \begin{aligned} B_T^c =\varOmega\backslash B_T. \end{aligned}$$

The proof follows the same line as that of Theorem 3 [6], with using Theorem 4.

Remark 2

Note that the statements of Theorems 5 and 6 for non-stationary observation model also hold true. The proofs are analogous to those of Theorems 5 and 6.