Skip to main content

Activation-Induced Cell Death of T Cells in Human Aging

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

The elimination of expanded T cells at the end of immune response is crucial to maintain homeostasis and avoid any uncontrolled inflammation. Resting mature T lymphocytes when activated via their antigen-specific receptor (TCR) and CD28 coreceptor start to proliferate and acquire resistance to apoptosis. Reactivation of T cells induces expression of CD95L, which after binding to CD95 surface-expressed death receptor, triggers signaling pathway to apoptosis. The process is called activation-induced cell death (AICD). In executing AICD, receptor-dependent apoptotic pathway overlaps with mitochondrial signaling to apoptosis. Immunosenescence leads to the shrinkage of T-cell repertoire due to the reduction of naïve cells and accumulation of oligoclonal CD8+ and, to a lower extent, CD4+ cells, which are mainly CD95-positive and CD28-negative. CD28− cells dominate not only in elderly people, but their presence has also been linked to autoimmune disease, AIDS, and age-related disorders or decreased efficacy of vaccination. Propensity of CD28− cells to undergo AICD, and generally, apoptosis changes with age. However, collected data so far are inconclusive as they show an increased, unchanged, or decreased propensity to apoptosis in the elderly in comparison with young individuals. Recently, a definite involvement of autophagy and necroptosis in homeostasis of T cells has been recognized; however, their role in the termination of the adaptive immune response is still poorly known, especially in aging. However, it can be expected that future studies on necroptotic and autophagic cell death will clarify the so far inconsistent data concerning age-dependent changes in AICD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal S, Gupta S (1998) Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol 160(4):1627–1637

    CAS  PubMed  Google Scholar 

  • Algeciras-Schimnich A, Griffith TS, Lynch DH, Paya CV (1999) Cell cycle-dependent regulation of FLIP levels and susceptibility to Fas-mediated apoptosis. J Immunol 162(9):5205–5211

    CAS  PubMed  Google Scholar 

  • Arnold R, Brenner D, Becker M, Frey CR, Krammer PH (2006) How T lymphocytes switch between life and death. Eur J Immunol 36(7):1654–1658

    Article  CAS  PubMed  Google Scholar 

  • Arnold CR, Pritz T, Brunner S, Knabb C, Salvenmoser W, Holzwarth B, Thedieck K, Grubeck-Loebenstein BT (2014) Cell receptor-mediated activation is a potent inducer of macroautophagy in human CD8(+)CD28(+) T cells but not in CD8(+)CD28(−) T cells. Exp Gerontol 54:75–83

    Article  CAS  PubMed  Google Scholar 

  • Bell BD, Leverrier S, Weist BM, Newton RH, Arechiga AF, Luhrs KA, Morrissette NS, Walsh CM (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci USA 105(43):16677–16682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner D, Golks A, Kiefer F, Krammer PH, Arnold R (2005) Activation or suppression of NFkappaB by HPK1 determines sensitivity to activation-induced cell death. EMBO J 24(24):4279–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner D, Krammer PH, Arnold R (2008) Concepts of activated T cell death. Crit Rev Oncol Hematol 66(1):52–64

    Article  PubMed  Google Scholar 

  • Brzezinska A (2005) Does in vitro replicative senescence of human CD8+ cells reflect the phenotypic changes observed during in vivo ageing? Acta Biochim Pol 52(4):931–935

    CAS  PubMed  Google Scholar 

  • Brzezinska A, Magalska A, Sikora E (2003) Proliferation of CD8+ in culture of human T cells derived from peripheral blood of adult donors and cord blood of newborns. Mech Ageing Dev 124(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Brzezinska A, Magalska A, Szybinska A, Sikora E (2004) Proliferation and apoptosis of human CD8(+)CD28(+) and CD8(+)CD28(−) lymphocytes during aging. Exp Gerontol 39(4):539–544

    Article  PubMed  Google Scholar 

  • Cao W, Mehraj V, Kaufmann DE, Li T, Routy JP (2016) Elevation and persistence of CD8 T-cells in HIV infection: the Achilles heel in the ART era. J Int AIDS Soc 19(1):20697. https://doi.org/10.7448/IAS.19.1.20697

    Article  PubMed  PubMed Central  Google Scholar 

  • Capri M, Monti D, Salvioli S, Lescai F, Pierini M, Altilia S, Sevini F, Valensin S, Ostan R, Bucci L, Franceschi C (2006) Complexity of anti-immunosenescence strategies in humans. Artif Organs 30(10):730–742

    Article  CAS  PubMed  Google Scholar 

  • Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB (2009) Vaccination in the elderly: an immunological perspective. Trends Immunol 30(7):351–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Ch'en IL, Beisner DR, Degterev A, Lynch C, Yuan J, Hoffmann A, Hedrick SM (2008) Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc Natl Acad Sci USA 105(45):17463–17468

    Article  PubMed  PubMed Central  Google Scholar 

  • Ch'en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM (2011) Mechanisms of necroptosis in T cells. J Exp Med 208(4):633–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejaco C, Duftner C, Klauser A, Schirmer M (2010) Altered T-cell subtypes in spondyloarthritis, rheumatoid arthritis and polymyalgia rheumatica. Rheumatol Int 30(3):297–303

    Article  PubMed  Google Scholar 

  • Dennett NS, Barcia RN, McLeod JD (2002) Age associated decline in CD25 and CD28 expression correlate with an increased susceptibility to CD95 mediated apoptosis in T cells. Exp Gerontol 37(2-3):271–283

    Article  CAS  PubMed  Google Scholar 

  • Donnini A, Re F, Bollettini M, Moresi R, Tesei S, Bernardini G, Provinciali M (2005) Age-related susceptibility of naive and memory CD4 T cells to apoptosis induced by IL-2 deprivation or PHA addition. Biogerontology 6(3):193–204

    Article  CAS  PubMed  Google Scholar 

  • Dunkle A, He YW (2011) Apoptosis and autophagy in the regulation of T lymphocyte function. Immunol Res 49(1-3):70–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157

    Article  CAS  PubMed  Google Scholar 

  • Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95(9):2860–2868

    CAS  PubMed  Google Scholar 

  • Gerland LM, Genestier L, Peyrol S, Michallet MC, Hayette S, Urbanowicz I, Ffrench P, Magaud JP, Ffrench M (2004) Autolysosomes accumulate during in vitro CD8+ T-lymphocyte aging and may participate in induced death sensitization of senescent cells. Exp Gerontol 39(5):789–800

    Article  CAS  PubMed  Google Scholar 

  • Ginaldi L, De Martinis M, Monti D, Franceschi C (2004) The immune system in the elderly: activation-induced and damage-induced apoptosis. Immunol Res 30(1):81–94

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81

    Article  CAS  PubMed  Google Scholar 

  • Gupta S (2005) Molecular mechanisms of apoptosis in the cells of the immune system in human aging. Immunol Rev 205:114–129

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Gollapudi S (2006) Molecular mechanisms of TNF-alpha-induced apoptosis in naive and memory T cell subsets. Autoimmun Rev 5(4):264–268

    Article  CAS  PubMed  Google Scholar 

  • Herndon FJ, Hsu HC, Mountz JD (1997) Increased apoptosis of CD45RO- T cells with aging. Mech Ageing Dev 94(1-3):123–134

    Article  CAS  PubMed  Google Scholar 

  • Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P (2002) Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 14(3):354–359

    Article  CAS  PubMed  Google Scholar 

  • Hsu HC, Scott DK, Mountz JD (2005) Impaired apoptosis and immune senescence – cause or effect? Immunol Rev 205:130–146

    Article  CAS  PubMed  Google Scholar 

  • Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macian F (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185(12):7349–7357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88(3):347–354

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Pua HH, Li QJ, He YW (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 186(3):1564–1574

    Article  CAS  PubMed  Google Scholar 

  • Kabelitz D, Janssen O (1997) Antigen-induced death of T-lymphocytes. Front Biosci 2:d61–d77

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Elledge SJ (2016) How autophagy both activates and inhibits cellular senescence. Autophagy 12(5):898–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff S, Muller WW, Li-Weber M, Krammer PH (2000) Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 30(10):2765–2774

    Article  CAS  PubMed  Google Scholar 

  • Klas C, Debatin KM, Jonker RR, Krammer PH (1993) Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 5(6):625–630

    Article  CAS  PubMed  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407(6805):789–795

    Article  CAS  PubMed  Google Scholar 

  • Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7(7):532–542

    Article  CAS  PubMed  Google Scholar 

  • Larbi A, Muti E, Giacconi R, Mocchegiani E, Fulop T (2006) Role of lipid rafts in activation-induced cell death: the fas pathway in aging. Adv Exp Med Biol 584:137–155

    Article  CAS  PubMed  Google Scholar 

  • Lechner H, Amort M, Steger MM, Maczek C, Grubeck-Loebenstein B (1996) Regulation of CD95 (APO-1) expression and the induction of apoptosis in human T cells: changes in old age. Int Arch Allergy Immunol 110(3):238–243

    Article  CAS  PubMed  Google Scholar 

  • Li H, Manwani B, Leng SX (2011) Frailty, inflammation, and immunity. Aging Dis 2(6):466–473

    PubMed  PubMed Central  Google Scholar 

  • Lu B, Finn OJ (2008) T-cell death and cancer immune tolerance. Cell Death Differ 15(1):70–79

    Article  PubMed  Google Scholar 

  • Lu JV, Walsh CM (2012) Programmed necrosis and autophagy in immune function. Immunol Rev 249(1):205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu JV, Chen HC, Walsh CM (2014) Necroptotic signaling in adaptive and innate immunity. Semin Cell Dev Biol 35:33–39

    Article  PubMed  Google Scholar 

  • Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, Schneider JA (2013) Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 208(4):564–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Yu H, Lin D, Sun Y, Liu L, Liu Y, Dai B, Chen W, Cao J (2009) S6K1 is involved in polyploidization through its phosphorylation at Thr421/Ser424. J Cell Physiol 219(1):31–44

    Article  CAS  PubMed  Google Scholar 

  • Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Lopez N, Athonvarangkul D, Singh R (2015) Autophagy and aging. Adv Exp Med Biol 847:73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod JD, Walker LS, Patel YI, Boulougouris G, Sansom DM (1998) Activation of human T cells with superantigen (staphylococcal enterotoxin B) and CD28 confers resistance to apoptosis via CD95. J Immunol 160(5):2072–2079

    CAS  PubMed  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27(6):421–429

    Article  PubMed  Google Scholar 

  • Muppidi JR, Siegel RM (2004) Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat Immunol 5(2):182–189

    Article  CAS  PubMed  Google Scholar 

  • Osborne BA (1996) Apoptosis and the maintenance of homoeostasis in the immune system. Curr Opin Immunol 8(2):245–254

    Article  CAS  PubMed  Google Scholar 

  • Pallis AG, Hatse S, Brouwers B, Pawelec G, Falandry C, Wedding U, Lago LD, Repetto L, Ring A, Wildiers H (2014) Evaluating the physiological reserves of older patients with cancer: the value of potential biomarkers of aging? J Geriatric Oncol 5(2):204–218

    Article  Google Scholar 

  • Palmer E (2003) Negative selection–clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol 3(5):383–391

    Article  CAS  PubMed  Google Scholar 

  • Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G (2014) Immunosenenescence: role of cytomegalovirus. Exp Gerontol 54:1–5

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Sansom D, Rehbein A, Adibzadeh M, Beckman I (1996) Decreased proliferative capacity and increased susceptibility to activation-induced cell death in late-passage human CD4+ TCR2+ cultured T cell clones. Exp Gerontol 31(6):655–668

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Goldeck D, Derhovanessian E (2014) Inflammation, ageing and chronic disease. Curr Opin Immunol 29:23–28

    Article  CAS  PubMed  Google Scholar 

  • Phelouzat MA, Arbogast A, Laforge T, Quadri RA, Proust JJ (1996) Excessive apoptosis of mature T lymphocytes is a characteristic feature of human immune senescence. Mech Ageing Dev 88(1-2):25–38

    Article  CAS  PubMed  Google Scholar 

  • Phelouzat MA, Laforge T, Arbogast A, Quadri RA, Boutet S, Proust JJ (1997) Susceptibility to apoptosis of T lymphocytes from elderly humans is associated with increased in vivo expression of functional Fas receptors. Mech Ageing Dev 96(1-3):35–46

    Article  CAS  PubMed  Google Scholar 

  • Pinti M, Troiano L, Nasi M, Bellodi C, Ferraresi R, Mussi C, Salvioli G, Cossarizza A (2004) Balanced regulation of mRNA production for Fas and Fas ligand in lymphocytes from centenarians: how the immune system starts its second century. Circulation 110(19):3108–3114

    Article  CAS  PubMed  Google Scholar 

  • Posnett DN, Edinger JW, Manavalan JS, Irwin C, Marodon G (1999) Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+ CD28− cytotoxic effector clones. Int Immunol 11(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Potestio M, Caruso C, Gervasi F, Scialabba G, D'Anna C, Di Lorenzo G, Balistreri CR, Candore G, Romano GC (1998) Apoptosis and ageing. Mech Ageing Dev 102(23):221–237

    Article  CAS  PubMed  Google Scholar 

  • Potestio M, Pawelec G, Di Lorenzo G, Candore G, D'Anna C, Gervasi F, Lio D, Tranchida G, Caruso C, Romano GC (1999) Age-related changes in the expression of CD95 (APO1/FAS) on blood lymphocytes. Exp Gerontol 34(5):659–673

    Article  CAS  PubMed  Google Scholar 

  • Prado-Garcia H, Romero-Garcia S, Aguilar-Cazares D, Meneses-Flores M, Lopez-Gonzalez JS (2012) Tumor-induced CD8+ T-cell dysfunction in lung cancer patients. Clin Develop Immunol 2012:741741

    Article  Google Scholar 

  • Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204(1):25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindowski K, Leutner S, Muller WE, Eckert A (2000) Age-related changes of apoptotic cell death in human lymphocytes. Neurobiol Aging 21(5):661–670

    Article  CAS  PubMed  Google Scholar 

  • Schmitz I, Krueger A, Baumann S, Schulze-Bergkamen H, Krammer PH, Kirchhoff S (2003) An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. J Immunol 171(6):2930–2936

    Article  CAS  PubMed  Google Scholar 

  • Semba RD, Margolick JB, Leng S, Walston J, Ricks MO, Fried LP (2005) T cell subsets and mortality in older community-dwelling women. Exp Gerontol 40(1-2):81–87

    Article  CAS  PubMed  Google Scholar 

  • Shi YF, Sahai BM, Green DR (1989) Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature 339(6226):625–626

    Article  CAS  PubMed  Google Scholar 

  • Sikora E (2013) Rejuvenation of senescent cells-the road to postponing human aging and age-related disease? Exp Gerontol 48(7):661–666

    Article  CAS  PubMed  Google Scholar 

  • Sikora E (2015) Activation-induced and damage-induced cell death in aging human T cells. Mech Ageing Dev 151:85–92

    Article  CAS  PubMed  Google Scholar 

  • Spaulding C, Guo W, Effros RB (1999) Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 34(5):633–644

    Article  CAS  PubMed  Google Scholar 

  • Sprent J, Tough DF (2001) T cell death and memory. Science 293(5528):245–248

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Pellegrini M (2004) T-lymphocyte death during shutdown of an immune response. Trends Immunol 25(11):610–615

    Article  CAS  PubMed  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169

    Article  CAS  PubMed  Google Scholar 

  • Vallejo AN, Schirmer M, Weyand CM, Goronzy JJ (2000) Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. J Immunol 165(11):6301–6307

    Article  CAS  PubMed  Google Scholar 

  • Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Vasto S, Colonna-Romano G, Larbi A, Wikby A, Caruso C, Pawelec G (2007) Role of persistent CMV infection in configuring T cell immunity in the elderly. Immun Ageing 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker LS, McLeod JD, Boulougouris G, Patel YI, Hall ND, Sansom DM (1998) Down-regulation of CD28 via Fas (CD95): influence of CD28 on T-cell apoptosis. Immunology 94(1):41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widlak P, Garrard WT (2005) Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem 94(6):1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60(5):556–565

    Article  PubMed  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756):555–556

    Article  CAS  PubMed  Google Scholar 

  • Zanni F, Vescovini R, Biasini C, Fagnoni F, Zanlari L, Telera A, Di Pede P, Passeri G, Pedrazzoni M, Passeri M, Franceschi C, Sansoni P (2003) Marked increase with age of type 1 cytokines within memory and effector/cytotoxic CD8+ T cells in humans: a contribution to understand the relationship between inflammation and immunosenescence. Exp Gerontol 38(9):981–987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

It is to acknowledge that the part of this chapter was already published in Elsevier Journal as the following article by Ewa Sikora (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Sikora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sikora, E., Brzezińska, A. (2018). Activation-Induced Cell Death of T Cells in Human Aging. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics