Skip to main content

The Eμ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia

A Preclinical Tool to Investigate and Target PD-L1/PD-1-Mediated CD8 T-Cell Dysfunction

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and, despite the availability of targeted therapies, remains incurable. An important hallmark is severe immune deficiency caused by complex cancer-induced T-cell defects, leading to ineffective antitumor immune responses and susceptibility to infections. The immune checkpoint molecules PD-1 (mainly expressed on activated immune effector cells) and PD-L1 (expressed on antigen-presenting and microenvironmental cells including tumor cells) have emerged as important mediators of T-cell suppression, not only in CLL but also in other malignancies. Several clinical studies demonstrate that targeting PDL-1/PD-1 interactions produces significant responses. However, similar studies are notably absent in CLL, and the effect of PDL-1/PD-1 blockade on restoring CLL-induced immune dysfunction is not understood. Transgenic Eμ-TCL1 mice have been extensively validated as an adequate preclinical model of aggressive human CLL and are especially suitable to mirror CLL-induced T-cell defects. In addition, the confounding effect of aging on T-cell dysfunction can be overcome by adoptive transfer of murine CLL cells into young disease-free mice. Both in transgenic mice and in mice after adoptive transfer, developing CLL is associated with specific T-cell subset alterations, phenotypic changes, and functional defects. CD8+ T cells in leukemic mice are characterized as a functionally heterogeneous population, in which subsets of cells are able to exert effector functions despite PD-1 expression. PD-L1-blocking antibody effectively controls disease and reverses global T-cell defects even in cells expressing PD-1, providing a strong rationale to explore PD-L1/PD-1 targeting in clinical trials, potentially in combination with novel agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Balakrishnan K, Burger JA, Wierda WG, Gandhi V (2009) AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 113(1):149–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, Russo G, Hardy RR, Croce CM (2002) Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci 99(10):6955–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn SD, Shin H, Freeman GJ, Wherry EJ (2008) Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc Natl Acad Sci USA 105(39):15016–15021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojarska-Junak A, Hus I, Sieklucka M, Wasik-Szczepanek E, Mazurkiewicz T, Polak P, Dmoszynska A, Rolinski J (2010) Natural killer-like T CD3+/CD16+CD56+ cells in chronic lymphocytic leukemia: intracellular cytokine expression and relationship with clinical outcome. Oncol Rep 24(3):803–810

    Article  CAS  PubMed  Google Scholar 

  • Brown JR (2016) The PI3K pathway: clinical inhibition in chronic lymphocytic leukemia. Semin Oncol 43(2):260–264

    Article  CAS  PubMed  Google Scholar 

  • Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, Jaksic O, Fedele G, Inghirami G, Gaidano G, Malavasi F, Deaglio S (2013) The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 98(6):953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner M, Baer C, Prinz G, Dierks C, Burger M, Zenz T, Stilgenbauer S, Jumaa H, Veelken H, Zirlik K (2010a) Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Blood 115(22):4497–4506

    Article  CAS  PubMed  Google Scholar 

  • Buchner M, Brantner P, Stickel N, Prinz G, Burger M, Bär C, Dierks C, Pfeifer D, Ott A, Mertelsmann R, Gribben JG, Veelken H, Zirlik K (2010b) The microenvironment differentially impairs passive and active immunotherapy in chronic lymphocytic leukaemia – CXCR4 antagonists as potential adjuvants for monoclonal antibodies. Br J Haematol 151(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N, Kipps TJ, Burger JA (2005) Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106(5):1824–1830

    Article  CAS  PubMed  Google Scholar 

  • Cantwell M, Hua T, Pappas J, Kipps TJ (1997) Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med 3:984–989

    Article  CAS  PubMed  Google Scholar 

  • Catovsky D, Miliani E, Okos A, Galton DA (1974) Clinical significance of T-cells in chronic lymphocytic leukaemia. Lancet 2(7883):751–752

    Article  CAS  PubMed  Google Scholar 

  • Cha Z, Zang Y, Guo H, Rechlic JR, Olasnova LM, Gu H, Tu X, Song H, Qian B (2013) Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol 34(6): 3579–3585

    Article  CAS  PubMed  Google Scholar 

  • Chen SS, Chiorazzi N (2014) Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia. Semin Hematol 51(3):188–205

    Article  CAS  PubMed  Google Scholar 

  • D’Arena G, Laurenti L, Minervini MM, Deaglio S, Bonello L, De Martino L, De Padua L, Savino L, Tarnani M, De Feo V, Cascavilla N (2011) Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res 35(3):363–368

    Article  PubMed  Google Scholar 

  • de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, Pals ST, Spaargaren M (2012) The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119(11):2590–2594

    Article  PubMed  CAS  Google Scholar 

  • Di Ianni M, Moretti L, Terenzi A, Bazzucchi F, Ciurnelli R, Lucchesi A, Sportoletti P, Rosati E, Marconi PF, Falzetti F, Tabilio A (2009) Activated autologous T cells exert an anti-B-cell chronic lymphatic leukemia effect in vitro and in vivo. Cytotherapy 11(1):86–96

    Article  PubMed  CAS  Google Scholar 

  • DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y, Matsushita T, Matta KM, Chen Y, Venturi GM, Russo G, Gockerman JP, Moore JO, Diehl LF, Volkheimer AD, Friedman DR, Lanasa MC, Hall RP, Tedder TF (2013) Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 27(1): 170–182

    Article  CAS  PubMed  Google Scholar 

  • Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ (2012) Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37(6):1130–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, Hessler JD, Liu TM, Chang BY, Larkin KM, Stefanovski MR, Chappell DL, Frissora FW, Smith LL, Smucker KA, Flynn JM, Jones JA, Andritsos LA, Maddocks K, Lehman AM, Furman R, Sharman J, Mishra A, Caligiuri MA, Satoskar AR, Buggy JJ, Muthusamy N, Johnson AJ, Byrd JC (2013) Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 122(15):2539–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K, Doho GH, Tata P, Gupta S, Zilliox MJ, Nakaya HI, Pulendran B, Haining WN, Freeman GJ, Ahmed R (2011) Phenotype, function, and gene expression profiles of programmed death-1hi CD8 T cells in healthy human adults. J Immunol 186(7):4200–4212

    Article  CAS  PubMed  Google Scholar 

  • Fecteau JF, Bharati IS, O’Hayre M, Handel TM, Kipps TJ, Messmer D (2012) Sorafenib-induced apoptosis of chronic lymphocytic leukemia cells is associated with downregulation of RAF and myeloid cell leukemia sequence 1 (Mcl-1). Mol Med 18:19–28

    Article  CAS  PubMed  Google Scholar 

  • Fink AM, Bottcher S, Ritgen M, Fischer K, Pflug N, Eichhorst B, Wendtner CM, Winkler D, Buhler A, Zenz T, Staib P, Mayer J, Hensel M, Hopfinger G, Wenger M, Fingerle-Rowson G, Dohner H, Kneba M, Stilgenbauer S, Busch R, Hallek M (2013) Prediction of poor outcome in CLL patients following first-line treatment with fludarabine, cyclophosphamide and rituximab. Leukemia 27(9):1949–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler NH, Cheah CY, Gascoyne RD, Gribben J, Neelapu SS, Ghia P, Bollard C, Ansell S, Curran M, Wilson WH, O’Brien S, Grant C, Little R, Zenz T, Nastoupil LJ, Dunleavy K (2016) Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica 101(5):531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassner FJ, Zaborsky N, Neureiter D, Huemer M, Melchardt T, Egle A, Rebhandl S, Catakovic K, Hartmann TN, Greil R, Geisberger R (2014) Chemotherapy-induced augmentation of T cells expressing inhibitory receptors is reversed by treatment with lenalidomide in chronic lymphocytic leukemia. Haematologica 99(5):67–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F, Ruffing N, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2002) Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 32(5): 1403–1413

    Article  CAS  PubMed  Google Scholar 

  • Gorgun G, Holderried TAW, Zahrieh D, Neuberg D, Gribben JG (2005) Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest 115(7):1797–1805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorgun G, Ramsay AG, Holderried TAW, Zahrieh D, Le Dieu R, Liu F, Quackenbush J, Croce CM, Gribben JG (2009) Eu-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci 106(15):6250–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson MP, Abraham RS, Lin Y, Wu W, Gastineau DA, Zent CS, Dietz AB (2012) Association of an increased frequency of CD14+ HLA-DR lo/neg monocytes with decreased time to progression in chronic lymphocytic leukaemia (CLL). Br J Haematol 156(5):674–676

    Article  CAS  PubMed  Google Scholar 

  • Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Doehner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute Working Group 1996 guidelines. Blood 111(12):5446–5456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, von Grunhagen U, Bergmann M, Catalano J, Zinzani PL, Caligaris-Cappio F, Seymour JF, Berrebi A, Jager U, Cazin B, Trneny M, Westermann A, Wendtner CM, Eichhorst BF, Staib P, Buhler A, Winkler D, Zenz T, Bottcher S, Ritgen M, Mendila M, Kneba M, Dohner H, Stilgenbauer S, International Group of Investigators, German Chronic Lymphocytic Leukaemia Study Group (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376(9747):1164–1174

    Article  CAS  PubMed  Google Scholar 

  • Han T, Bloom M, Dadey B, Bennett G, Minowada J, Sandberg A, Ozer H (1982) Lack of autologous mixed lymphocyte reaction in patients with chronic lymphocytic leukemia: evidence for autoreactive T-cell dysfunction not correlated with phenotype, karyotype, or clinical status. Blood 60(5):1075–1081

    CAS  PubMed  Google Scholar 

  • Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rossner PM, Benner A, Durr C, Egle A, Gribben JG, Lichter P, Seiffert M (2016) Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia 30(3):570–579

    Article  CAS  PubMed  Google Scholar 

  • Heath ME, Cheson BD (1985) Defective complement activity in chronic lymphocytic leukemia. Am J Hematol 19(1):63–73

    Article  CAS  PubMed  Google Scholar 

  • Herman SE, Wiestner A (2016) Preclinical modeling of novel therapeutics in chronic lymphocytic leukemia: the tools of the trade. Semin Oncol 43(2):222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman SEM, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ, Giese NA, Zhang X, Wei L, Byrd JC, Johnson AJ (2010) Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116(12): 2078–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman SEM, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, Flynn J, Jones J, Blum KA, Buggy JJ, Hamdy A, Johnson AJ, Byrd JC (2011) Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 117(23):6287–6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann F, Lochner A, Philippen H, Jauer B, Ruhl H (1982) Imbalance of T cell subpopulations in patients with chronic lymphocytic leukaemia of the B cell type. Clin Exp Immunol 49(1): 157–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, Giese N, O’Brien S, Yu A, Miller LL, Lannutti BJ, Burger JA (2011) The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118(13):3603–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoellenriegel J, Coffey GP, Sinha U, Pandey A, Sivina M, Ferrajoli A, Ravandi F, Wierda WG, O’Brien S, Keating MJ, Burger JA (2012) Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration. Leukemia 26(7):1576–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Trapin D, Asslaber D, Tinhofer I, Greil R, Egle A (2011) Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia 25(9): 1452–1458

    Article  PubMed  Google Scholar 

  • Hus I, Bojarska-Junak A, Chocholska S, Tomczak W, Wos J, Dmoszynska A, Rolinski J (2013) Th17/IL-17A might play a protective role in chronic lymphocytic leukemia immunity. PLoS One 8(11):e78091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idler I, Giannopoulos K, Zenz T, Bhattacharya N, Nothing M, Dohner H, Stilgenbauer S, Mertens D (2010) Lenalidomide treatment of chronic lymphocytic leukaemia patients reduces regulatory T cells and induces Th17 T helper cells. Br J Haematol 148(6):948–950

    Article  CAS  PubMed  Google Scholar 

  • International CLL-IPI working group (2016) An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 17(6):779–790

    Article  Google Scholar 

  • Itala M, Vainio O, Remes K (1996) Functional abnormalities in granulocytes predict susceptibility to bacterial infections in chronic lymphocytic leukaemia. Eur J Haematol 57(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Jadidi-Niaragh F, Ghalamfarsa G, Memarian A, Asgarian-Omran H, Razavi SM, Sarrafnejad A, Shokri F (2013a) Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia. Tumour Biol 34(2): 929–940

    Article  CAS  PubMed  Google Scholar 

  • Jadidi-Niaragh F, Yousefi M, Memarian A, Hojjat-Farsangi M, Khoshnoodi J, Razavi SM, Jeddi-Tehrani M, Shokri F (2013b) Increased frequency of CD8+ and CD4+ regulatory T cells in chronic lymphocytic leukemia: association with disease progression. Cancer Invest 31(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Jitschin R, Braun M, Buettner M, Dettmer-Wilde K, Bricks J, Berger J, Eckart MJ, Krause SW, Oefner PJ, Le Blanc K, Mackensen A, Mougiakakos D (2014) CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 124(5):750–760

    Article  CAS  PubMed  Google Scholar 

  • Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD, Croce CM, Grever MR, Byrd JC (2006) Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood 108(4):1334–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junevik K, Werlenius O, Hasselblom S, Jacobsson S, Nilsson-Ehle H, Andersson P-O (2007) The expression of NK cell inhibitory receptors on cytotoxic T cells in B-cell chronic lymphocytic leukaemia (B-CLL). Ann Hematol 86(2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, Wang L, Wan Y, Zhang W, Shukla SA, Vartanov A, Fernandes SM, Saksena G, Cibulskis K, Tesar B, Gabriel S, Hacohen N, Meyerson M, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152(4):714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee B-N, Gao H, Cohen EN, Badoux X, Wierda WG, Estrov Z, Faderl SH, Keating MJ, Ferrajoli A, Reuben JM (2011) Treatment with lenalidomide modulates T-cell immunophenotype and cytokine production in patients with chronic lymphocytic leukemia. Cancer 117(17):3999–4008

    Article  PubMed  Google Scholar 

  • Lopez-Guerra M, Xargay-Torrent S, Perez-Galan P, Saborit-Villarroya I, Rosich L, Villamor N, Aymerich M, Roue G, Campo E, Montserrat E, Colomer D (2012) Sorafenib targets BCR kinases and blocks migratory and microenvironmental survival signals in CLL cells. Leukemia 26(6):1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Maddocks K, Jones JA (2016) Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia. Semin Oncol 43(2):251–259

    Article  CAS  PubMed  Google Scholar 

  • Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L, Lozanski A, Davis M, Gordon A, Smith LL, Mantel R, Jones JA, Flynn JM, Jaglowski SM, Andritsos LA, Awan F, Blum KA, Grever MR, Johnson AJ, Byrd JC, Woyach JA (2015) Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol 1(1):80–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Maffei R, Bulgarelli J, Fiorcari S, Bertoncelli L, Martinelli S, Guarnotta C, Castelli I, Deaglio S, Debbia G, De Biasi S, Bonacorsi G, Zucchini P, Narni F, Tripodo C, Luppi M, Cossarizza A, Marasca R (2013) The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 98(7):1115–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClanahan F, Gribben JG (2015) New insights into hematopoietic stem cell transplantation for chronic lymphocytic leukemia: a 2015 perspective. Clin Adv Hematol Oncol 13(9):586

    PubMed  Google Scholar 

  • McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG, Seiffert M (2015a) PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood 126(2):203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, Croce CM, Capasso M, Gribben JG (2015b) Mechanisms of PD-L1/PD-1 mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eμ-TCL1 CLL mouse model. Blood 126(2) :212–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton O, Cosimo E, Dobbin E, McCaig AM, Clarke C, Brant AM, Leach MT, Michie AM, Wheadon H (2015) Complement deficiencies limit CD20 monoclonal antibody treatment efficacy in CLL. Leukemia 29(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chaturvedi NK, Rai KJ, Gilling-Cutucache CE, Nordgren TM, Moragues M, Lu R, Opavsky R, Bociek GR, Weisenburger DD, Iqbal J, Joshi SS (2014) Chronic lymphocytic leukemia cells in a lymph node microenvironment depict molecular signature associated with an aggressive disease. Mol Med 20(1):290–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mumprecht S, Schuerch C, Schwaller J, Solenthaler M, Ochsenbein AF (2009) Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood 114(8):1528–1536

    Article  CAS  PubMed  Google Scholar 

  • Nikolich-Žugich J (2014) Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J Immunol 193(6):2622–2629

    Article  PubMed  CAS  Google Scholar 

  • Nosari A (2012) Infectious complications in chronic lymphocytic leukemia. Mediterr J Hematol Infect Dis 4(1):e2012070

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer S, Hanson CA, Zent CS, Porrata LF, Laplant B, Geyer SM, Markovic SN, Call TG, Bowen DA, Jelinek DF, Kay NE, Shanafelt TD (2008) Prognostic importance of T and NK-cells in a consecutive series of newly diagnosed patients with chronic lymphocytic leukaemia. Br J Haematol 141(5):607–614

    Article  PubMed  Google Scholar 

  • Parry HM, Stevens T, Oldreive C, Zadran B, McSkeane T, Rudzki Z, Paneesha S, Chadwick C, Stankovic T, Pratt G, Zuo J, Moss P (2016) NK cell function is markedly impaired in patients with chronic lymphocytic leukaemia but is preserved in patients with small lymphocytic lymphoma. Oncotarget 7:68513

    Article  PubMed  PubMed Central  Google Scholar 

  • Patten PEM, Buggins AGS, Richards J, Wotherspoon A, Salisbury J, Mufti GJ, Hamblin TJ, Devereux S (2008) CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 111(10):5173–5181

    Article  CAS  PubMed  Google Scholar 

  • Pekarsky Y, Hallas C, Isobe M, Russo G, Croce CM (1999) Abnormalities at 14q32.1 in T cell malignancies involve two oncogenes. Proc Natl Acad Sci 96(6):2949–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponader S, Chen S-S, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O’Brien S, Chiorazzi N, Burger JA (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5): 1182–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qorraj M, Bruns H, Bottcher M, Weigand L, Saul D, Mackensen A, Jitschin R, Mougiakakos D (2016) The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia. Leukemia 31:470

    Article  PubMed  CAS  Google Scholar 

  • Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, Byrd JC, Gribben JG (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay AG, Clear AJ, Fatah R, Gribben JG (2012) Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 120(7):1412–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG (2013) Chronic lymphocytic leukemia cells induce defective LFA-1-directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood 121(14):2704–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riches JC, Gribben JG (2013) Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am 27(2):207–235

    Article  PubMed  Google Scholar 

  • Riches JC, Gribben JG (2016) Mechanistic and clinical aspects of lenalidomide treatment for chronic lymphocytic leukemia. Curr Cancer Drug Targets 16:689

    Article  CAS  PubMed  Google Scholar 

  • Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, Ramsay AG, Gribben JG (2013) T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 121(9):1612–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rougerie P, Delon J (2012) Rho GTPases: masters of T lymphocyte migration and activation. Immunol Lett 142(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • Rozewski DM, Herman SE, Towns WH 2nd, Mahoney E, Stefanovski MR, Shin JD, Yang X, Gao Y, Li X, Jarjoura D, Byrd JC, Johnson AJ, Phelps MA (2012) Pharmacokinetics and tissue disposition of lenalidomide in mice. AAPS J 14(4):872–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saulep-Easton D, Vincent FB, Le Page M, Wei A, Ting SB, Croce CM, Tam C, Mackay F (2014) Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia 28(10):2005–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawicka-Powierza J, Jablonska E, Kloczko J, Piszcz J, Garley M, Ratajczk-Wrona W (2011) Evaluation of TNF superfamily molecules release by neutrophils and B leukemic cells of patients with chronic B – cell lymphocytic leukemia. Neoplasma 58(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Serrano D, Monteiro J, Allen SL, Kolitz J, Schulman P, Lichtman SM, Buchbinder A, Vinciguerra VP, Chiorazzi N, Gregersen PK (1997) Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocytic leukemia. J Immunol 158(3):1482–1489

    CAS  PubMed  Google Scholar 

  • Shanafelt T (2014) Treatment of older patients with chronic lymphocytic leukemia: key questions and current answers. Hematology Am Soc Hematol Educ Program 2013(1):158–167

    Google Scholar 

  • Shanafelt TD, Ramsay AG, Zent CS, Leis JF, Tun HW, Call TG, LaPlant B, Bowen D, Pettinger A, Jelinek DF, Hanson CA, Kay NE (2013) Long-term repair of T-cell synapse activity in a phase II trial of chemoimmunotherapy followed by lenalidomide consolidation in previously untreated chronic lymphocytic leukemia (CLL). Blood 121(20):4137–4141

    Article  CAS  PubMed  Google Scholar 

  • Shaw AC, Swat W, Ferrini R, Davidson L, Alt FW (1999) Activated Ras signals developmental progression of recombinase-activating gene (RAG)-deficient pro-B lymphocytes. J Exp Med 189(1):123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strati P, Keating MJ, Wierda WG, Badoux XC, Calin S, Reuben JM, O’Brien S, Kornblau SM, Kantarjian HM, Gao H, Ferrajoli A (2013) Lenalidomide induces long-lasting responses in elderly patients with chronic lymphocytic leukemia. Blood 122(5):734–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam CS, Seymour JF, Roberts AW (2016) Progress in BCL2 inhibition for patients with chronic lymphocytic leukemia. Semin Oncol 43(2):274–279

    Article  CAS  PubMed  Google Scholar 

  • Tinhofer I, Weiss L, Gassner F, Rubenzer G, Holler C, Greil R (2009) Difference in the relative distribution of CD4+ T-cell subsets in B-CLL with mutated and unmutated immunoglobulin (Ig) VH genes: implication for the course of disease. J Immunother 32:302–309

    Article  CAS  PubMed  Google Scholar 

  • Tonino SH, van de Berg PJ, Yong SL, Ten Berge IJ, Kersten MJ, van Lier RAW, van Oers MH, Kater AP (2012) Expansion of effector T cells associated with decreased PD-1 expression in patients with indolent B cell lymphomas and chronic lymphocytic leukemia. Leuk Lymphoma 53(9):1785–1794

    Article  CAS  PubMed  Google Scholar 

  • Totterman T, Carlsson M, Simonsson B, Bengtsson M, Nilsson K (1989) T-cell activation and subset patterns are altered in B-CLL and correlate with the stage of the disease. Blood 74(2): 786–792

    CAS  PubMed  Google Scholar 

  • Utzschneider DT, Legat A, Fuertes Marraco SA, Carrié L, Luescher I, Speiser DE, Zehn D (2013) T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat Immunol 14(6):603–610

    Article  CAS  PubMed  Google Scholar 

  • Van den Hove LE, Van Gool SW, Vandenberghe P, Boogaerts MA, Ceuppens JL (1998) CD57+/CD28− T cells in untreated hemato-oncological patients are expanded and display a Th1-type cytokine secretion profile, ex vivo cytolytic activity and enhanced tendency to apoptosis. Leukemia 12(10):1573–1582

    Article  PubMed  Google Scholar 

  • Vardi A, Agathangelidis A, Stalika E, Karypidou M, Siorenta A, Anagnostopoulos A, Rosenquist R, Hadzidimitriou A, Ghia P, Sutton LA, Stamatopoulos K (2016) Antigen selection shapes the T-cell repertoire in chronic lymphocytic leukemia. Clin Cancer Res 22(1):167–174

    Article  CAS  PubMed  Google Scholar 

  • Virgilio L, Isobe M, Narducci MG, Carotenuto P, Camerini B, Kurosawa N, Abbas-ar-Rushdi, Croce CM, Russo G (1993) Chromosome walking on the TCL1 locus involved in T-cell neoplasia. Proc Natl Acad Sci 90(20):9275–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virgilio L, Narducci MG, Isobe M, Billips LG, Cooper MD, Croce CM, Russo G (1994) Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci 91(26): 12530–12534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  CAS  PubMed  Google Scholar 

  • Wherry EJ, Ha S-J, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27(4):670–684

    Article  CAS  PubMed  Google Scholar 

  • Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DAA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Ramsay AG, Gribben JG, Decker WK, Burks JK, Munsell M, Li S, Robinson SN, Yang H, Steiner D, Shah N, McMannis JD, Champlin RE, Hosing C, Zweidler-McKay PA, Shpall EJ, Bollard CM (2010) Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 ex vivo expansion. J Immunother 33(7):684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X-J, Dozmorov I, Li W, Yancopoulos S, Sison C, Centola M, Jain P, Allen SL, Kolitz JE, Rai KR, Chiorazzi N, Sherry B (2011) Identification of outcome-correlated cytokine clusters in chronic lymphocytic leukemia. Blood 118(19):5201–5210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Y, Byrd JC, Dubovsky JA (2014) The B-cell receptor pathway: a critical component of healthy and malignant immune biology. Semin Hematol 51(3):206–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gribben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McClanahan, F., Gribben, J. (2019). The Eμ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_139-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_139-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics