Skip to main content

The Role of the Bone Marrow for Adaptive Immunity in Old Age

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Most studies on age-related changes of the human adaptive immune system have so far been performed using peripheral blood which contains less than 2% of the total body lymphocyte pool. Only few studies have addressed this issue in lymphatic organs. The human BM represents an organ which has only recently been recognized as an important site for the regulation and maintenance of immunological memory. Intrinsic changes in adaptive immune cells as well as changes in BM niches may be of relevance for changes in the immunological memory in old age. It is the goal of this review to summarize what is known about the effect of age on BM immune cells and their niches in mice and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Almanzar G, Schwaiger S, Jenewein B et al (2005) Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 79:3675–3683

    Article  CAS  Google Scholar 

  • Amanna IJ, Carlson NE, Slifka MK (2007) Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357:1903–1915

    Article  CAS  Google Scholar 

  • Becker TC, Coley SM, Wherry EJ et al (2005) Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol 174:1269–1273

    Article  CAS  Google Scholar 

  • Belnoue E, Tougne C, Rochat AF et al (2012) Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. J Immunol 188:1283–1291

    Article  CAS  Google Scholar 

  • Benson MJ, Dillon SR, Castigli E et al (2008) Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 180:3655–3659

    Article  CAS  Google Scholar 

  • Breitbart E, Wang X, Leka LS et al (2002) Altered memory B-cell homeostasis in human aging. J Gerontol A Biol Sci Med Sci 57:B304–B311

    Article  Google Scholar 

  • Brenchley JM, Karandikar NJ, Betts MR et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  CAS  Google Scholar 

  • Brunner S, Herndler-Brandstetter D, Arnold CR et al (2012) Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell 11:579–587

    Article  CAS  Google Scholar 

  • Chong Y, Ikematsu H, Yamaji K et al (2005) CD27(+) (memory) B cell decrease and apoptosis-resistant CD27(−) (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol 17:383–390

    Article  CAS  Google Scholar 

  • Chougnet CA, Thacker RI, Shehata HM et al (2015) Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol 195:2624–2632

    Article  CAS  Google Scholar 

  • Chu VT, Berek C (2013) The establishment of the plasma cell survival niche in the bone marrow. Immunol Rev 251:177–188

    Article  Google Scholar 

  • Colonna-Romano G, Bulati M, Aquino A et al (2003) B cells in the aged: CD27, CD5, and CD40 expression. Mech Ageing Dev 124:389–393

    Article  CAS  Google Scholar 

  • Cui G, Hara T, Simmons S et al (2014) Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci U S A 111:1915–1920

    Article  CAS  Google Scholar 

  • De Bruijn IA, Remarque EJ, Jol-Van Der Zijde CM et al (1999) Quality and quantity of the humoral immune response in healthy elderly and young subjects after annually repeated influenza vaccination. J Infect Dis 179:31–36

    Article  Google Scholar 

  • Di Rosa F (2009) T-lymphocyte interaction with stromal, bone and hematopoietic cells in the bone marrow. Immunol Cell Biol 87:20–29

    Article  Google Scholar 

  • Effros RB, Boucher N, Porter V et al (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29:601–609

    Article  CAS  Google Scholar 

  • Effros RB, Cai Z, Linton PJ (2003) CD8 T cells and aging. Crit Rev Immunol 23:45–64

    Article  CAS  Google Scholar 

  • Effros RB, Dagarag M, Spaulding C et al (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157

    Article  CAS  Google Scholar 

  • Fagnoni FF, Vescovini R, Mazzola M et al (1996) Expansion of cytotoxic CD8+ CD28 T cells in healthy ageing people, including centenarians. Immunology 88:501–507

    Article  CAS  Google Scholar 

  • Focosi D, Bestagno M, Burrone O et al (2010) CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 87:107–116

    Article  CAS  Google Scholar 

  • Fooksman DR, Schwickert TA, Victora GD et al (2010) Development and migration of plasma cells in the mouse lymph node. Immunity 33:118–127

    Article  CAS  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Article  CAS  Google Scholar 

  • Frasca D, Landin AM, Lechner SC et al (2008) Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol 180:5283–5290

    Article  CAS  Google Scholar 

  • Halliley JL, Tipton CM, Liesveld J et al (2015) Long-lived plasma cells are contained within the CD19(−)CD38(hi)CD138(+) subset in human bone marrow. Immunity 43:132–145

    Article  CAS  Google Scholar 

  • Han S, Yang K, Ozen Z et al (2003) Enhanced differentiation of splenic plasma cells but diminished long-lived high-affinity bone marrow plasma cells in aged mice. J Immunol 170:1267–1273

    Article  CAS  Google Scholar 

  • Hanazawa A, Hayashizaki K, Shinoda K et al (2013) CD49b-dependent establishment of T helper cell memory. Immunol Cell Biol 91:524–531

    Article  CAS  Google Scholar 

  • Herndler-Brandstetter D, Landgraf K, Jenewein B et al (2011) Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J Immunol 186:6965–6971

    Article  CAS  Google Scholar 

  • Herndler-Brandstetter D, Landgraf K, Tzankov A et al (2012) The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 91:197–205

    Article  Google Scholar 

  • Hofer T, Muehlinghaus G, Moser K et al (2006) Adaptation of humoral memory. Immunol Rev 211:295–302

    Article  Google Scholar 

  • Hong MS, Dan JM, Choi JY et al (2004) Age-associated changes in the frequency of naive, memory and effector CD8+ T cells. Mech Ageing Dev 125:615–618

    Article  Google Scholar 

  • Huard B, Mckee T, Bosshard C et al (2008) APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest 118:2887–2895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi NS, Cui W, Chandele A et al (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27:281–295

    Article  CAS  Google Scholar 

  • Kaech SM, Tan JT, Wherry EJ et al (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198

    Article  CAS  Google Scholar 

  • Kalia V, Penny LA, Yuzefpolskiy Y et al (2015) Quiescence of memory CD8(+) T cells is mediated by regulatory T cells through inhibitory receptor CTLA-4. Immunity 42:1116–1129

    Article  CAS  Google Scholar 

  • Kogut I, Scholz JL, Cancro MP et al (2012) B cell maintenance and function in aging. Semin Immunol 24:342–349

    Article  CAS  Google Scholar 

  • Kolibab K, Smithson SL, Shriner AK et al (2005) Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults. I. Antibody concentrations, avidity and functional activity. Immun Ageing 2:10

    Article  Google Scholar 

  • Kovaiou RD, Grubeck-Loebenstein B (2006) Age-associated changes within CD4+ T cells. Immunol Lett 107:8–14

    Article  CAS  Google Scholar 

  • Li J, Huston G, Swain SL (2003) IL-7 promotes the transition of CD4 effectors to persistent memory cells. J Exp Med 198:1807–1815

    Article  CAS  Google Scholar 

  • Li J, Valentin A, Ng S et al (2015) Differential effects of IL-15 on the generation, maintenance and cytotoxic potential of adaptive cellular responses induced by DNA vaccination. Vaccine 33:1188–1196

    Article  CAS  Google Scholar 

  • Mcleod IX, Jia W, He YW (2012) The contribution of autophagy to lymphocyte survival and homeostasis. Immunol Rev 249:195–204

    Article  CAS  Google Scholar 

  • Miller JP, Cancro MP (2007) B cells and aging: balancing the homeostatic equation. Exp Gerontol 42:396–399

    Article  CAS  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167

    Article  CAS  Google Scholar 

  • Mortier E, Advincula R, Kim L et al (2009) Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of distinct CD8+ T cell subsets. Immunity 31:811–822

    Article  CAS  Google Scholar 

  • Musso T, Calosso L, Zucca M et al (1999) Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 93:3531–3539

    CAS  PubMed  Google Scholar 

  • Osborne LC, Dhanji S, Snow JW et al (2007) Impaired CD8 T cell memory and CD4 T cell primary responses in IL-7R alpha mutant mice. J Exp Med 204:619–631

    Article  CAS  Google Scholar 

  • Palendira U, Chinn R, Raza W et al (2008) Selective accumulation of virus-specific CD8+ T cells with unique homing phenotype within the human bone marrow. Blood 112:3293–3302

    Article  CAS  Google Scholar 

  • Pangrazzi L, Meryk A, Naismith E et al (2017) “Inflamm-aging” influences immune cell survival factors in human bone marrow. Eur J Immunol 47:481–492

    Article  CAS  Google Scholar 

  • Posnett DN, Sinha R, Kabak S et al (1994) Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J Exp Med 179:609–618

    Article  CAS  Google Scholar 

  • Pritz T, Lair J, Ban M et al (2015) Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol 45:738–746

    Article  CAS  Google Scholar 

  • Sasaki S, Sullivan M, Narvaez CF et al (2011) Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. J Clin Invest 121:3109–3119

    Article  CAS  Google Scholar 

  • Saurwein-Teissl M, Lung TL, Marx F et al (2002) Lack of antibody production following immunization in old age: association with CD8(+)CD28(−) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168:5893–5899

    Article  CAS  Google Scholar 

  • Schluns KS, Kieper WC, Jameson SC et al (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432

    Article  CAS  Google Scholar 

  • Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3:269–279

    Article  CAS  Google Scholar 

  • Shi Y, Yamazaki T, Okubo Y et al (2005) Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol 175:3262–3267

    Article  CAS  Google Scholar 

  • Snell LM, Lin GH, Watts TH (2012) IL-15-dependent upregulation of GITR on CD8 memory phenotype T cells in the bone marrow relative to spleen and lymph node suggests the bone marrow as a site of superior bioavailability of IL-15. J Immunol 188:5915–5923

    Article  CAS  Google Scholar 

  • Stiasny K, Aberle JH, Keller M et al (2012) Age affects quantity but not quality of antibody responses after vaccination with an inactivated flavivirus vaccine against tick-borne encephalitis. PLoS One 7:e34145

    Article  CAS  Google Scholar 

  • Stonier SW, Ma LJ, Castillo EF et al (2008) Dendritic cells drive memory CD8 T-cell homeostasis via IL-15 transpresentation. Blood 112:4546–4554

    Article  CAS  Google Scholar 

  • Tokoyoda K, Zehentmeier S, Hegazy AN et al (2009) Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30:721–730

    Article  CAS  Google Scholar 

  • Tokoyoda K, Hauser AE, Nakayama T et al (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10:193–200

    Article  CAS  Google Scholar 

  • Veneri D, Ortolani R, Franchini M et al (2009) Expression of CD27 and CD23 on peripheral blood B lymphocytes in humans of different ages. Blood Transfus 7:29–34

    PubMed  PubMed Central  Google Scholar 

  • Winter O, Moser K, Mohr E et al (2010) Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116:1867–1875

    Article  CAS  Google Scholar 

  • Zanni F, Vescovini R, Biasini C et al (2003) Marked increase with age of type 1 cytokines within memory and effector/cytotoxic CD8+ T cells in humans: a contribution to understand the relationship between inflammation and immunosenescence. Exp Gerontol 38:981–987

    Article  CAS  Google Scholar 

  • Zhang W, Brahmakshatriya V, Swain SL (2014) CD4 T cell defects in the aged: causes, consequences and strategies to circumvent. Exp Gerontol 54:67–70

    Article  Google Scholar 

  • Zou L, Barnett B, Safah H et al (2004) Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64:8451–8455

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrix Grubeck-Loebenstein .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grubeck-Loebenstein, B., Pangrazzi, L. (2018). The Role of the Bone Marrow for Adaptive Immunity in Old Age. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_170-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_170-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics