Skip to main content

New Techniques for Treatment and Recovery of Valuable Products from Olive Mill Wastewater

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management
  • 398 Accesses

Abstract

The olive oil industries produce large quantities of wastewater having an enormous amount of pollutants that provide a deleterious effect on environment drastically if discharged without proper treatment. Despite its treatment throughout the extraction process, this liquid waste still contains a very important oily residue, always considered as a pollutant waste. In this context, a new upgrading technique has been developed for the treatment and valorization of olive mill wastewater (OMW), to ensure a better environmental protection and to contribute to the improvement of the profitability of the oleicol field through the recovery of a multiple valuable products.

This chapter reviews both the treatment and valuation of OMW:

The first objective of this study is to describe the treatment of OMW by electrocoagulation (EC) in a stirred tank reactor (STR); a variable order kinetic (VOK) derived from the Langmuir-Freundlich equation was developed to simulate the kinetics of the detoxification of OMW with EC using bipolar aluminum electrodes. The results showed good agreement between the predictive equation and the experimental data.

The second part of this work was intended to extract and separate two polyunsaturated free fatty acids, with high purity by a fractional crystallization with urea from OMW collected from three olive oil extraction processes (traditional, modern, and semimodern). A comparative study was investigated with different OMW samples. By centrifugation, the oily phase would be extracted from OMW, which is destined to be a platform to obtain two fatty acids (oleic and linoleic acid), and to ensure total valorization of our effluent, a complementary process was carried out for production of a high quality soap, glycerol, and polyphenols.

Finally, a pilot plant was designed and developed for a full olive harvesting period (100 days), in one of the biggest olive production areas of Morocco, in order to carry out a socioeconomic study, which consists in studying the feasibility of OMW valuation project for the local olive oil extraction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Achak M, Mandi L, Ouazzani N (2009) Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. J Environ Manag 90(8):2771–2779

    Article  Google Scholar 

  • Adhoum N, Monser L (2004) Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chem Eng Process Process Intensif 43(10):1281–1287

    Article  Google Scholar 

  • Antonacci R, Brunetti A, Rozzi A, Santori M (1981) Trattamento Anaerobica di Acque di Vegetazione di Frantoio Risultati Preliminari. Ingegneria Sanitaria 6:357–363

    Google Scholar 

  • Atanassova D, Kefalas P, Psillakis E (2005) Measuring the antioxidant activity of olive oil mill wastewater using chemiluminescence. Environ Int 31(2):275–280

    Article  Google Scholar 

  • Aviani I, Laor Y, Medina S, Krassnovsky A, Raviv M (2010) Co-composting of solid and liquid olive mill wastes: management aspects and the horticultural value of the resulting composts. Bioresour Technol 101(17):6699–6706

    Article  Google Scholar 

  • Balice V, Carrieri C, Cera O, Rindone B (1988) The fate of tannin-like compounds from olive mill effluents in biological treatments. In: Proceedings of the fifth international symposium on anaerobic digestion. Academic Press, New York, pp 275–280

    Google Scholar 

  • Belfrage P, Vaughan M (1969) Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J Lipid Res 10(3):341–344

    Google Scholar 

  • Belongia BM, Haworth PD, Baygents JC, Raghavan S (1999) Treatment of alumina and silica chemical mechanical polishing waste by electrodecantation and electrocoagulation. J Electrochem Soc 146(11):4124–4130

    Article  Google Scholar 

  • Benyahia N, Zein K (2003) Analyse des problèmes de l’industrie de l’huile d’olive et solutions récemment développées. Sustainable Business Associates: Lausanne, 1–8

    Google Scholar 

  • Bennajah M, Gourich B, Essadki AH, Vial C, Delmas H (2009) Defluoridation of Morocco drinking water by electrocoagulation/electroflottation in an electrochemical external-loop airlift reactor. Chem Eng J 148(1):122–131

    Article  Google Scholar 

  • Bertin L, Ferri F, Scoma A, Marchetti L, Fava F (2011) Recovery of high added value natural polyphenols from actual olive mill wastewater through solid phase extraction. Chem Eng J 171(3):1287–1293

    Article  Google Scholar 

  • Brenes M, García A, García P, Rios JJ, Garrido A (1999) Phenolic compounds in Spanish olive oils. J Agric Food Chem 47(9):3535–3540

    Article  Google Scholar 

  • Borja R, Raposo F, Rincón B (2006) Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas y aceites 57(1):32–46

    Google Scholar 

  • Chang HY, Gladstone S (1965) Separation of oleic acid and linoleic acid by solvent extraction. J Am Oil Chem Soc 42(4):346–347

    Article  Google Scholar 

  • Chen X, Chen G, Yue PL (2000) Separation of pollutants from restaurant wastewater by electrocoagulation. Sep Purif Technol 19(1):65–76

    Article  Google Scholar 

  • De Marco E, Savarese M, Paduano A, Sacchi R (2007) Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem 104(2):858–867

    Article  Google Scholar 

  • De Ursinos JFR, Padilla RB (1992) Use and treatment of olive mill wastewater: current situation and prospects in Spain. Grasas Aceites 43(2):101–106

    Article  Google Scholar 

  • Demirer GN, Duran M, Güven E, Ugurlu Ö, Tezel U, Ergüder TH (2000) Anaerobic treatability and biogas production potential studies of different agro-industrial wastewaters in Turkey. Biodegradation 11(6):401–405

    Article  Google Scholar 

  • Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P (2013) Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem 48(10):1532–1552

    Article  Google Scholar 

  • Dhaouadi H, Marrot B (2010) Olive mill wastewater treatment in a membrane bioreactor: process stability and fouling aspects. Environ Technol 31(7):761–770

    Article  Google Scholar 

  • El Abbassi A, Khayet M, Kiai H, Hafidi A, García-Payo MDC (2013) Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep Purif Technol 104:327–332

    Article  Google Scholar 

  • Elkacmi R, Kamil N, Bennajah M, Kitane S (2016a) Extraction of oleic acid from Moroccan olive mill wastewater. Biomed Res Int 2016:1–9

    Article  Google Scholar 

  • Elkacmi R, Kamil N, Boulmal N, Bennajah M (2016b) Experimental investigations of oleic acid separation from olive oil and olive mill wastewater: a comparative study. J Mater Environ Sci 7:1485–1494

    Google Scholar 

  • Elkacmi R, Boulmal N, Kamil N, Bennajah M (2017a) Techno-economical evaluation of a new technique for olive mill wastewater treatment. Sustainable Production and Consumption 10:38–49

    Article  Google Scholar 

  • Elkacmi R, Kamil N, Bennajah M (2017b) Separation and purification of high purity products from three different olive mill wastewater samples. J Environ Chem Eng 5(1):829–837

    Article  Google Scholar 

  • Elkacmi R, Kamil N, Bennajah M (2017c) Upgrading of Moroccan olive mill wastewater using electrocoagulation: kinetic study and process performance evaluation. J Urban Environ Eng 11(1):30–41

    Google Scholar 

  • Ertuğrul S, Dönmez G, Takaç S (2007) Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. J Hazard Mater 149(3):720–724

    Article  Google Scholar 

  • Fiestas Ros de Ursinos JA, Borja R (1992) Use and treatment of olive mill wastewater: current situation and prospects in Spain. Grasas Aceites (2):101–106

    Google Scholar 

  • Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73(2):627–650

    Google Scholar 

  • Francoeur ML, Golden GM, Potts RO (1990) Oleic acid: its effects on stratum corneum in relation to (trans) dermal drug delivery. Pharm Res 7(6):621–627

    Article  Google Scholar 

  • Frascari D, Bacca AEM, Zama F, Bertin L, Fava F, Pinelli D (2016) Olive mill wastewater valorisation through phenolic compounds adsorption in a continuous flow column. Chem Eng J 283:293–303

    Article  Google Scholar 

  • Galanakis CM, Tornberg E, Gekas V (2010) Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT-Food Sci Technol 43(7):1018–1025

    Article  Google Scholar 

  • Galiatsatou P, Metaxas M, Arapoglou D, Kasselouri-Rigopoulou V (2002) Treatment of olive mill waste water with activated carbons from agricultural by-products. Waste Manag 22(7):803–812

    Article  Google Scholar 

  • Garcia-Castello E, Cassano A, Criscuoli A, Conidi C, Drioli E (2010) Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res 44(13):3883–3892

    Article  Google Scholar 

  • Gelegenis J, Georgakakis D, Angelidaki I, Christopoulou N, Goumenaki M (2007) Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure. Appl Energy 84(6):646–663

    Article  Google Scholar 

  • Ginos A, Manios T, Mantzavinos D (2006) Treatment of olive mill effluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phytotoxicity. J Hazard Mater 133(1):135–142

    Article  Google Scholar 

  • Hamdi M (1993) Future prospects and constraints of olive mill wastewaters use and treatment: a review. Bioprocess Eng 8(5–6):209–214

    Google Scholar 

  • Hanafi F, Assobhei O, Mountadar M (2010) Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. J Hazard Mater 174(1):807–812

    Google Scholar 

  • Hinton A Jr, Ingram KD (2000) Use of oleic acid to reduce the population of the bacterial flora of poultry skin. J Food Prot 63(9):1282–1286

    Article  Google Scholar 

  • Hu CY, Lo SL, Kuan WH (2007) Simulation the kinetics of fluoride removal by electrocoagulation (EC) process using aluminum electrodes. J Hazard Mater 145(1):180–185

    Article  Google Scholar 

  • Jenke DR, Diebold FE (1984) Electroprecipitation treatment of acid mine wastewater. Water Res 18(7):855–859

    Article  Google Scholar 

  • Kabdaşlı I, Arslan T, Ölmez-Hancı T, Arslan-Alaton I, Tünay O (2009) Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. J Hazard Mater 165(1):838–845

    Google Scholar 

  • Katsoyannos E, Chatzilazarou A, Gortzi O, Lalas S, Konteles S, Tataridis P (2006) Application of cloud point extraction using surfactants in the isolation of physical antioxidants (phenols) from olive mill wastewater. Fresenius Environ Bull 15(9):1122–1125

    Google Scholar 

  • Keppler JG, Sparreboom S, Von Mikusch JD (1959) A note on the preparation of pure oleic and linoleic acid. J Am Oil Chem Soc 36(7):308–309

    Article  Google Scholar 

  • Khoufi S, Feki F, Sayadi S (2007) Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes. J Hazard Mater 142(1):58–67

    Article  Google Scholar 

  • Kontos SS, Koutsoukos PG, Paraskeva CA (2014) Removal and recovery of phenolic compounds from olive mill wastewater by cooling crystallization. Chem Eng J 251:319–328

    Article  Google Scholar 

  • Larrucea E, Arellano A, Santoyo S, Ygartua P (2001) Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. Eur J Pharm Biopharm 52(2):113–119

    Article  Google Scholar 

  • Loury M (1968) Les procédés physiques de séparation. Séparation par changement d’état: distillation, entrainement, cristallisation, inclusion. Journées Inform, Méth Instrum Anal Contrôle Corps gras Prod App:59–70

    Google Scholar 

  • Martilotti E (1983) Use of olive by-products in animal feeding in Italy. Division de la production et de la santé animale. FAO, Rome

    Google Scholar 

  • Matteson MJ, Dobson RL, Glenn RW, Kukunoor NS, Waits WH, Clayfield EJ (1995) Electrocoagulation and separation of aqueous suspensions of ultrafine particles. Colloids Surf A Physicochem Eng Asp 104(1):101–109

    Article  Google Scholar 

  • Meunier N, Drogui P, Montané C, Hausler R, Mercier G, Blais JF (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater 137(1):581–590

    Article  Google Scholar 

  • Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82(1):25

    Article  Google Scholar 

  • Mouncif M, Tamoh S, Faid M, Achkari-Begdouri A (1993) A study of chemical and microbiological characteristics of olive mill waste water in Morocco. Grasas Aceites 44(6):335–338

    Article  Google Scholar 

  • Murray KE (1955) Low pressure fractional distillation and its use in the investigation of lipids. Prog Chem Fats Other Lipids 3:243–273

    Article  Google Scholar 

  • Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81(9):1475–1485

    Article  Google Scholar 

  • Paredes C, Bernal MP, Cegarra J, Roig A (2002) Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes. Bioresour Technol 85(1):1–8

    Article  Google Scholar 

  • Razouk R, Oubella K, Chergaoui A (2012) Changes induced by olive mill wastewaters used as organic fertilizer on polyphenol content, pH and salinity of an alkaline soil. J Sci Res Rep 2(2):559–570

    Google Scholar 

  • Roig A, Cayuela ML, Sánchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26(9):960–969

    Article  Google Scholar 

  • Sassi AB, Boularbah A, Jaouad A, Walker G, Boussaid A (2006) A comparison of olive oil mill wastewaters (OMW) from three different processes in Morocco. Process Biochem 41(1):74–78

    Article  Google Scholar 

  • Sayadi S, Allouche N, Jaoua M, Aloui F (2000) Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochem 35(7):725–735

    Article  Google Scholar 

  • Scoma A, Varela-Corredor F, Bertin L, Gostoli C, Bandini S (2016) Recovery of VFAs from anaerobic digestion of dephenolized olive mill wastewaters by electrodialysis. Sep Purif Technol 159:81–91

    Article  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    Google Scholar 

  • Soto ML, Moure A, Domínguez H, Parajó JC (2011) Recovery, concentration and purification of phenolic compounds by adsorption: a review. J Food Eng 105(1):1–27

    Article  Google Scholar 

  • Swern D, Parker WE (1952) Application of urea complexes in the purification of fatty acids, esters, and alcohols. II. Oleic acid and methyl oleate from olive oil. J Am Oil Chem Soc 29(12):614–615

    Article  Google Scholar 

  • Takaç S, Karakaya A (2009) Recovery of phenolic antioxidants from olive mill wastewater. Recent Patent Chem Eng 2(3):230–237

    Article  Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol 84(3):251–257

    Article  Google Scholar 

  • Un UT, Koparal AS, Ogutveren UB (2009) Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. J Environ Manag 90(1):428–433

    Article  Google Scholar 

  • Vlyssides AG, Loizides M, Karlis PK (2004) Integrated strategic approach for reusing olive oil extraction by-products. J Clean Prod 12(6):603–611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Elkacmi, R., Bennajah, M. (2018). New Techniques for Treatment and Recovery of Valuable Products from Olive Mill Wastewater. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_157-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_157-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics