Keywords

1 Introduction

It is known that the Euclidean algorithm is one of the oldest algorithms which appear in the computation of the greatest common divisor (GCD). Although the original Euclidean algorithm was presented to compute the positive greatest common divisor of two given positive integers, later it was generalized to polynomials in one variable over a field, and further to polynomials in any number of variables over any unique factorization domain in which the greatest common divisor can be computed.

1.1 GCD Computing Algorithms

The Euclidean algorithm for computing polynomial GCD evolved with the early work of Brown (see, e.g., [14, 15]) and thereafter several other authors studied: the degree of the greatest common divisor of two polynomials in connection to a companion matrix [2], stable algorithms to compute polynomial \(\varepsilon \)-GCD using the displacement structure of Sylvester and Bezout matrices [10], generalization of the Euclidean algorithm (determining the greatest common left divisor) to polynomial matrices [1], estimation of the degree of \(\varepsilon \)-GCDs at a low computational cost [41], approximate factorization of multivariate polynomials with complex coefficients containing numerical noise [35], generalized Euclidean algorithm of the Routh–Hurwitz type [19], a numeric parameter for determining two prime polynomials under small perturbations with the help of an inversion formula for Sylvester matrices [5, 6], algorithms to approximate GCD for polynomials with coefficients of floating-point numbers [39], and so on. Our intention is not to consider the Euclidean algorithm via the above methods but to see it via the Hessenberg displacement structure of a Bezoutian over a system of polynomials \(\{Q\}=\{Q_k(x)\}_{k=0}^n\) satisfying recurrence relations having deg \(Q_k(x)=k\) and to derive a fast algorithm based on quasiseparable polynomials.

1.2 Connection to Bezoutian

Given a pair of polynomials a(x) and b(x) with deg \(a(x)=n\) and deg \(b(x) \le n\), the classical Bezoutian of a(x) and b(x) is the bilinear form given by

$$ \frac{a(x)b(y)-a(y)b(x)}{x-y}=\displaystyle \sum _{i=0}^{n-1}\sum _{j=0}^{n-1}s_{ij}x^iy^j $$

and the Bezoutian matrix of a(x) and b(x) is defined by the \(n \times n\) symmetric matrix \(Bez(a, b) = \left[ s_{ij} \right] _{i,j=0}^{n-1}\).

In the eighteenth century, the Bezoutian was invented in order to build a bridge between polynomial and linear algebra. As it was remarked in [23, 44], the Bezoutian concept in principle already evolves from Euler’s work in elimination theory for polynomials. Hermite was the first who studied Bezoutians in more detail to solve root localization problems for polynomials (Routh–Hurwitz), which are important in particular for the investigation of the stability of linear systems. Note that in the early stages of work related to Bezoutians, the language of quadratic forms was more common than matrix language. After the first observation of inversion of Bezoutians as Toeplitz or Hankel by L.T. Lander in 1974, there were significant results published to show that the inverse of Toeplitz is T-Bezoutian and Hankel is H-Bezoutian (see, e.g., [23, 26, 27, 30, 43]). These works show us great examples on the importance of matrix representations for the inverses of Hankel, Toeplitz, and more general types of structured matrices in the construction of fast algorithms for solving structured systems of equations and interpolation problems.

As this paper connects the generalized Bezoutian with confederate matrices via a Hessenberg displacement structure, we should remark heavily on Barnett’s result [3] on showing the important relationship between a Bezoutian matrix and a matrix polynomial associated with the companion matrix. Apart from this, several others studied connections of Bezoutians to GCD including: computing the greatest common right divisor using Sylvester and generalized Bezoutian resultant matrices [13], matrix representations for generalized Bezoutians via generalized companion matrices [43], Bezoutians of Chebyshev polynomials of first and second kind [20], generalized Barnett factorization formula for polynomial Bezoutian matrices and reduction of Bezoutian via polynomial Vandermonde matrix [45], computation of polynomial GCD and coefficients of the polynomials generated in the Euclidean scheme via Bezoutian [11], computation of the GCD of two polynomials using Bernstein–Bezoutian matrix [12], and so on.

1.3 Connection to Displacement Structure

This paper describes a fast Euclid-type algorithm for quasiseparable polynomials via a fast Schur-type algorithm for a Bezoutian matrix preserving a Hessenberg displacement structure. The structured matrices like Toeplitz, Hankel, Toeplitz plus Hankel, Vandermonde, Cauchy, etc. belong to a more general family of matrices with low rank displacement structure and that can be used to design fast algorithms.

Definition 1

A linear displacement operator \(\varTheta _{\varOmega ,M ,F,N}(.): C^{n\times n} \rightarrow C^{n\times n}\) is a function which transforms each matrix \(R \in C^{n\times n}\) to the matrix given by the displacement equation

$$\begin{aligned} \varTheta _{\varOmega ,M ,F,N}(R)=\varOmega \,RM-FRN=GB \end{aligned}$$
(1)

where \(\varOmega ,M ,F, N \in C^{n\times n}\) are given matrices and \(G \in C^{n\times \alpha },\,B \in C^{\alpha \times n}\). The pair \(\{G, B\}\) on last right in (1) is called a minimal generator of R and

$$\begin{aligned} rank \,\left\{ \varTheta _{\varOmega ,M ,F, N}(R) \right\} =\alpha . \end{aligned}$$
(2)

Example 1

Toeplitz matrix \(T=[t_{i-j}]_{1 \le i, j \le n}\) satisfies the displacement equation

$$\begin{aligned} \begin{aligned} T-Z \cdot T \cdot Z^T&= \begin{bmatrix} t_0&t_{-1}&\cdots&t_{-n+1} \\ t_1&0&\cdots&0 \\ \vdots&\vdots&\ddots&\vdots \\ t_{n-1}&0&\cdots&0 \end{bmatrix}&\\=&\left[ \begin{array}{cc} \frac{t_0}{2} &{} 1\\ t_1&{} 0\\ \vdots &{} \vdots \\ t_{n-1}&{}0 \end{array} \right] \left[ \begin{array}{llll} 1 &{}0 &{} \cdots &{} 0\\ \frac{t_0}{2} &{}t_{-1} &{}\cdots &{}t_{-n+1} \end{array}\right] \end{aligned} \end{aligned}$$

where Z is a lower shift matrix. Thus, \(\text {rank}\left\{ \varTheta _{I, I, Z, Z^T}(T) \right\} = 2\).

Example 2

Hankel matrix \(H=[h_{i+j-2}]_{1 \le i,j \le n}\) satisfies the displacement equation

$$\begin{aligned} \begin{aligned} Z \cdot H-H \cdot Z^T&= \left[ \begin{array}{ccccc} 0 &{} -h_0 &{} -h_1 &{} \cdots &{} -h_{n-2}\\ h_0 &{} 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \vdots &{}\ddots &{}\vdots \\ h_{n-2} &{} 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] \\&= \left[ \begin{array}{cc} 1 &{} 0\\ 0 &{} h_0 \\ \vdots &{} \vdots \\ 0 &{} h_{n-2} \end{array} \right] \left[ \begin{array}{rrrr} 0 &{} -h_0 &{} \cdots &{} -h_{n-2}\\ 1 &{} 0 &{} \cdots &{} 0 \end{array} \right] \end{aligned} \end{aligned}$$

where Z is a lower shift matrix. Thus, \(\text {rank}\left\{ \varTheta _{Z, I, I, Z^T}(H) \right\} = 2\).

A fast algorithm for the structured matrices which preserve displacement structure first appeared in Morf’s Thesis [38]. Thus the crucial shift-low-rank updating property was recognized by the author as the proper generalization of the Toeplitz and Hankel structured matrices. The algorithm was called Fast Cholesky decomposition. In June 1971, computer programs were successfully completed by the author. In the same Thesis he announced a divide-and-conquer algorithm but it was not shown how to design a super fast algorithm. Such an algorithm was obtained in Brent-Gustafson-Yun in 1979. Moreover the paper of Kailath et al. [31] proved crucial results demonstrating that the Schur complement inherits the displacement rank. This idea was the opening of a new chapter, as it filled in the missing link of proving a super fast complexity in Morf’s Thesis. Delosme in [17] obtained formulas for generator updates for the Toeplitz case and claimed that those coincided with the classical Schur algorithm. Furthermore one can find (e.g., in [18, 32,33,34]) algorithms that connect structured matrices with displacement equations to derive fast algorithms. Many polynomial computations can be reduced to structured matrix computations. In this way, the matrix interpretation of many classical polynomial algorithms for determining GCD can be expressed.

The displacement equations of the structured matrices are used to design fast Schur-type algorithms having complexity \(\mathscr {O}(n^2)\). The existence of fast Schur-type algorithms for Toeplitz and Toeplitz-like matrices having low displacement rank was shown in [31, 38]. It was shown in [25] that the low displacement rank Vandermonde-like and Cauchy-like matrices can be used to derive fast Schur-type algorithms. We should also recall the fast \(\mathscr {O}(n^2)\) algorithm for Cauchy-like displacement structured matrices via Gaussian elimination with partial pivoting and fast algorithms for Toeplitz-like, Toeplitz-plus-Hankel-like, Vandermonde-like matrices via transferring those matrices to Cauchy-like matrices in [21]. Moreover in [40] a fast Schur-type algorithm with stability criteria was presented for the factorization of Hankel-like matrices. Finally, the crucial result of the Schur-type algorithm was presented by Heinig and Olshevsky [24] for the matrices with Hessenberg displacement structure.

While the displacement structure is considered we should recall some results on Schur-type algorithms in connection to the Bezoutian. At this point, we should mention the results on: computing Schur type and hybrid (Schular type and Levinson type) algorithms to solve the system of equations involving Toeplitz-plus-Hankel matrices [29], computing a Schur-type algorithm for LDU-decomposing the strongly regular Toeplitz-plus-Hankel matrix [46], solving a system of equations by split algorithms for skewsymmetric Toeplitz matrices, centrosymmetric Toeplitz-plus-Hankel matrices, and general Toeplitz-plus-Hankel matrices [28], and more importantly, Olshevsky’s claim on Schur-type algorithms in connection to Euclid-type algorithms via the Bezoutian in the 10th ILAS Conference in 2002 and 16th International Symposium on Mathematical Theory of Networks and Systems in 2004.

1.4 Main Results

In [24], a Schur-type algorithm was presented to compute a recursive triangular factorization \(R=LDU\) for a strongly nonsingular \(n \times n\) matrix R satisfying the displacement equation:

$$ RY - VR = GH^T $$

with upper and lower Hessenberg matrices Y and V, respectively, and \(n \times \alpha \) matrices G and H where \(\alpha \) is small compared to n. The Schur–Hessenberg algorithm in [24] will have complexity \(\mathscr {O}(n^3)\) in general for dense and unstructured Hessenberg matrices Y and V. However, one can explore the structures of Y and V to derive a \(\mathscr {O}(n^2)\) algorithm. Thus in this paper, we explore the structures of Y and V to derive a fast hybrid of Schur-type and Euclid-type algorithms in connection with Bezoutian and confederate matrices over the system of quasiseparable polynomials.

We observe a displacement equation of a Bezoutian matrix associated with the reverse polynomials in connection to a companion matrix over the system of monomial basis (this displacement equation (14) is a variant of the Lancaster–Tismenetsky equation in [36]). We then use this to derive and generalize a displacement equation for a generalized Bezoutian matrix with confederate matrix respect to the system of polynomials \(\{Q\}=\{Q_k(x)\}_{k=0}^n\) satisfying recurrence relations having deg \(Q_k(x)=k\). Then, the displacement equation for a generalized Bezoutian with confederate matrix, and characteristics of the Schur complement of the generalized Bezoutian and generator updates for confederate and generalized Bezoutian matrices are used to derive the Schur–Euclid–Hessenberg algorithm. Finally, to derive a fast \(\mathscr {O}(n^2)\) complexity Schur–Euclid–Hessenberg algorithm we take quasiseparable polynomials as the main tool.

Definition 2

A matrix \(A=\left[ a_{ij} \right] \) is called (H, 1)-quasiseparable (i.e., Hessenberg-1-quasiseparable) if (i) it is strongly upper Hessenberg (\(a_{i+1,i} \ne 0\) for \(i=1, 2, \cdots , n-1\) and \(a_{i,j}=0\) for \(i>j+1\)), and (ii) max (rank \(A_{12}\)) = 1 where the maximum is taken over all symmetric partitions of the form

$$ A=\left[ \begin{array}{c|c} \star &{} A_{12}\\ \hline \star &{} \star \end{array}\right] $$

\(\bullet \) Let \(A=[a_{ij}]\) be a (H, 1)-quasiseparable matrix. For \(\alpha _{i}=\frac{1}{a_{i+1, i}},\) then the system of polynomials related to A via

$$ r_k(x)=\alpha _1\alpha _2\cdots \alpha _k det (xI-A)_{(k \times k)} $$

is called a system of (H, 1)-quasiseparable polynomials. In the classification paper [9], the characterization of orthogonal polynomials (orthogonal with respect to a weighted inner product (definite or indefinite) on the real line) and Szegö polynomials (orthogonal on the unit circle with respect to a weighted inner product) via tridiagonal and unitary Hessenberg matrices, respectively, are observed to belong to a wider class of (H, 1)-quasiseparable polynomials and matrices, respectively. Hence once a fast \(\mathscr {O}(n^2)\) Schur–Euclid-type algorithm for quasiseparable polynomials is established, we analyze the complexity of Schur–Euclid-type algorithms for orthogonal and Szegö polynomials.

1.5 Structure of the Paper

The structure of the paper is as follows. In the next Sect. 2, we state polynomial division in a matrix form, arithmetic complexity, and see the connection to the Euclidean algorithm in matrix forms. In Sect. 3, we express displacement equations and characterizations of the Bezoutian matrix in connection to the Schur complement and reverse polynomials. Then in Sect. 4, we generalize the displacement equation in the former section via generalized Bezoutians and confederate matrices over the system of polynomials \(\{Q\}=\{Q_k(x)\}_{k=0}^n\) satisfying recurrence relations having deg \(Q_k(x)=k\). At the end of the section, we present a hybrid of Euclid-type algorithm and Schur-type algorithm using the Hessenberg displacement structure of the Bezoutian and call it the Schur–Euclid–Hessenberg algorithm. Finally in Sect. 5, we establish a fast \(\mathscr {O}(n^2)\) Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials while addressing the complexity of the algorithm for its subclasses: orthogonal and Szegö polynomials.

2 One Way to Express Polynomial Division in Matrix Form

In this section, we state polynomial division in a matrix form. In the meantime, we discuss the arithmetic cost of computing the polynomial division and the matrix form of the Euclidean algorithm in connection to polynomials. Similar to this approach one can see the results in [42] to compute polynomial division efficiently. We first give the Euclidean algorithm for computing the GCD of polynomials.

Let a(x) and b(x) be given with deg \(a(x) \ge \) deg b(x); then the Euclidean algorithm applies to a(x) and b(x) and generates a sequence of polynomials \(r^{(i)}(x), q^{(i-1)}(x)\), such that

$$\begin{aligned} \begin{matrix} r^{(0)}(x)=a(x), \qquad r^{(1)}(x)=b(x)\\ r^{(i-2)}(x)=q^{(i-1)}(x) r^{(i-1)}(x) + r^{(i)}(x), \qquad i=2, 3, \cdots , t+1 \end{matrix} \end{aligned}$$
(3)

where \(r^{(i)}(x)\) is the remainder of the division of \(r^{(i-2)}(x)\) by \(r^{(i-1)}(x)\). The algorithm stops when a remainder \(r^{(t+1)}(x)=0\) is found; then \(r^{(t)}(x)\) is the desired GCD of a(x) and b(x). Note that since the deg \(r^{(0)}(x)>\) deg \(r^{(1)}(x)> \cdots > \) deg \(r^{(t+1)}(x)\), the algorithm must terminate in a finite number of steps. If \(r^{(t)}(x)\) is a constant then \(r^{(0)}(x)\) and \(r^{(1)}(x)\) are said to be relatively prime.

The following results show polynomial division (one step of a variant of Euclidean algorithm) in matrix form. Here we have considered \(-c(x)\) as the remainder of the polynomial division of a(x) by b(x) just to be compatible with future discussions.

Lemma 1

Let \(a(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_0\) and \(b(x)=b_{n-k}x^{n-k}+b_{n-k-1}x^{n-k-1}+\cdots +b_0\) where \(k \ge 1\). Then the polynomial division of a(x) by b(x) can be seen via:

$$\begin{aligned} -\begin{bmatrix} 0\\ c_{n-k-1} \\ c_{n-k-2} \\ \vdots \\ c_{0} \end{bmatrix} + q_0 \begin{bmatrix} b_{n-k} \\ b_{n-k-1} \\ b_{n-k-2} \\ \vdots \\ b_{0} \end{bmatrix} = \begin{bmatrix} a_{n-k} \\ a_{n-k-1} \\ a_{n-k-2} \\ \vdots \\ a_{0} \end{bmatrix} - \widehat{B_k} \,B_k^{-1} \begin{bmatrix} a_{n} \\ a_{n-1} \\ \vdots \\ a_{n-k+1} \end{bmatrix} \end{aligned}$$
(4)

where \(-c(x)=-c_{n-k-1}x^{n-k-1}-c_{n-k-2}x^{n-k-2}-\cdots -c_0\) is the remainder, \(q_0\) is the constant term of the quotient of polynomial division,

$$ B_{k}:=toeplitz\left( [b_{n-k}: b_{n-2k+1}], [b_{n-k},\,\, zeros(1, k-1)]\right) , $$

and

$$ \widehat{B_k}= \left[ \begin{array}{ccccccc} b_{n-2k} &{} b_{n-2k+1} &{} b_{n-2k+2} &{} &{} &{}\cdots &{} b_{n-k-1} \\ b_{n-2k-1} &{} b_{n-2k} &{} b_{n-2k+1} &{} &{} &{}\cdots &{} \vdots \\ b_{n-2k-2} &{} b_{n-2k-1} &{} b_{n-2k} &{} &{} &{} &{} \\ \vdots &{} \vdots &{} \vdots &{} &{} &{} &{} \vdots \\ b_0 &{} b_1 &{}\vdots &{} &{} &{} &{} \\ 0 &{} b_0 &{} b_1 &{} &{} &{} &{} \\ 0 &{} 0 &{} \ddots &{} \ddots &{} &{} &{}\vdots \\ &{} &{}\ddots &{} \ddots &{} &{} &{} \\ \vdots &{} &{} &{} &{} 0 &{} b_0 &{}b_1 \\ &{} &{} &{} &{} &{} 0 &{} b_0\\ 0 &{} &{}\cdots &{} &{} &{} &{} 0 \end{array} \right] . $$

Proof

If \(q(x)=q_{k}x^{k} + q_{k-1}x^{k-1}+ \cdots + q_0\) and \(-c(x)\) are the quotient and remainder of the polynomial division of a(x) by b(x) then we can say

$$\begin{aligned}&a_{n}x^{n} + a_{n-1} x^{n-1} + \cdots + a_0 = (q_{k}x^{k} + q_{k-1}x^{k-1}+ \cdots + q_0) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \cdot (b_{n-k}x^{n-k}+b_{n-k-1}x^{n-k-1}+\cdots +b_0) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \,\,\,- (c_{n-k-1}x^{n-k-1}+c_{n-k-2}x^{n-k-2}+\cdots +c_0)\qquad \quad \end{aligned}$$
(5)

By equating the coefficients of \(x^n\) to \(x^{n-k+1}\) in (5);

$$\begin{aligned} \begin{bmatrix} a_{n}\\ a_{n-1} \\ \vdots \\ a_{n-k+2}\\ a_{n-k+1} \end{bmatrix}= & {} \begin{bmatrix} b_{n-k}&0&\cdots&\cdots&0 \\ b_{n-k-1}&b_{n-k}&\ddots&\,&\vdots \\ b_{n-k-2}&b_{n-k-1}&b_{n-k}&\ddots&\vdots \\ \vdots&\,&\ddots&\ddots&0 \\ b_{n-2k+1}&b_{n-2k+2}&\ldots&b_{n-k-1}&b_{n-k}\\ \end{bmatrix} \cdot \begin{bmatrix} q_{k}\\ q_{k-1}\\ \vdots \\ q_{2}\\ q_1 \end{bmatrix} \end{aligned}$$
(6)

Note that the first matrix in the RHS of (6) is a lower Toeplitz matrix (say \(B_{k}\) where \(B_{k}:=toeplitz\left( [b_{n-k}: b_{n-2k+1}], [b_{n-k},\,\, zeros(1, k-1)]\right) \) so \(q_k\)’s (except \(q_0\)) can be recovered from:

$$\begin{aligned} \begin{bmatrix} q_{k}\\ q_{k-1} \\ \vdots \\ q_{2}\\ q_1 \end{bmatrix} = \left[ B_{k}\right] ^{-1} \cdot \begin{bmatrix} a_{n}\\ a_{n-1} \\ \vdots \\ a_{n-k+2}\\ a_{n-k-1} \end{bmatrix} \end{aligned}$$
(7)

Equating coefficients of \(x^{n-k}\) to the constant term in (5);

$$\begin{aligned} -\begin{bmatrix} 0\\ c_{n-k-1}\\ c_{n-k-2} \\ \vdots \\ c_{0} \end{bmatrix} = \begin{bmatrix} a_{n-k} \\ a_{n-k-1}\\ \vdots \\ a_{0} \end{bmatrix} - \left[ \begin{array}{ccccccc} b_{n-2k} &{} b_{n-2k+1} &{} b_{n-2k+2} &{} &{}\cdots &{} &{} b_{n-k} \\ b_{n-2k-1} &{} b_{n-2k} &{} b_{n-2k+1} &{} &{} \cdots &{} &{} b_{n-k-1}\\ \vdots &{} \vdots &{} \vdots &{} &{} &{} &{} \vdots \\ b_1 &{} \vdots &{} \vdots &{} &{} &{} &{}\vdots \\ b_0 &{} b_1 &{} \vdots &{} &{} &{} &{} \\ 0 &{} b_0 &{} b_1 &{} &{} &{} &{} \vdots \\ 0 &{} 0 &{} b_0 &{} b_1 &{} &{} &{} \vdots \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} &{} \ddots &{} \\ \vdots &{} &{}\ddots &{} \ddots &{} &{}\ddots &{}b_1\\ 0&{} \cdots &{} \cdots &{} 0 &{}0 &{} &{} b_0 \end{array} \right] \cdot \begin{bmatrix} q_{k} \\ q_{k-1} \\ q_{k-2} \\ \vdots \\ q_{0} \end{bmatrix} \end{aligned}$$

By rearranging the above system we get

$$\begin{aligned} -\begin{bmatrix} 0\\ c_{n-k-1}\\ c_{n-k-2} \\ \vdots \\ c_{0} \end{bmatrix}+ & {} q_0 \begin{bmatrix} b_{n-k} \\ b_{n-k-1}\\ \vdots \\ b_{0} \end{bmatrix} \\ = \begin{bmatrix} a_{n-k} \\ a_{n-k-1}\\ \vdots \\ a_{0} \end{bmatrix}- & {} \left[ \begin{array}{ccccccc} b_{n-2k} &{} b_{n-2k+1} &{} b_{n-2k+2} &{} &{}\cdots &{} &{} b_{n-k-1} \\ b_{n-2k-1} &{} b_{n-2k} &{} b_{n-2k+1} &{} &{} \cdots &{} &{} b_{n-k-2}\\ \vdots &{} \vdots &{} \vdots &{} &{} &{} &{} \vdots \\ b_1 &{} \vdots &{} \vdots &{} &{} &{} &{}\vdots \\ b_0 &{} b_1 &{} \vdots &{} &{} &{} &{} \\ 0 &{} b_0 &{} b_1 &{} &{} &{} &{} \vdots \\ 0 &{} 0 &{} b_0 &{} b_1 &{} &{} &{} \vdots \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} &{} \ddots &{} \\ \vdots &{} &{}\ddots &{} \ddots &{} &{}\ddots &{}b_1\\ 0&{} \cdots &{} \cdots &{} 0 &{}0 &{} &{} b_0\\ 0&{} \cdots &{} \cdots &{} 0 &{}0 &{} &{} 0 \end{array} \right] \cdot \begin{bmatrix} q_{k} \\ q_{k-1} \\ q_{k-2} \\ \vdots \\ q_{1}. \end{bmatrix} \end{aligned}$$

However we can now use (7) to rewrite the right side of the above equation and which yields the result (4).

Corollary 1

Let a(x) and b(x) be two polynomials such that deg \(a(x) =\) deg \(b(x) + 1\) with deg \(a(x)=n\). Then the polynomial division of a(x) by b(x) can be seen via:

$$\begin{aligned} -\begin{bmatrix} 0\\ c_{n-2} \\ \vdots \\ c_{1}\\ c_{0} \end{bmatrix} + q_0 \begin{bmatrix} b_{n-1} \\ b_{n-2} \\ \vdots \\ b_{0} \end{bmatrix} = \begin{bmatrix} a_{n-1} \\ a_{n-2} \\ \vdots \\ a_{0} \end{bmatrix} - q_1 Z^T \begin{bmatrix} b_{n-1} \\ b_{n-2} \\ \vdots \\ b_{1}\\ b_0 \end{bmatrix} \end{aligned}$$

where \(q_1=a_n\,b^{-1}_{n-1}\), and Z is the lower shift matrix.

The following gives the Toeplitz matrix-based calculation of the quotient of the polynomial division and its arithmetic cost.

Corollary 2

If a(x) and b(x) are two polynomials such that deg \(a(x) =n\) and deg \(b(x) =n-k\) where \(k \ge 1\), then the arithmetic cost of computing the quotient of the polynomial division is \(\mathscr {O}(n \log n)\) operations.

Proof

Let q(x) be the quotient of the polynomial division of a(x) by b(x) stated via (5). Then the coefficients of quotient, \(q_k\), can be recovered via

$$\begin{aligned} \begin{bmatrix} q_{k}\\ q_{k-1} \\ \vdots \\ q_{1}\\ q_{0} \end{bmatrix}= & {} \begin{bmatrix} b_{n-k}&0&\cdots&\cdots&0 \\ b_{n-k-1}&b_{n-k}&\ddots&\,&\vdots \\ b_{n-k-2}&b_{n-k-1}&b_{n-k}&\ddots&\vdots \\ \vdots&\,&\ddots&\ddots&0 \\ b_{n-2k}&b_{n-2k+1}&\ldots&b_{n-k-1}&b_{n-k}\\ \end{bmatrix}^{-1} \cdot \begin{bmatrix} a_{n}\\ a_{n-1}\\ \vdots \\ a_{n-k+1}\\ a_{n-k} \end{bmatrix} \nonumber \\= & {} B_{k+1}^{-1}\cdot \begin{bmatrix} a_{n}\\ a_{n-1}\\ \vdots \\ a_{n-k+1}\\ a_{n-k} \end{bmatrix} \end{aligned}$$
(8)

Note that \(B_{k+1}=b_{n-k}I+b_{n-k-1}Z+\cdots + b_{n-2k}Z^k=\bar{b}(Z)\) where Z is the lower shift matrix and \(Z^{k+1}=0\). Thus \(B_{k+1}^{-1}=\bar{b}(Z)^{-1} mod \,\,\, Z^{k+1}\). Note that \(B_{k+1}^{-1}\) is also a lower triangular Toeplitz matrix which is defined by its first column. Now by following [42], one can apply a divide-and-conquer technique for the block form of the \(B^{-1}_{k+1}\) to calculate the first column of \(B^{-1}_{k+1}\). This yields the cost of computing \(B^{-1}_{k+1}\) and also a Toeplitz matrix times a vector is of order \(\mathscr {O}(n\,\log n)\).

The following shows the cost of computing sequences of remainder polynomials via a variant of the Euclidean algorithm which corresponds to polynomial division in matrix form.

Corollary 3

If the sequence of remainders of the polynomial division is computed via Lemma 1, then the cost of computing one division is \(\mathscr {O}(n \log ^2 n)\) and \(\mathscr {O}(n\,t\, \log ^2 n)\) for generating the full sequence where n is the degree of the divisor and t is the number of steps.

Proof

As stated in Corollary 2, the cost of computing the quotient of the polynomial division is \(\mathscr {O}(n\, \log n)\). Thus computing \(B_k^{-1}\bar{a}\) where \(\bar{a}=\begin{bmatrix}a_n&a_{n-1}&\cdots&a_{n-k+1} \end{bmatrix}^T\) costs \(\mathscr {O}(n\, \log n)\) operations. Now the multiplication of \(B_k^{-1}\bar{a}\) by a tall sparse matrix \(\widehat{B}_{k}\) together with vector subtraction yields \(\mathscr {O}(n\, \log ^2 n)\) operations for one division or one step in calculating the remainder. Thus to generate t steps or for a full sequence it costs \(\mathscr {O}(n\,t\, \log ^2 n)\) operations.

The next section shows the displacement equations of Bezoutian and Schur complement in connection to reverse polynomials.

3 Displacement Structures and Characterizations of Bezoutian

This section describes two types of displacement equations of the Bezoutian while introducing characterization of the Bezoutian via Gaussian elimination and Schur complement. These displacement equations of Bezoutians are elaborated in connection to a lower shift matrix and a companion matrix but associated with the reverse polynomials.

Definition 3

Let \(a(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_0\). Then, the reverse polynomial of a(x) is defined as \(a^{\sharp }(x)=x^na(x^{-1})= a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \).

We define the Bezoutian associated with the reverse polynomials as follows.

Definition 4

Let \( P = \{1, x, x^2,..., x^n\}\) be a monomial basis and let a(x) and b(x) be polynomials of degree not greater than n. Then a matrix \( S^{\sharp } = [s_{ij} ]\) is the Bezoutian associated with the reverse polynomials \(a^{\sharp }(x)\) and \(b^{\sharp }(x)\), say \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\), if

$$\begin{aligned} S(a^{\sharp }, b^{\sharp }) = \frac{a^{\sharp }(x)\cdot b^{\sharp }(y)-b^{\sharp }(x) \cdot a^{\sharp }(y)}{x-y}= & {} \sum _{i, j=0}^{n-1}s_{ij} x^{i}y^{j} \nonumber \\= & {} \left[ \begin{array}{ccccc} 1&x&x^2&\cdots&x^{n-1}\end{array} \right] S^{\sharp } \left[ \begin{array}{c} 1\\ y\\ y^2\\ \vdots \\ y^{n-1}\end{array} \right] . \end{aligned}$$
(9)

3.1 Displacement Structures of Bezoutian

Here we obtain two types of displacement equations of the Bezoutian associated with the reverse polynomials. Once we establish the displacement structures, we state connections of the displacement equations to the Gohberg, Kailath, and Olshevsky algorithm (GKO algorithm) [21] and the Heinig and Olshevsky algorithm (HO algorithm) [24].

Below we give the GKO algorithm for matrix \(R_1\) satisfying the Sylvester displacement equation.

Lemma 2

Let matrix \(R_1= \left[ \begin{array}{cc} r_{1} &{} R_{12} \\ R_{21} &{} R_{22} \end{array} \right] \) satisfy:

$$ \varDelta _{{F_1, A_1}}(R_1) = \left[ \begin{array}{cc} f_1 &{} 0 \\ * &{} F_2 \end{array} \right] \cdot R_1 -R_1 \cdot \left[ \begin{array}{cc} a_1 &{} * \\ 0 &{} A_2 \end{array} \right] = G^{(1)}B^{(1)}=\left[ \begin{array}{c} g_1 \\ G_1 \end{array} \right] \left[ \begin{array}{cc} b_1&B_1 \end{array} \right] $$

If \(r_1\) (i.e., (1,1) entry of \(R_1\)) \(\ne 0\), then the Schur complement \(R_2=R_{22}^{(1)} - R_{21}\frac{1}{r_{1}}R_{12}\) satisfies the Sylvester type displacement equation

$$ F_2 \cdot R_2-R_2 \cdot A_2 = G^{(2)}B^{(2)} $$

with

$$ G_2^{(2)}=G_1-R_{21}\frac{1}{r_{1}}g_1,\ \ \ \ \ B_2^{(2)} =B_1-b_1\frac{1}{r_{1}}R_{12} $$

where \(g_1\) and \(b_1\) are the first row of \(G^{(1)}\) and the first column of \(B^{(1)}\) respectively.

The Lemma 2 shows that if \(R_1\) satisfies a Sylvester type displacement equation then so does its Schur complement. Thus the displacement equation of the Schur complement of the matrix will also yield the factorization. One can recover the first row and column of \(R_1\), and \(R_2\), by using generator updates. Proceeding recursively one finally obtains the LU factorization of \(R_1\). Moreover authors in [21] note that one can obtain a fast Gaussian elimination algorithm with partial pivoting for Cauchy-like, Vandermonde-like, and Chebyshev-like displacement structures.

Lemma 3

Let the matrix \(R_1\) satisfy:

$$ \varDelta _{{F_1, A_1}}(R_1) = F_1 \cdot R_1-R_1 \cdot A_1 = G^{(1)}B^{(1)} $$

and let the matrices be partitioned as

$$ R_1= \left[ \begin{array}{cc} R_{11} &{} R_{12} \\ R_{21} &{} R_{22} \end{array} \right] , \quad F_1=\left[ \begin{array}{cc} F_{11} &{} F_{12} \\ F_{21} &{} F_{22} \end{array} \right] , \quad A_1=\left[ \begin{array}{cc} A_{11} &{} A_{12} \\ A_{21} &{} A_{22} \end{array} \right] , $$
$$ G^{(1)}=\left[ \begin{array}{c} G_1 \\ G_2 \end{array} \right] , \quad B^{(1)}=\left[ \begin{array}{cc} B_1&B_2 \end{array} \right] . $$

If \(R_{11}\) is nonsingular, then the Schur complement of \(R_1\), i.e., \(R_2=R_{22} -R_{21}R_{11}^{-1}R_{12}\) satisfies

$$ F_2 \cdot R_2-R_2 \cdot A_2 = G^{(2)}B^{(2)} $$

with

$$ \begin{array}{cc} G^{(2)}=G_2 -R_{21}R_{11}^{-1}G_1, &{} B^{(2)}=B_2 -B_1R_{11}^{-1}R_{12} \\ A_2=A_{22} -A_{21}R_{11}^{-1}R_{12}, &{} F_2=F_{22} -R_{21}R_{11}^{-1}F_{12}. \end{array} $$

From the Lemma 3, one can observe that a Schur-type algorithm can be designed for nontriangular matrices \(\{F_1, A_1\}\). Authors in [24] specialize this crucial result by deriving a Gaussian elimination algorithm for matrices with Hessenberg displacement structure. Although the algorithm has complexity \(\mathscr {O}(n^3)\), in general one can explore the structures of \(F_1\) and \(A_1\) to derive fast algorithms.

We first observe a Sylvester type displacement equation for the Bezoutian associated with reverse polynomials in connection to the lower shift matrix and see it as a GKO-type displacement equation, but in our case it is for the Bezoutian.

Lemma 4

Let \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\) be the Bezoutian associated with the reverse polynomials where \(a(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_0\) and \(b(x)=b_{n}x^{n}+b_{n-1}x^{n-1}+\cdots +b_0\) then \(S^{\sharp }\) satisfies the displacement equation:

$$\begin{aligned} ZS^{\sharp } - S^{\sharp }Z^{T} = GJG^{T} \end{aligned}$$
(10)

where \(G=\left[ \begin{array}{cc}a_{n} &{} b_{n}\\ a_{n-1}&{}b_{n-1}\\ \vdots &{} \vdots \\ a_{1} &{} b_{1} \end{array} \right] \),  \(J = \left[ \begin{array}{rr} 0 &{} 1 \\ -1 &{} 0 \\ \end{array} \right] \) and Z is the lower shift matrix.

Proof

By following the Definition 4 of the Bezoutian associated with the reverse polynomials, we get:

$$\begin{aligned} (x-y)S(a^{\sharp },b^{\sharp })=a^{\sharp }(x) \cdot b^{\sharp }(y)-b^{\sharp }(x) \cdot a^{\sharp }(y) . \end{aligned}$$
(11)

Observing the RHS:

$$\begin{aligned} a^{\sharp }(x)b^{\sharp }(y)-b^{\sharp }(x)a^{\sharp }(y)= & {} \left[ \begin{array}{ccccc}1&x&\cdots&x^{n}\end{array} \right] \left[ \begin{array}{ll}a_{n} &{} b_{n}\\ a_{n-1}&{}b_{n-1}\\ \vdots &{} \vdots \\ a_{0} &{} b_{0} \end{array} \right] \left[ \begin{array}{rrrrr}b_{n}&{} b_{n-1}&{}\cdots &{} b_{0}\\ -a_{n} &{} -a_{n-1}&{}\cdots &{} -a_{0} \end{array} \right] \left[ \begin{array}{c}1\\ y \\ \vdots \\ y^{n}\end{array} \right] \nonumber \\= & {} \left[ \begin{array}{ccccc}1&x&x^{2}&\cdots&x^{n}\end{array} \right] \widetilde{G}J\widetilde{G}^{T} \left[ \begin{array}{c}1\\ y\\ y^{2} \\ \vdots \\ y^{n} \end{array} \right] \end{aligned}$$
(12)

where \(\widetilde{G}=\left[ \begin{array}{ll}a_n &{} b_n\\ a_{n-1}&{}b_{n-1}\\ \vdots &{} \vdots \\ a_{0} &{} b_{0} \end{array} \right] \) and \(J=\left[ \begin{array}{rr} 0 &{} 1\\ -1 &{} 0\end{array} \right] .\) Let’s pad \(S^{\sharp }\) with zeros such that \(\left[ \begin{array}{ll} S^{\sharp } &{} 0 \\ 0 &{} 0 \\ \end{array} \right] =\widetilde{S} \). We can always use \(\widetilde{S}\) instead of \(S^{\sharp }\) because

$$ \left[ \begin{array}{ccccc} 1&x&x^2&\cdots&x^{n-1}\end{array} \right] S^{\sharp } \left[ \begin{array}{c} 1\\ y\\ y^2\\ \vdots \\ y^{n-1} \end{array} \right] = \left[ \begin{array}{ccccc} 1&x&x^2&\cdots&x^{n}\end{array} \right] \widetilde{S} \left[ \begin{array}{c} 1\\ y\\ y^2\\ \vdots \\ y^{n} \end{array} \right] \ $$

By following (9) together with \(\widetilde{S}\) we get:

$$\begin{aligned} (x-y)S(a^{\sharp },b^{\sharp })= & {} \left[ \begin{array}{cccc} x&x^2&\cdots&x^{n+1} \end{array} \right] \widetilde{S} \left[ \begin{array}{c}1\\ y \\ \vdots \\ y^{n} \end{array} \right] -\left[ \begin{array}{ccccc}1&x&\cdots&x^{n} \end{array} \right] \widetilde{S} \left[ \begin{array}{c} y\\ y^2 \\ \vdots \\ y^{n+1} \end{array} \right] \\ \\= & {} \left[ \begin{array}{ccccc} 1 &{} x &{} x^2 &{} \cdots &{} x^n \\ \end{array} \right] (Z \widetilde{S} - \widetilde{S} Z^T) \left[ \begin{array}{c} 1 \\ y \\ y^2 \\ \vdots \\ y^n \\ \end{array} \right] \end{aligned}$$

Following the immediate result with (11) and (12)

$$\begin{aligned} Z\widetilde{S}-\widetilde{S}Z^T=\widetilde{G}J\widetilde{G}^T. \end{aligned}$$
(13)

In the relation (13) one can peel off the last row of the generator \(\widetilde{G}\), and peel off the last row and column of \(\widetilde{S}\) resulting in \(S^{\sharp }\), hence the result.

The following result is an immediate consequence of the Bezoutian satisfying the displacement equation (10) in connection to the displacement rank.

Corollary 4

If the Bezoutian \(S^{\sharp }\) satisfies the displacement equation (10), then

rank \(\left\{ \varTheta _{Z,I,I,Z^T} (S^{\sharp }) \right\} =2\).

By following the GKO algorithm [21], one can claim that the displacement equation (10) is of GKO-type but for the Bezoutian having low displacement rank.

Next, we see the second displacement equation of the Bezoutian associated with the reverse polynomials satisfying Hessenberg displacement structure.

Lemma 5

A matrix \(S^{\sharp }\) is a Bezoutian for reverse polynomials \(a^{\sharp }(x)\) and \(b^{\sharp }(x)\) if and only if it satisfies the equation

$$\begin{aligned} C_{a}^{T}S^{\sharp } - S^{\sharp }C_{a} = 0 . \end{aligned}$$
(14)

for a matrix \(C_a\) of the form

$$\begin{aligned} C_a = \begin{bmatrix} -\frac{a_{n-1}}{a_{n}}&-\frac{a_{n-2}}{a_{n}}&-\frac{a_{n-3}}{a_{n}}&\cdots&-\frac{a_0}{a_{n}} \\ 1&0&0&\cdots&0\\ 0&1&0&\,&\vdots \\ \vdots&\ddots&\ddots&\ddots&0 \\ 0&\cdots&0&1&0 \end{bmatrix} \end{aligned}$$
(15)

where \(a(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_0\) and \(b(x)=b_{n}x^{n}+b_{n-1}x^{n-1}+\cdots +b_0\).

Proof

Let \(S^{\sharp }\) be the Bezoutian associated with the reverse polynomials \(a^{\sharp }(x)\) and \(b^{\sharp }(x)\) and \(C_a\) have the above structure (entries in the first row are extracted from the coefficients of a(x)) then it can easily be seen by matrix multiplication that

$$\begin{aligned} C_{a}^{T}S^{\sharp } - S^{\sharp }C_{a} = 0. \end{aligned}$$
(16)

Notice that this is a variant of the Lancaster–Tismenetsky equation in [36].

Now let \(C_{a}^{T}S^{\sharp } - S^{\sharp }C_{a} = 0\) where \(S^{\sharp }=[s_{ij}]\) and \(C_a\) is the matrix of the given form so one can recover the columns of \(S^{\sharp }\) as follows.

the second column of \(S^{\sharp }\) by:

$$ C_a^Ts_{i,1} +\frac{a_{n-1}}{a_n}s_{i,1}-s_{i,2}= 0 \Rightarrow s_{i,2}= C_a^Ts_{i,1}+\frac{a_{n-1}}{a_n}s_{i,1} $$
$$ s_{i,2}= s_{1,1}\,\mathbf{a}+\left( Z^T+\frac{a_{n-1}}{a_n} \right) s_{i,1} $$

the third column of \(S^{\sharp }\) by:

$$ C_a^Ts_{i,2}+\frac{a_{n-2}}{a_n}s_{i,1}-s_{i,3}= 0 \Rightarrow s_{i,3}= C_a^Ts_{i,2}+\frac{a_{n-2}}{a_n}s_{i,1} $$
$$\begin{aligned} s_{i,3}= & {} s_{1,2}\,\mathbf{a}+Z^Ts_{i,2}+\frac{a_{n-2}}{a_n}s_{i,1} \\= & {} \left( Z^T\,s_{1,1}+s_{1,2}I_n\right) \mathbf{a} + \left( \left( Z^T \right) ^2+\frac{a_{n-1}}{a_n}Z^T+\frac{a_{n-2}}{a_n} \right) s_{i,1} \end{aligned}$$

proceeding recursively the kth column of \(S^{\sharp }\) by:

$$\begin{aligned} s_{i,k}= & {} \left( \left( Z^T\right) ^{k-2} \,s_{1,1}+\left( Z^T\right) ^{k-3} \,s_{1,2}+ \cdots +s_{1,k-1}I_n \right) \mathbf{a} \\&\qquad + \left( \left( Z^T \right) ^{k-1}+\frac{a_{n-1}}{a_n}\left( Z^T\right) ^{k-2}+\frac{a_{n-2}}{a_n}\left( Z^T\right) ^{k-3} +\cdots + \frac{a_{n-k+1}}{a_n} \right) s_{i,1} \end{aligned}$$

where \(\mathbf{a}=\left[ \begin{array}{cccc} -\frac{a_{n-1}}{a_n}&-\frac{a_{n-2}}{a_n}&\cdots&-\frac{a_{0}}{a_n} \end{array}\right] ^T\) and \(I_n\) is the identity matrix. Hence once all columns are recovered it should be clear that since \(S^{\sharp }\) satisfies (16) there is no other matrix satisfying (16) and having the same first column \(s_{i1}\). Thus \(S^{\sharp } = Bez_P(a^{\sharp }, b^{\sharp })\).

The displacement equation (16) is of HO-type but for the Bezoutian associated with reverse polynomials satisfying Hessenberg displacement structure in connection to the companion matrix \(C_a\).

3.2 Characterization of Bezoutian

In this section, we perform Gaussian elimination on a Bezoutian satisfying displacement structure (10) and then elaborate on the relationship between a Bezoutian with its Schur complement.

Before we see the Schur complement of a Bezoutian as a Bezoutian, let us provide a supportive result to see how the displacement equation (13) helps us to address the rank of a Bezoutian as it is padded with zeros.

Lemma 6

A matrix \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp }) \in R^{n,n}\) is a Bezoutian if and only if \(\widetilde{S} = \left[ \begin{array}{ll} S^{\sharp } &{} 0 \\ 0 &{} 0 \\ \end{array} \right] \) has displacement rank 2.

Proof

Lemma 4 suggests that if \(S^{\sharp }\) is a Bezoutian then \(\widetilde{S}\) has displacement rank 2. Conversely, if \(\widetilde{S}\) has displacement rank 2, then \(Z\widetilde{S}-\widetilde{S}Z^T= \widetilde{G}J\widetilde{G}^T \) for some \(\widetilde{G} \in R^{n+1,2}\). Now, assume we have two polynomials and we wish to compute the Bezoutian associated with them. Lemma 4 suggests that we can do this by writing the polynomials as the columns of the generator and recovering \(S^{\sharp }\) from the displacement equation \(Z\widetilde{S}-\widetilde{S}Z^T=\widetilde{G}J\widetilde{G}^T\). Let \(a^{\sharp }(x)\) and \(b^{\sharp }(x)\) be the polynomials defined by the first and second columns of \(\widetilde{G}\), respectively. Then, the Bezoutian generated by these two polynomials will be exactly \(S^{\sharp }\).

Lemma 7

If we perform Gaussian elimination on a Bezoutian, then the result will still be a Bezoutian.

Proof

First, it is easy to see that Gaussian elimination on the matrix \(S^{\sharp }\) corresponds to Gaussian elimination on its generator. Second, if we perform Gaussian elimination on \(S^{\sharp }\) and then pad the resultant matrix with a row and a column of zeros, the result will be the same as the result of padding \(S^{\sharp }\) first to obtain \(\widetilde{S}\) and performing the same steps of Gaussian elimination on \(\widetilde{S}\). This is because the corresponding steps of Gaussian elimination will not alter a column or a row of zeros. Therefore, if we have an arbitrary Bezoutian \(S^{\sharp }\), we know that \(\widetilde{S}\) has displacement rank 2. Let us say Gaussian elimination is performed on \(S^{\sharp }\) to obtain a different matrix \(S^{(1)}\). From the discussion above, we can infer that the same steps of Gaussian elimination performed on \(\widetilde{S}\) will result in \(\left[ \begin{array}{ll} S^{(1)} &{} 0 \\ 0 &{} 0 \\ \end{array} \right] \). Let \(\widetilde{G}\) be the generator of \(\widetilde{S}\) and \(G^{(1)}\) be the result after applying steps of Gaussian elimination to \(\widetilde{G}\). It is clear that \(G^{(1)}\) is the generator of \(\left[ \begin{array}{ll} S^{(1)} &{} 0 \\ 0 &{} 0 \\ \end{array} \right] \), which in turn implies \(S^{(1)}\) is a Bezoutian, hence the result.

The above result immediately implies the following statement.

Corollary 5

The Schur complement of a Bezoutian is a Bezoutian.

Proof

This follows because Schur complementation is equivalent to Gaussian elimination.

4 Schur–Euclid-Type Algorithm via Bezoutian Having Hessenberg Structure

This section describes Hessenberg displacement structure of the Bezoutian associated with reverse polynomials expanded in a monomial \(P=\{1, x, \cdots , x^n\}\) basis and then generalizes it to the basis \(Q=\{Q_0, Q_1,\cdots ,Q_n\}\) where deg \(Q_k(x)=k\). The main idea is to explore the transformation of Hessenberg displacement structure of a Bezoutian from a monomial basis P and to the generalized basis Q. Once it is established we see the connection of the Schur complement of a Bezoutian to the Schur–Euclid–Hessenberg algorithm via generator updates of the generalized Bezoutian and confederate matrix.

4.1 Hessenberg Displacement Structure of Bezoutian Over Monomial Basis

Here we use the displacement equation of a Bezoutian (14) associated with reverse polynomials over a monomial basis to address the connection among generator updates of the companion matrix, the Schur complement of the Bezoutian, and polynomial division.

Definition 5

A matrix \(R_1\) is said to have Hessenberg displacement structure if it satisfies

$$\begin{aligned} F_1R_1-R_1A_1=G^{(1)}B^{(1)} \end{aligned}$$
(17)

where \(A_1\) is an upper Hessenberg matrix and \(F_1\) is a lower Hessenberg Matrix.

In Lemma 5, we have seen the connection of the Bezoutian \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\) to the displacement equation \(C_a^TS^{\sharp }-S^{\sharp }C_a=0\) and vice-versa. Since \(C_a\) is an upper Hessenberg matrix, by following the Definition 5, we can say that the Bezoutian has the Hessenberg displacement structure associated with reverse polynomial over a monomial basis.

In the following, we use the Hessenberg displacement structure of a Bezoutian over a monomial basis to see a connection to generator updates of the companion matrix to polynomial division.

Lemma 8

Let \(C_a\) (15) be the companion matrix of the polynomial a(x) satisfying \(C_a^TS^{\sharp }-S^{\sharp }C_a=0\) where \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\) and deg \(a(x)>\) deg b(x). Then the generator update of \(C_a\) is the companion matrix of the polynomial b(x).

Proof

Let deg \(a(x) = n\) and deg \(b(x) = n-k\). Since the Bezoutian satisfies the Hessenberg displacement structure \(C_a^TS^{\sharp }-S^{\sharp }C_a=0\) one can apply Lemma 3 to update the generators. Thus the updated companion matrix results in:

$$\begin{aligned} C_{new} = \left[ \begin{array}{ccccc} 0 &{} 0 &{} 0&{} \cdots &{} 0 \\ 1 &{} 0 &{} 0&{} \cdots &{} 0 \\ 0 &{} 1 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0&{} 1 &{} 0 \\ \end{array} \right] - \left[ \begin{array}{cccc} 0 &{} \cdots &{} 0 &{} 1 \\ 0 &{} \cdots &{} 0 &{} 0 \\ \vdots &{} &{} \vdots &{} \vdots \\ 0 &{} \cdots &{} 0 &{} 0 \end{array} \right] \cdot R_{11}^{-1}\cdot R_{12} \end{aligned}$$
(18)

However, from another displacement equation of the Bezoutian, i.e., following the formula (13) one can state:

$$\begin{aligned} ZR - RZ^T = G^{(1)} \bar{J} G^{(1)^T} \end{aligned}$$
(19)

where \(R=\begin{bmatrix} Bez{(b^{\sharp },a^{\sharp })}&0 \\ 0&0 \end{bmatrix} =-\begin{bmatrix} S^{\sharp }&0 \\ 0&0 \end{bmatrix}\), \(\bar{J}=\left[ \begin{array}{cc} 0 &{} -1 \\ 1 &{} 0 \end{array}\right] \), Z is the lower shift matrix, and \(G^{(1)}=\left[ \begin{array}{cc} a_n &{} 0\\ \vdots &{} \vdots \\ a_{n-k+1}&{}0 \\ a_{n-k}&{}b_{n-k}\\ \vdots &{} \vdots \\ a_{0} &{} b_{0} \end{array}\right] \).

With the help of the above equation one can obtain the following equations by considering the first k columns of R:

$$\begin{aligned} \left[ \begin{array}{ccccccc} Zr_1 | &{} Zr_2-r_1 | &{} Zr_3-r_2 | &{} \ldots &{} | Zr_{k} - r_{k-1} \\ \end{array} \right] = \left[ \begin{array}{ccccccc} a_n \mathbf{b} | &{} a_{n-1} \mathbf{b} | &{} a_{n-2} \mathbf{b} | &{} \ldots &{} | a_{n-k+1} \mathbf{b} \\ \end{array} \right] \end{aligned}$$
(20)

From these it is possible to obtain the following relations:

$$\begin{aligned} Zr_1= & {} a_n \mathbf{b} \\ Zr_2= & {} r_1 + a_{n-1} \mathbf{b} = Z^T a_n \mathbf{b} + a_{n-1} \mathbf{b} \\ Zr_3= & {} r_2 + a_{n-2} \mathbf{b} = (Z^T)^2 a_n \mathbf{b} + Z^T a_{n-1} \mathbf{b} + a_{n-2} \mathbf{b}\\ \vdots \\ Zr_{k}= & {} r_{k-1} + a_{n-k+1} \mathbf{b} = (Z^T)^{k-1} a_n \mathbf{b} + (Z^T)^{k-2} a_{n-1} \mathbf{b} + \ldots + Z^T a_{n-k+2} \mathbf{b} + a_{n-k+1} \mathbf{b} \end{aligned}$$

Let \(R_{11}\) be the \(k \times k\) upper block of R. Then, from the above equations it is possible to express \(R_{11}\) as:

$$ \left[ \begin{array}{cccccc} 0 &{} &{} \cdots &{} &{}0 &{} a_n b_{n-k} \\ 0 &{} &{} &{} \cdot &{} a_n b_{n-k} &{} a_n b_{n-k-1} + a_{n-1} b_{n-k} \\ \vdots &{} \cdot &{} &{} &{} &{} \vdots \\ 0 &{} a_n b_{n-k} &{} &{} &{} &{} \\ a_n b_{n-k} &{} a_n b_{n-k-1} + a_{n-1} b_{n-k} &{} &{} \cdots &{} &{} a_n b_{n-(2k-1)}+a_{n-1} b_{n-(2k)} + \ldots + a_{n-k+1} b_{n-k}. \\ \end{array} \right] $$

Let \(\widetilde{I}\) be the antidiagonal matrix. Multiplying the above (\(R_{11}\)) by \(\widetilde{I}\) from the right:

$$ \left[ \begin{array}{cccccc} a_n b_{n-k} &{} 0 &{} &{}\cdots &{}0 &{} 0\\ a_n b_{n-k-1} + a_{n-1} b_{n-k} &{}a_n b_{n-k} &{}0 &{} &{}\vdots &{} 0\\ \vdots &{} &{} &{} \cdot &{}0 &{} \vdots \\ &{} &{} &{} &{} a_n b_{n-k} &{}0 \\ a_n b_{n-(2k-1)}+a_{n-1} b_{n-2k} + \ldots + a_{n-k+1} b_{n-k} &{} &{} \cdots &{} &{} a_n b_{n-k-1} + a_{n-1} b_{n-k} &{} a_n b_{n-k} \\ \end{array} \right] $$

However this can easily be factored as:

$$\begin{aligned} R_{11} \cdot \widetilde{I} = \left[ \begin{array}{ccccc} b_{n-k} &{} &{} &{} &{} \\ b_{n-k-1} &{} b_{n-k} &{} &{} &{} \\ \vdots &{} b_{n-k-1} &{}\ddots &{} &{} \\ &{} &{} \ddots &{} \ddots &{} \\ b_{n-(2k-1)}&{} &{}\cdots &{} b_{n-k-1} &{} b_{n-k} \\ \end{array} \right] \cdot \left[ \begin{array}{ccccc} a_{n} &{} &{} &{} &{} \\ a_{n-1} &{} a_{n} &{} &{} &{} \\ \vdots &{} a_{n-1} &{}\ddots &{} &{} \\ &{} &{} \ddots &{} \ddots &{} \\ a_{n-k+1}&{} &{}\cdots &{} a_{n-1} &{} a_{n} \\ \end{array} \right] \end{aligned}$$
(21)

So, \(R_{11} \cdot \widetilde{I} = B_k A_k\) where we denote the Toeplitz matrix composed of the coefficients of a(x) on the lower diagonals in the above Eq. (21) as \(A_k\) and similarly for \(B_k\). Therefore, \(R_{11}^{-1} = \widetilde{I} A_k^{-1} B_k^{-1}\).

Let \(R_{21}\) be the \((n-k+1) \times k\) block of R right below \(R_{11}\), i.e.,

$$ R_{21}=\left[ \begin{array}{cccc} a_n b_{n-k-1} &{} a_n b_{n-k-2} + a_{n-1} b_{n-k-1} &{} \ldots &{} a_n b_{n-2k} + a_{n-1} b_{n-2k+1} + \ldots + a_{n-k+1} b_{n-k-1} \\ a_n b_{n-k-2} &{} a_n b_{n-k-3} + a_{n-1} b_{n-k-2} &{} \ldots &{} \vdots \\ \vdots &{} \vdots &{} &{} \\ a_n b_2 &{} a_n b_1+ a_{n-1} b_2 &{}\ldots &{} a_{n-k+3} b_0 + a_{n-k+2} b_1 + a_{n-k+1} b_2 \\ a_n b_1 &{} a_n b_0+a_{n-1} b_1 &{} \ldots &{} a_{n-k+2} b_0 + a_{n-k+1} b_1 \\ a_n b_0 &{} a_{n-1}b_0 &{} \ldots &{} a_{n-k+1} b_0 \\ 0 &{} 0 &{} \ldots &{} 0\\ \end{array} \right] $$

Let us compute \(R_{21} \cdot \widetilde{I}\):

$$ R_{21}\cdot \widetilde{I}= \left[ \begin{array}{cccc} a_n b_{n-2k} + a_{n-1} b_{n-2k+1} + \ldots + a_{n-k+1} b_{n-k-1} &{} \ldots &{} a_n b_{n-k-2} + a_{n-1} b_{n-k-1} &{} a_n b_{n-k-1} \\ \vdots &{} \ldots &{} a_n b_{n-k-3} + a_{n-1} b_{n-k-2} &{} a_n b_{n-k-2} \\ &{} &{} \vdots &{} \vdots \\ a_{n-k+3} b_0 + a_{n-k+2} b_1 + a_{n-k+1} b_2 &{} \ldots &{} a_n b_1+a_{n-1} b_2 &{} a_n b_2 \\ a_{n-k+2} b_0 + a_{n-k+1} b_1 &{} \ldots &{} a_{n} b_0 + a_{n-1} b_1 &{} a_n b_1 \\ a_{n-k+1} b_0 &{} \ldots &{} a_{n-1}b_0 &{} a_n b_0 \\ 0 &{}\ldots &{} 0 &{} 0\\ \end{array} \right] $$

It is possible to factor the above as follows:

$$ R_{21} \cdot \widetilde{I} = \left[ \begin{array}{ccccc} b_{n-2k} &{} b_{n-2k+1} &{} b_{n-2k+2} &{} \ldots &{} b_{n-k-1} \\ b_{n-2k-1} &{} b_{n-2k} &{} b_{n-2k+1} &{}\ldots &{} b_{n-k-2} \\ \vdots &{} &{} &{} &{} \\ b_0 &{} &{} &{} &{} \vdots \\ 0 &{} \ddots &{} &{} &{} \\ &{} \ddots &{} &{} &{} \vdots \\ \vdots &{} &{} &{} \ddots &{} \\ &{} &{} &{} \ddots &{} b_0 \\ 0 &{} &{} \ldots &{} &{}0 \\ \end{array} \right] \cdot \left[ \begin{array}{ccccc} a_{n} &{} &{} &{} &{} \\ a_{n-1} &{} a_{n} &{} &{} &{} \\ \vdots &{} a_{n-1} &{} \ddots &{} &{} \\ &{} &{} \ddots &{} \ddots &{} \\ a_{n-k+1}&{} &{}\ldots &{} a_{n-1} &{} a_{n} \\ \end{array} \right] $$

From this it follows that \(R_{21} = \widehat{B}_k \cdot A_k \cdot \widetilde{I}\) where \(\widehat{B}_k\) is the first matrix in the RHS of the above equation. Therefore

$$ R_{21} R_{11}^{-1} = (\widehat{B}_k A_k \widetilde{I}) \cdot (\widetilde{I} A_k^{-1} B_k^{-1}) = \widehat{B}_k \cdot B_k^{-1}. $$

Moreover one can say that \((R_{11}^{-1} R_{12})^T= R_{21}R_{11}^{-1}\). Thus

$$\begin{aligned} (R_{11}^{-1} R_{12})^T \nonumber \\&=\left[ \begin{array}{cccccc} b_{n-2k} &{} b_{n-2k+1} &{} \cdots &{} &{} &{} b_{n-k-1} \\ b_{n-2k-1} &{} b_{n-2k} &{} \cdots &{} &{} &{} b_{n-k-2}\\ b_{n-2k-2} &{} b_{n-2k-1} &{} \cdots &{} &{} &{}b_{n-k-3} \\ \vdots &{} &{} &{} &{} &{} \\ b_{0} &{} &{} &{} &{} &{} \vdots \\ 0 &{} \ddots &{} &{} &{} &{} \\ &{} \ddots &{} &{} &{} &{} \\ \vdots &{} &{} &{} &{} \ddots &{} \\ &{} &{} &{} &{} \ddots &{} b_{0} \\ 0 &{} &{} &{}\ldots &{} &{} 0 \\ \end{array} \right] \cdot \left[ \begin{array}{ccccc} b_{n-k} &{} &{} &{} &{} \\ b_{n-k-1} &{} b_{n-k} &{} &{} &{} \\ b_{n-k-2} &{} b_{n-k-1} &{} b_{n-k} &{} &{} \\ \vdots &{} &{} &{} \ddots &{} \\ b_{n-(2k-1)} &{} b_{n-(2k-2)} &{} \ldots &{} b_{n-k-1} &{} b_{n-k} \end{array}\right] ^{-1} \nonumber \\ \end{aligned}$$
(22)

Since the generator update of \(C_a\) in Eq. (18) uses only the last row of \(R_{11}^{-1}R_{12}\), one has to consider only the last column of its transpose (after peeling off the last entry) which is \(\begin{bmatrix} \frac{b_{n-k-1}}{b_{n-k}}\\ \frac{b_{n-k-2}}{b_{n-k}}\\ \frac{b_{n-k-3}}{b_{n-k}}\\ \vdots \\ \frac{b_0}{b_{n-k}} \end{bmatrix}\). Thus the updated matrix \(C_{new}\) in (18) is given by:

$$ \left[ \begin{array}{cccccc} -\frac{b_{n-k-1}}{b_{n-k}}&{} -\frac{b_{n-k-2}}{b_{n-k}} &{} \cdots &{}-\frac{b_{1}}{b_{n-k}} &{}-\frac{b_{0}}{b_{n-k}} \\ 1 &{} 0 &{} \cdots &{}0 &{} 0 \\ 0 &{} 1 &{} \cdots &{}0 &{} 0 \\ \vdots &{} \ddots &{}\ddots &{} &{} \vdots \\ 0 &{} \cdots &{} 0 &{} 1 &{} 0&{} \\ \end{array} \right] $$

which is the companion matrix for b(x) and hence the result.

Corollary 6

The first column of the Bezoutian \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\) where deg \(a(x)>\) deg b(x) contains scalar multiples of the coefficients of b(x).

Proof

This result is trivial as the first column of R, i.e., \(r_1=Z^Ta_n\mathbf{b}\) where \(\mathbf{b}= \left[ \begin{array}{cccc} b_{n-k}&b_{n-k-1}&\cdots&b_0 \end{array} \right] ^T\) and \(R=-\begin{bmatrix}S^{\sharp }&0 \\ 0&0\end{bmatrix}\).

The next result shows the updated first column of the Schur complement of a Bezoutian in the kth step.

Corollary 7

The first column of the Schur complement of \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\) where deg \(a(x)>\) deg b(x), contains scalar multiples of the coefficients of the polynomial \(-c(x)\) which is the remainder of the polynomial division of a(x) by b(x).

Proof

Let us partition the generator \(G^{(1)}\) in (19) as \(G^{(1)}=\left[ \begin{array}{c}G_1 \\ G_2\end{array}\right] \) where \(G_1=\left[ \begin{array}{cc}a_n &{} 0 \\ a_{n-1} &{} 0 \\ \vdots &{} \vdots \\ a_{n-k+1} &{} 0 \end{array}\right] \) and \(G_2=\left[ \begin{array}{cc}a_{n-k} &{} b_{n-k} \\ a_{n-k-1} &{} b_{n-k-1} \\ \vdots &{} \vdots \\ a_{0} &{} b_0 \end{array}\right] \). Since \(S^{\sharp }\) satisfies the displacement equation (19) with lower shift matrix Z, one can apply the block form of Lemma 2 to update the generator \(G^{(1)}\) via:

$$ \left[ \begin{array}{cc}d_{n-k} &{} b_{n-k} \\ d_{n-k-1} &{} b_{n-k-1} \\ \vdots &{} \vdots \\ d_{0} &{} b_0 \end{array}\right] =\left[ \begin{array}{cc}a_{n-k} &{} b_{n-k} \\ a_{n-k-1} &{} b_{n-k-1} \\ \vdots &{} \vdots \\ a_{0} &{} b_0 \end{array}\right] -R_{21}R_{11}^{-1}\left[ \begin{array}{cc}a_{n} &{} 0 \\ a_{n-1} &{} 0 \\ \vdots &{} \vdots \\ a_{n-k+1} &{} 0 \end{array}\right] $$

which results in the formula:

$$ \left[ \begin{array}{c}d_{n-k} \\ d_{n-k-1} \\ \vdots \\ d_{0} \end{array}\right] =\left[ \begin{array}{c}a_{n-k} \\ a_{n-k-1} \\ \vdots \\ a_{0} \end{array}\right] -R_{21}R_{11}^{-1}\left[ \begin{array}{c}a_{n} \\ a_{n-1} \\ \vdots \\ a_{n-k+1} \end{array}\right] $$

The matrices \(R_{11}\) and \(R_{21}\) in the above system are expressed explicitly in Lemma 8 and are the same as the matrices \(B_k\) and \(\widehat{B_k}\) respectively defined in Lemma 1. Thus combining both Lemmas results in:

$$ \left[ \begin{array}{c}d_{n-k} \\ d_{n-k-1} \\ d_{n-k-2}\\ \vdots \\ d_{0} \end{array}\right] =-\begin{bmatrix} 0\\ c_{n-k-1} \\ c_{n-k-2} \\ \vdots \\ c_{0} \end{bmatrix} + q_0 \begin{bmatrix} b_{n-k} \\ b_{n-k-1} \\ b_{n-k-2} \\ \vdots \\ b_{0} \end{bmatrix} $$

where from Lemma 1, \(-c(x)=-\displaystyle \sum _{i=k+1}^n c_{n-i}x^{n-i}\) is the remainder and \(q_0\) is the constant term in the quotient of the polynomial division of a(x) by b(x). Thus the generator update of \(G^{(1)}\) via the Bezoutian \(Bez_P(a^{\sharp }, b^{\sharp })\) corresponds to the polynomial division of a(x) by b(x). Moreover following Lemma 2, the Schur complement of the Bezoutian, which is the new Bezoutian \(Bez_P(b^{\sharp },c^{\sharp })\), also satisfies the displacement equation (19) with the above generator updates. Thus, as in Lemma 8, one can recover the scalar multiple of the coefficients of c(x) from the first column of \(Bez_P(b^{\sharp },c^{\sharp })\).

Theorem 1

Let the Bezoutian \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\) where deg \(a(x)>\) deg b(x) and \(C_a\) is the companion matrix defined via (15). Then the generator update of the Bezoutian \(S^{\sharp }\) over the displacement equation \(C_a^TS^{\sharp }-S^{\sharp }C_a=0\) coincides with the polynomial division of a(x) by b(x).

Proof

Lemma 5 shows that the Bezoutian \(S^{\sharp }\) satisfies \(C_a^TS^{\sharp }-S^{\sharp }C_a=0\). Since \(C_a\) has upper Hessenberg structure one can apply Lemma 3 to update \(S^{\sharp }, C_a\) and \(C_a^T\). Here there is no need to update \(G^{(1)}\) and \(B^{(1)}\) since they are both 0. Moreover, updates for \(C_a\) and \(C_a^T\) via Lemma 3 will preserve the upper and lower Hessenberg structures. As we know the Bezoutian \(S^{\sharp }\) is completely determined by polynomials \(a^{\sharp }(x)\) and \(b^{\sharp }(x)\). By Lemma 8 the polynomial b(x) can be recovered from the generator update of the companion matrix \(C_a\), i.e., after generator updates the companion matrix of the polynomial a(x) becomes the companion matrix of the polynomial b(x). Now by Corollary 7, one can recover the scalar multiple of the coefficients of \(-c(x)\) which is the remainder of the polynomial division of a(x) by b(x) via the first column of the Schur complement of the Bezoutian \(Bez_P(b^{\sharp }, c^{\sharp })\). Hence the result.

The next section generalizes the result in this section having polynomials expanded over the basis \(\{Q_k(x)\}_{k=0}^n\) where \(\deg Q_k(x)=k\).

4.2 Hessenberg Displacement Structure of Bezoutian Over Generalized Basis

In this section, we first generalize Hessenberg displacement structure of a Bezoutian over monomial basis \(P=\{x^k\}_{k=0}^n\) to an arbitrary basis \(Q=\{Q_k(x)\}_{k=0}^n\) where \(\deg Q_k(x)=k\). As a result of this, we will have a new displacement equation with the generalized Bezoutian and confederate matrix. Next we elaborate the Schur complement of the generalized Bezoutian over \(\{Q\}\) and use this to analyze the generator updates of a generalized Bezoutian with the polynomial division over \(\{Q\}\). Finally, we state the Schur–Euclid–Hessenberg algorithm.

Definition 6

Let \( \{Q\} = \{Q_0(x), Q_1(x), \cdots , Q_n(x)\}\) be a system of polynomials satisfying \(\deg \,Q_k(x)=k\) and, a(x) and b(x) be polynomials of degree not greater than n. Then a matrix \(S_Q = [{\hat{s}}_{ij}]\) is the generalized Bezoutian associated with the reverse polynomials \(a^{\sharp }(x)\) and \(b^{\sharp }(x)\) over \(\{Q\}\) say \(S_Q=Bez_Q(a^{\sharp }, b^{\sharp })\) if

$$\begin{aligned} \frac{a^{\sharp }(x)\cdot b^{\sharp }(y)-b^{\sharp }(x)\cdot a^{\sharp }(y)}{x-y}= & {} \sum _{i, j=0}^{n-1}{\hat{s}}_{ij}Q_{i}(x)Q_{j}(y) \nonumber \\= & {} \left[ \begin{array}{ccccc} Q_0(x)&Q_1(x)&\cdots&Q_{n-1}(x)\end{array} \right] S_Q \left[ \begin{array}{c} Q_0(y)\\ Q_1(y)\\ \vdots \\ Q_{n-1}(y)\end{array} \right] \end{aligned}$$
(23)

The next result shows a relationship between a Bezoutian for polynomials over the monomial basis \( \{P\}\) and the generalized basis \(\{Q\} = \{Q_0(x), Q_1(x), \cdots , Q_n(x)\}\) having \(\deg \,Q_k(x)=k\).

Lemma 9

Let \(B_{PQ}\) be uni upper triangular basis transformation matrix corresponding to passing basis \(\{P\}=\{x^k\}_{k=0}^n\) to basis \(\{Q\}=\{Q_k(x)\}_{k=0}^n\) where \(\deg Q_k(x)=k\) via:

$$ \begin{bmatrix} Q_0(x)&Q_1(x)&\cdots&Q_{n-1}(x) \end{bmatrix}B_{PQ}=\begin{bmatrix} 1&x&\cdots&x^{n-1} \end{bmatrix}. $$

Then

$$\begin{aligned} {S}_Q=B_{PQ}\,S^{\sharp }\,B_{PQ}^{T} \end{aligned}$$
(24)

where \(S^{\sharp }=Bez_P(a^{\sharp }, b^{\sharp })\) and \(S_Q=Bez_Q(a^{\sharp }, b^{\sharp })\).

Proof

Recall from the Definition 4 of the Bezoutian associated with the reverse polynomials over basis \(\{P\}\)

$$ \frac{a^{\sharp }(x)\cdot b^{\sharp }(y)-b^{\sharp }(x)\cdot a^{\sharp }(y)}{x-y} = \begin{bmatrix} 1&x&x^2&\cdots&x^{n-1} \end{bmatrix}S^{\sharp }\begin{bmatrix} 1\\ y\\ y^2\\ \vdots \\ y^{n-1} \end{bmatrix} $$

We can revise the RHS of the above system:

$$\begin{aligned} \frac{a^{\sharp }(x)\cdot b^{\sharp }(y)-b^{\sharp }(x)\cdot a^{\sharp }(y)}{x-y}= & {} \left[ \begin{array}{ccccc} 1&x&\cdots&x^{n-1} \end{array} \right] B_{PQ}^{-1}\,B_{PQ}\, S^{\sharp }\,B_{PQ}^{T}\,B_{PQ}^{-T}\left[ \begin{array}{c} 1 \\ y \\ \vdots \\ y^{n-1} \end{array} \right] \\= & {} \left[ \begin{array}{ccccc} Q_0(x)&Q_1(x)&\cdots&Q_{n-1}(x) \end{array} \right] B_{PQ}\, S^{\sharp }\,B_{PQ}^{T} \left[ \begin{array}{c} Q_{0}(y) \\ Q_{1}(y)\\ \vdots \\ Q_{n-1}(y) \end{array} \right] . \end{aligned}$$

Following Definition 6 gives the result.

To generalize the displacement equation for a Bezoutian we have to explore the Hessenberg structured confederate matrix. Thus we will give the definition of a confederate matrix introduced in [37] next.

Definition 7

Let polynomials \(\{Q\} = \{Q_0(x), Q_1(x), Q_2(x),..., Q_n(x)\}\) with \(\deg \,Q_k(x)=k\) be specified by the recurrence relation

$$ Q_k(x) = \alpha _k xQ_{k-1}(x) - r_{k-1,k}Q_{k-1}(x)-r_{k-2,k}Q_{k-2}(x)-\ldots -r_{0,k}Q_0(x), \alpha _k \ne 0 $$

for \(k>0\) and \(Q_0(x)\) is a constant. Define for the polynomial

$$ a(x)=a_0Q_0(x)+a_1Q_1(x)+\ldots +a_nQ_n(x) $$

its confederate matrix (with respect to the polynomial system Q) by

$$ {C}_{Q}(a)=\begin{bmatrix} \frac{r_{0,1}}{\alpha _1}&\frac{r_{0,2}}{\alpha _2}&\frac{r_{0,3}}{\alpha _3}&\cdots&\frac{r_{0,n}}{\alpha _n}-\frac{a_0}{\alpha _n a_n} \\ \frac{1}{\alpha _1}&\frac{r_{1,2}}{\alpha _2}&\frac{r_{1,3}}{\alpha _3}&\cdots&\frac{r_{1,n}}{\alpha _n}-\frac{a_1}{\alpha _na_n}\\ 0&\frac{1}{\alpha _2}&\frac{r_{2,3}}{\alpha _3}&\cdots&\frac{r_{2,n}}{\alpha _n}-\frac{a_2}{\alpha _n a_n} \\ \vdots&\vdots&\ddots&\,&\vdots \\ 0&0&\cdots&\frac{1}{\alpha _{n-1}}&\frac{r_{n-1,n}}{\alpha _n}-\frac{a_{n-1}}{\alpha _n a_n}. \end{bmatrix} $$

In the special case where \(a(x)=Q_n(x)\), we have \(a_0=a_1=\cdots =a_{n-1}=0\). We refer to [37] for many useful properties of the confederate matrix and only recall here that

$$ Q_k(x)=\alpha _0\alpha _1\cdots \alpha _k \cdot det(xI-[{C}_{Q}(a)]_{k \times k}), $$

and

$$ a(x)=\alpha _0\alpha _1\cdots \alpha _n a_n \cdot det(xI-[{C}_{Q}(a)]), $$

where \([{C}_{Q}(a)]_{k \times k}\) denotes the \(k \times k\) leading submatrix of \(C_Q(a)\).

As we have seen the generalized Bezoutian associated with reverse polynomials and confederate matrix capturing recurrence relations over \(\{Q\}\), we will next generalize the displacement equation \(C_a^TS^{\sharp }-S^{\sharp }C_a=0\) passing \(Bez_P(a^{\sharp }, b^{\sharp })\) to the generalized Bezoutian \(S_Q=Bez_Q(a^{\sharp }, b^{\sharp })\) and companion matrix \(C_a\) to the confederate matrix \(C_Q\).

Theorem 2

Let \( \{Q\} = \{Q_0(x), Q_1(x), Q_2(x),..., Q_n(x)\}\) where \(\deg \,Q_k(x)=k\) be the system of polynomials satisfying recurrence relations

$$\begin{aligned} Q_0(x)= & {} 1 \nonumber \\ Q_k(x)= & {} xQ_{k-1}(x) - r_{k-1,k}Q_{k-1}(x)-r_{k-2,k}Q_{k-2}(x)-\ldots -r_{0,k}Q_0(x) \end{aligned}$$
(25)

\(a(x)=a_0Q_0(x)+a_1Q_1(x)+\ldots +a_nQ_n(x)\) and similarly for b(x). Then a matrix \({S}_Q=Bez_Q(a^{\sharp }, b^{\sharp })\) is a Bezoutian associated with reverse polynomials \(a^{\sharp }(x)\) and \(b^{\sharp }(x)\) if and only if \({S}_Q\) satisfies the equation

$$\begin{aligned} {C}_Q^T\,{S}_Q-{S}_Q\,{C}_Q=0 \end{aligned}$$
(26)

for some confederate matrix

$$\begin{aligned} {C}_Q=\tilde{I}C_{Q'}^T\tilde{I} \end{aligned}$$
(27)

where

$$\begin{aligned} {C}_{Q'}=\begin{bmatrix} r_{0,1}&r_{0,2}&r_{0,3}&\cdots&r_{0,n}-\frac{a_0}{a_n} \\ 1&r_{1,2}&r_{1,3}&\cdots&r_{1,n}-\frac{a_1}{a_n}\\ 0&1&r_{2,3}&\cdots&r_{2,n}-\frac{a_2}{a_n} \\ \vdots&\vdots&\ddots&\,&\vdots \\ 0&0&\cdots&1&r_{n-1,n}-\frac{a_{n-1}}{a_n}. \end{bmatrix} \end{aligned}$$
(28)

Proof

In the monomial basis \(\{P\}\) it has been proven that

$$ C_a^TS^{\sharp }-S^{\sharp }C_a=0 $$

where \(S^{\sharp }=Bez_P(a^{\sharp },b^{\sharp })\) and \( C_a= \left[ \begin{array}{ccccc} - \frac{a_{n-1}}{a_n} &{} -\frac{a_{n-2}}{a_n} &{}-\frac{a_{n-3}}{a_n} &{} \cdots &{}-\frac{a_0}{a_n}\\ 1&{} 0&{} 0 &{}\cdots &{}0\\ 0 &{} 1&{} 0&{}\cdots &{} 0\\ \vdots &{} \vdots &{}\ddots &{} &{}\vdots \\ 0 &{} 0&{}\cdots &{} 1&{}0\\ \end{array} \right] \). Thus it is possible to rewrite the above system as

$$\begin{aligned} S_1C_1^T-C_1S_1=0 \end{aligned}$$
(29)

where \(S_1=\tilde{I}S^{\sharp }\tilde{I}=Bez_P(a, b)\) and \(C_1=\tilde{I}C_a^T\tilde{I}\). Now with the help of the structure of the uni upper triangular basis transformation matrix \(B_{PQ}\) together with the result [32] one can revise the above system as

$$ {S}_{Q'}\,{C}_{Q'}^T-C_{Q'}\,{S}_{Q'}=0 $$

where \(S_{Q'}=B_{PQ}\,S_1\,B_{PQ}^{T}=Bez_Q(a, b)\) and \({C}_{Q'}=B_{PQ}\,C_1\,B_{PQ}^{-1}\) is the confederate matrix given by (28). By rearranging the above system we get

$$ (\tilde{I}S_{Q'}\tilde{I})(\tilde{I}C_{Q'}^T\tilde{I})-(\tilde{I}C_{Q'}\tilde{I})(\tilde{I}S_{Q'}\tilde{I})=0 $$

yields the result:

$$ {C}_{Q}^T\,{S}_{Q}-{S}_{Q}\,C_{Q}=0. $$

Conversely if \({C}_{Q}^T\,{S}_{Q}-{S}_{Q}\,C_{Q}=0\) and \({S}_Q=[{\hat{s}}_{ij}]\) then the second column of \(S_Q\) is given by:

$$ C_Q^T\,{\hat{s}}_{i,1}-\left( r_{n-1,\,n}-\frac{a_{n-1}}{a_n} \right) {\hat{s}}_{i,1}-{\hat{s}}_{i,2}=0 \Rightarrow {\hat{s}}_{i,2}= C_Q^T\,{\hat{s}}_{i,1}-\left( r_{n-1,\,n}-\frac{a_{n-1}}{a_n} \right) {\hat{s}}_{i,1} $$

the third column of \(S_Q\) is given by:

$$ C_Q^T\,{\hat{s}}_{i,2}-\left( r_{n-2,\,n}-\frac{a_{n-2}}{a_n} \right) {\hat{s}}_{i,1}-r_{n-2,\,n-1}\,{\hat{s}}_{i,2}-{\hat{s}}_{i,3}=0 $$
$$ {\hat{s}}_{i,3}=C_Q^T\,{\hat{s}}_{i,2}-\left( r_{n-2,\,n}-\frac{a_{n-2}}{a_n} \right) {\hat{s}}_{i,1}-r_{n-2,\,n-1}\,{\hat{s}}_{i,2} $$

proceeding recursively the kth column of \(S_Q\) is given by:

$$ {\hat{s}}_{i,k}=C_Q^T\,{\hat{s}}_{i,k-1}-\left( r_{n-k+1,\,n}-\frac{a_{n-k+1}}{a_n} \right) {\hat{s}}_{i,1}-r_{n-k+1,\,n-1}\,{\hat{s}}_{i,2} - \cdots - r_{n-k+1,\,n-k+2}\,{\hat{s}}_{i,k-1}. $$

Thus one can recover all columns of \(S_Q\) and it should be clear that since \({S}_Q\) satisfies (26) there is no other matrix which satisfies (26) and has the same first column \({\hat{s}}_{i,1}\). Thus \({S}_Q = Bez_Q(a^{\sharp }, b^{\sharp })\).\(\square \)

It has been shown in Lemma 7 and Corollary 5 that the Schur complement of a Bezoutian is Bezoutian. Thus in the following result, we will generalize the result obtained in Sect. 3. We show that the Schur complement of a Bezoutian \(S_{Q}\) with respect to the generalized basis \(\{Q\}\) is congruent to the Schur complement of the Bezoutian \(S^{\sharp }\) with respect to the monomial basis \(\{P\}\).

Theorem 3

The Schur complement of the generalized Bezoutian \(S_Q\) over the basis \(\{Q\}=\{Q_k(x)\}_{k=0}^n\) where deg \(Q_k(x)=k\) is congruent to the Schur complement of the Bezoutian \(S^{\sharp }\) over monomials \(\{P\}=\{x^k\}_{k=0}^n\).

Proof

Let us partition the Bezoutian matrix: \(S^{\sharp }=\left[ \begin{array}{cc} S_{11} &{}s_{12}\\ s_{12}^T &{} s_{22} \end{array}\right] \). From Lemma 9, we know that \(S_Q=B_{PQ}\,S^{\sharp }\,B_{PQ}^T\) so the basis transformation matrix which is an upper triangular matrix having 1’s along the diagonal can be partitioned as \(B_{PQ}=\left[ \begin{array}{cc} U_{11} &{}u_{12}\\ 0 &{} 1 \end{array}\right] \). Now analyze the block products of \(S_Q=B_{PQ}\,S^{\sharp }\,B_{PQ}^T\) to find its Schur complement.

$$\begin{aligned} S_Q= & {} \left[ \begin{array}{cc} U_{11} &{}u_{12}\\ 0 &{} 1 \end{array}\right] \begin{bmatrix} S_{11}&s_{12}\\ s_{12}^T&s_{22} \end{bmatrix}\begin{bmatrix} U_{11}^T&0 \\ u_{12}^T&1 \end{bmatrix} \\= & {} \left[ \begin{array}{cc} U_{11} &{}u_{12}\\ 0 &{} 1 \end{array}\right] \left[ \begin{array}{cc} I &{}\frac{1}{s_{22}}s_{12}\\ 0 &{} 1 \end{array}\right] \begin{bmatrix} S_{11}-\frac{1}{s_{22}}s_{12}s_{12}^T&0\\ 0&s_{22} \end{bmatrix} \left[ \begin{array}{cc} I &{}0\\ \frac{1}{s_{22}}s_{12}^T &{} 1 \end{array}\right] \begin{bmatrix} U_{11}^T&0 \\ u_{12}^T&1 \end{bmatrix} \\= & {} \begin{bmatrix} *&s_{12}u_{11}+s_{22}u_{12}\\ s_{12}^Tu_{11}^T+s_{22}u_{12}^T&s_{22} \end{bmatrix} \end{aligned}$$

where \(*:=U_{11}\left( S_{11}-\frac{1}{s_{22}}s_{12}s_{12}^T \right) U_{11}^T +\left( s_{12}u_{11}+s_{22}u_{12}\right) \left( \frac{1}{s_{22}}s_{12}^Tu_{11}^T+u_{12}^T\right) \). Thus Schur complement of \(S_Q\) say \(S_{Qs}\) is given by:

$$\begin{aligned} S_{Qs}= & {} \left( U_{11}\left( S_{11}-\frac{1}{s_{22}}s_{12}s_{12}^T \right) U_{11}^T +\left( s_{12}u_{11}+s_{22}u_{12}\right) \left( \frac{1}{s_{22}}s_{12}^Tu_{11}^T+u_{12}^T\right) \right) \\&\quad - \frac{1}{s_{22}}\left( s_{12}u_{11}+s_{22}u_{12} \right) \left( s_{12}^Tu_{11}^T+s_{22}u_{12}^T \right) \\= & {} U_{11}\left( S_{11}-\frac{1}{s_{22}}s_{12}s_{12}^T \right) U_{11}^T \end{aligned}$$

Hence the result.

The next result shows the connection of generator updates of the generalized Bezoutian to polynomial division over basis \(\{Q\}\).

Theorem 4

Let \( \{Q\} = \{Q_0, Q_1, Q_2,..., Q_n\}\) where \(deg\,Q_k(x)=k\) be the system of polynomials satisfying recurrence relations (25) and \(S_Q=Bez_Q(a^{\sharp }, b^{\sharp })=[{\hat{s}}_{ij}]\). If \(a(x)=a_0Q_0(x)+a_1Q_1(x)+\ldots +a_nQ_n(x)\) and \(b(x)=b_0Q_0(x)+b_1Q_1(x)+\ldots +b_{n-k}Q_{n-k}(x)\) then the coefficients of the remainder \(-c(x)\) of the polynomial division a(x) by b(x) can be recovered from:

$$\begin{aligned} -\begin{bmatrix} c_{n-k-1} \\ c_{n-k-2}\\ \vdots \\ c_{0} \end{bmatrix}= \left[ \left[ C_Q^T-\left( r_{n-1,\,n}-\frac{a_{n-1}}{a_n} \right) I_n \right] {\hat{s}}_{i,1} \right] '-\frac{{\hat{s}}_{12}}{{\hat{s}}_{11}}\left[ {\hat{s}}_{i,1}\right] ' \end{aligned}$$
(30)

where

$$\begin{aligned} C_Q=\begin{bmatrix} r_{n-1,\, n}-\frac{a_{n-1}}{a_n}&r_{n-2,\,n}-\frac{a_{n-2}}{a_n}&r_{n-3,\,n}-\frac{a_{n-3}}{a_n}&\cdots&r_{0,\,n}-\frac{a_{0}}{a_n} \\ 1&r_{n-2,\,n-1}&r_{n-3,\,n-1}&\cdots&r_{0,\,n-1}\\ 0&1&r_{n-3,\,n-2}&\cdots&r_{0,\,n-2}\\ \vdots&\ddots&\ddots&\\ 0&\cdots&0&1&r_{0,\,1} \end{bmatrix} \end{aligned}$$
(31)

and prime means peeling off the first k components.

Proof

We have shown in Theorem 2 that \(C_Q^TS_Q-S_QC_Q=0\) and it is the same as \(S_QC_Q-C_Q^TS_Q=0\). One can clearly see that \(C_Q\) is an upper Hessenberg matrix, so with that said, \(S_Q\) has Hessenberg displacement structure. Hence we can apply Lemma 3 to update \(C_Q\). As deg b(x) is \(n-k\) let us partition matrices: \(C_Q=\begin{bmatrix} C_q(k,k)&C_q(k, n-k) \\ C_q(n-k, k)&C_q(n-k, n-k) \end{bmatrix}\) and \(S_Q=\begin{bmatrix} S_q(k,k)&S_q(k, n-k) \\ S_q(n-k, k)&S_q(n-k, n-k) \end{bmatrix}\) where \(S_q(n-k, k)=\left[ S_q(k, n-k)\right] ^T\) and apply the block form of Lemma 3

$$\begin{aligned} C_{new}= & {} C_q(n-k,n-k)- C_q(n-k,k) \left[ S_q(k,k)\right] ^{-1}S_q(k, n-k) \\= & {} \begin{bmatrix} r_{n-k-1,\,n-k}&r_{n-k-2,\,n-k}&r_{n-k-3,\,n-k}&\cdots&r_{0,\,n-k}\\ 1&r_{n-k-2,\,n-k-1}&r_{n-k-3,\,n-k-1}&\cdots&r_{0,\,n-k-1}\\ 0&1&r_{n-k-3,\,n-k-2}&\cdots&r_{0,\,n-k-2}\\ \vdots&\ddots&\ddots&\,&\vdots \\ 0&\cdots&0&1&r_{0,\,1} \end{bmatrix} \\ \\&\qquad - \left[ \begin{array}{cccc} 0 &{} \cdots &{} 0 &{} 1 \\ 0 &{} \cdots &{} 0 &{} 0 \\ \vdots &{} &{} \vdots &{} \vdots \\ 0 &{} \cdots &{} 0 &{} 0 \end{array}\right] \left[ S_q(k,k)\right] ^{-1}S_q(k, n-k). \end{aligned}$$

Thus when updating \(C_{Q}\) only the first row of \(C_q(n-k,n-k)\) changes with respect to the last row of the product \(\left[ S_q(k,k)\right] ^{-1}S_q(k, n-k)\). Let us restate the (1,1) block of \(C_{new}\) and (1,1), (1,2) blocks of \(S_Q\) in terms of a basis transformation matrix which can be partitioned as \(B_{PQ}=\begin{bmatrix} B_{pq}(k, k)&B_{pq}(k, n-k) \\ B_{pq}(n-k, k)&\widehat{B}_{PQ} \end{bmatrix}\). Thus the above system can be seen as:

$$\begin{aligned} C_{new}= & {} \tilde{I}\begin{bmatrix} r_{0,\,1}&r_{0,\,2}&r_{0,\,3}&\cdots&r_{0,\,n-k}\\ 1&r_{1,\,2}&r_{1,\,3}&\cdots&r_{1,\,n-k}\\ 0&1&r_{2,\,3}&\cdots&r_{2,\,n-k}\\ \vdots&\ddots&\ddots&\,&\vdots \\ 0&\cdots&0&1&r_{n-k-1,\,n-k} \end{bmatrix}^{T}\tilde{I} \\ \\&\qquad - \left[ \begin{array}{cccc} 0 &{} \cdots &{} 0 &{} 1 \\ 0 &{} \cdots &{} 0 &{} 0 \\ \vdots &{} &{} \vdots &{} \vdots \\ 0 &{} \cdots &{} 0 &{} 0 \end{array}\right] \left[ S_q(k,k)\right] ^{-1}\left[ B_{pq}(k, k)\right] ^T\left[ B_{pq}(k, k)\right] ^{-T}S_q(k, n-k) \\= & {} \widehat{B}_{PQ}\left[ \left[ \begin{array}{ccccc} 0 &{} 0 &{} 0&{} \cdots &{} 0 \\ 1 &{} 0 &{} 0&{} \cdots &{} 0 \\ 0 &{} 1 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0&{} 1 &{} 0 \\ \end{array} \right] - \left[ \begin{array}{cccc} 0 &{} \cdots &{} 0 &{} 1 \\ 0 &{} \cdots &{} 0 &{} 0 \\ \vdots &{} &{} \vdots &{} \vdots \\ 0 &{} \cdots &{} 0 &{} 0 \end{array} \right] \cdot R_{11}^{-1}\cdot R_{12} \right] \left[ \widehat{B}_{PQ}\right] ^{-1}. \end{aligned}$$

Hence going back to the block form of the Bezoutian (22) we get

$$\begin{aligned}&C_{new}= \\&\begin{bmatrix} r_{n-k-1,\, n-k}-\frac{b_{n-k-1}}{b_{n-k}}&r_{n-k-2,\,n-k}-\frac{b_{n-k-2}}{b_{n-k}}&r_{n-k-3,\,n-k}-\frac{b_{n-k-3}}{b_{n-k}}&\cdots&r_{0,\,n-k}-\frac{b_{0}}{b_{n-k}} \\ 1&r_{n-k-2,\,n-k-1}&r_{n-k-3,\,n-k-1}&\cdots&r_{0,\,n-k-1}\\ 0&1&r_{n-k-3,\,n-k-2}&\cdots&r_{0,\,n-k-2}\\ \vdots&\ddots&\ddots&\\ 0&\cdots&0&1&r_{0,\,1}. \end{bmatrix} \end{aligned}$$

Thus when a generalized Bezoutian \(S_Q\) satisfies the displacement equation \(C_Q^TS_Q-S_QC_Q=0\) with an upper Hessenberg matrix \(C_Q\), the generator update of the confederate matrix \(C_Q\) corresponding to polynomial a(x) over \(\{Q\}\) results in a confederate matrix \(C_{new}\) (say \(C_{Qb}\)) and that corresponds to the polynomial \(b(x)=b_0Q_0(x)+b_1Q_1(x)+\ldots +b_{n-k}Q_{n-k}(x)\).

Now following Lemma 3, one can see a new system with generator updates as

$$ S_{Qs}C_{Qb}-C_{Qb}^TS_{Qs}=0 $$

where \(C_{Qb}\) is the confederate matrix of b(x) over basis \(\{Q\}\) and \(S_{Qs}\) is the Schur complement of \(S_Q\). We have shown in Theorem 3 that the Schur complement of \(S_{Q}\), which is \(S_{Qs}\), is congruent to the Schur complement of \(S^{\sharp }\), which is \(S^{(1)}\), i.e.,

$$\begin{aligned} S_{Qs}=U_{11}S^{(1)}U_{11}^T \end{aligned}$$
(32)

where \(U_{11}\) is the (1,1) block of the uni upper triangular basis transformation matrix \(B_{PQ}\). Moreover from Corollary 7, we have shown that the coefficients of the remainder over monomials can be retrieved from the first column of the Schur complement of \(S^{\sharp }\) which is \(S^{(1)}\). This together with the system (32) tells us that coefficients of the remainder over basis \(\{Q\}\) can be retrieved from the first column of the \(S_{Qs}\), the Schur complement of \(S_Q\).

Before computing the coefficients of the remainder over \(\{Q\}\) let us observe the second column of \(S_Q\). This can be seen directly following Theorem 2 so the second column of \(S_Q\) is given by:

$$ {\hat{s}}_{i,2}= \left[ C_Q^T-\left( r_{n-1,\,n}-\frac{a_{n-1}}{a_n} \right) \right] {\hat{s}}_{i,1}. $$

The coefficients of the remainder \(-c(x)\) over \(\{Q\}\) can be retrieved from the first column of the Schur complement \(S_{Qs}=[\tilde{s}_{ij}]\) so those can be retrieved from:

$$ s_{i,1} = \left[ {\hat{s}}_{i,2}\right] '-{\hat{s}}_{12}\left[ \frac{1}{{\hat{s}}_{11}} {\hat{s}}_{i,1}\right] ' $$

where prime means peeling off the first k components. Hence the result.

Remark 1

The above Theorem further shows that the generator update of a Bezoutian \(S_Q\) satisfying displacement equation \(C_Q^TS_Q-S_QC_Q=0\) coincides with polynomial division over basis \(\{Q\}\).

As we have the generalized result for the Bezoutian satisfying Hessenberg displacement structure \(C_Q^TS_Q-S_QC_Q=0\) let us state the Schur–Euclid–Hessenberg algorithm to recover the coefficients of the remainder c(x) of the polynomial division of a(x) by b(x) over basis \(\{Q\}=\{Q_k\}_{k=0}^n\) where deg \(Q_k(x)=k\). In the meantime we will be providing triangular factorization of the Bezoutian (\(S_Q=[{\hat{s}}_{ij}]=LDU\)) over basis \(\{Q\}\). The k-th row \(u_k\) of U and the k-th column \(l_k\) of L are given by \(u_k=\frac{1}{{\hat{s}}_{11}^{k}}\begin{bmatrix} 0&{\hat{s}}_{1, \cdot }^{(k)} \end{bmatrix}\) and \(l_k=u_k^T\) where "0" stands for a zero vector of appropriate length. The diagonal factor is given by \(D=diag\,[{\hat{s}}_{11}^{(k)}]_{k=1}^n\).

The Schur–Euclid–Hessenberg Algorithm

Input: Coefficients of a(x) and b(x), say \(a_0,a_1,\cdots ,a_n\) and \(b_0,b_1,\cdots ,b_{n-1}\), and if the degree of b(x) is \(n-k<n-1\) then list its coefficients as \(b_0,b_1,\cdots ,b_{n-k},0\). Here “0" means a zero vector of appropriate length up to \(n-1\).

Initialization: \({\hat{s}}_{1,\cdot }^{(1)}={\hat{s}}_{1,\cdot }\),  \({\hat{s}}_{\cdot ,1}^{(1)}={\hat{s}}_{1,\cdot }^T\),   \(C_{Q}^{(1)}=C_{Q}\) in (27)

Recursion: For \(k=1,\cdots ,n-1\) compute

  1. 1.

    The k-th entry D, the k-th row of U, and k-th column of L by     \(d^{(k)}={\hat{s}}_{11}^{(k)}\),    \(u^{(k)}=\frac{1}{d^{(k)}}{\hat{s}}_{1, \cdot }^{(k)}\),   \(l^{(k)}=[u^{(k)}]^T\)

  2. 2.

    The second row and column of \(S_{Q}^{(k)}\) by If \(k=1\)     \({\hat{s}}_{2, \cdot }^{(k)}= {\hat{s}}_{1,\cdot }^{(k)} \cdot \left[ C_Q^{(1)}-\left( r_{n-1,\,n}-\frac{a_{n-1}}{a_n} \right) I\right] \),      \({\hat{s}}_{\cdot , 2}^{(k)}=[{\hat{s}}_{2, \cdot }^{(k)}]^T\) else     \({\hat{s}}_{2,\cdot }^{(k)}= {\hat{s}}_{1,\cdot }^{(k)} \cdot \left[ C_Q^{(k)}-r_{n-k,\,n-k+1}I\right] \),      \({\hat{s}}_{\cdot , 2}^{(k)}=[{\hat{s}}_{2, \cdot }^{(k)}]^T\)

  3. 3.

    The first row and column of \(S_{Q}^{(k+1)}\) which is the Schur complement of \(S_Q^{(k)}\) by     \({\hat{s}}_{1,\cdot }^{(k+1)}= {\hat{s}}_{2, \cdot }^{{(k)}'}-{\hat{s}}_{21}^{(k)}\left( \frac{1}{{\hat{s}}_{11}^{(k)}}{\hat{s}}_{1, \cdot }^{(k)}\right) '\),      \({\hat{s}}_{\cdot , 1}^{(k+1)}=[{\hat{s}}_{1, \cdot }^{(k+1)}]^T\) Here the prime means the first component is peeled off. (If deg \(b(x)=n-k\) peel off the first k components for the first step).

  4. 4.

    Coefficients of the remainder c(x) by \(c_{.,1}^{(k+1)}=\frac{1}{{\hat{s}}_{11}^{(k+1)}}{\hat{s}}_{\cdot ,1}^{(k+1)}\)

  5. 5.

    New Confederate matrix generated by \(C_{Q}^{(k+1)}=C_{Q}^{{(k)}''}-(e_1)'\left( \frac{1}{{\hat{s}}_{11}^{(k)}}{\hat{s}}_{1, \cdot }^{{(k)'}} \right) \)

Here double prime means peel off the top row and the first column of the matrix. (If deg \(b(x)=n-k\) peel off the first k rows and columns of the matrix for the first step).

Output: Coefficients of the remainder and triangular factorization of the generalized Bezoutian

Proposition 1

The arithmetic cost of computing the Schur–Euclid–Hessenberg algorithm for a generalized Bezoutian is \(\mathscr {O}(M(n)n)\) where M(n) is the cost of multiplying the confederate matrix \(C_Q\) by vectors (\(k=1,2,\cdots ,n\)).

Due to the upper Hessenberg structure of the confederate matrix \(C_Q\) in the above scenario \(M(n)=n^2\). Thus to derive a fast Schur–Euclid–Hessenberg algorithm one has to analyze the confederate matrices based on quasiseparable polynomials or their subclasses as orthogonal and Szegö polynomials as defined in the next section.

5 A Fast Schur–Euclid Algorithm for Quasiseparable Polynomials

We have seen the Schur–Euclid–Hessenberg algorithm for generalized Bezoutian associated with the polynomials expanded over the basis \(\{Q_k(x)\}_{k=0}^n\) where deg \(Q_k(x)=k\) and its arithmetic complexity. The cost of Schur–Euclid–Hessenberg algorithm is determined by the cost of the multiplication of the confederate matrix by vectors. Thus the arithmetic complexity of the algorithm can be reduced having sparse, banded, or structured confederate matrices. Hence in this section, we discuss the complexity of Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials and therefore its sub classes [7]: orthogonal and Szegö polynomials while elaborating a fast Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials.

5.1 Schur–Euclid–Hessenberg Algorithm for Quasiseparable Polynomials

In this section, we analyze the matrix decomposition for the confederate matrix over quasiseparable polynomials and use the decomposition to derive a fast Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with the quasiseparable polynomials. The ultimate idea is to explore the confederate matrix over quasiseparable polynomials to reduce the cost of computing M(n) in Proposition 1.

Let us start with the generator definition of (H, 1)-quasiseparable matrix which is equivalent to the rank Definition 2. We use quasiseparable generators to define a system of quasiseparable polynomials.

Definition 8

A matrix A is called (H, 1)-quasiseparable if (i) it is strongly upper Hessenberg, and (ii) it can be represented in the form

$$ A=\left[ \begin{array}{ccccc} d_1 &{} &{} &{} &{} \\ q_1 &{} d_2 &{} &{} g_ib_{ij}^{\times }h_j &{} \\ 0 &{} q_2 &{} \ddots &{} &{} \\ \vdots &{} \ddots &{} \ddots &{}\ddots &{} \\ 0 &{} \cdots &{} 0 &{} q_{n-1} &{} d_n\\ \end{array}\right] $$

where \(b_{ij}^{\times }=b_{i+1}b_{i+2}\cdots b_{j-1}\) for \(j>i+1\) and \(b_{ij}^{\times }=1\) for \(j=i+1\). The scalar elements \(\{q_k, d_k, g_k, b_k, h_k\}\) are called the generators of the matrix A.

The results of [7, 37] allow one to observe a bijection between the set of strongly upper Hessenberg matrices \(\mathscr {H}\) (say \(A=[a_{ij}] \in \mathscr {H}\)) and the set of polynomials system \(\mathscr {P}\) (say \(R=\{r_k(x)\} \in \mathscr {P}\) with deg \(r_k(x)=k\)) via

$$\begin{aligned} f: \mathscr {H} \rightarrow \mathscr {P}, where\,\,\, r_k(x)=\frac{1}{a_{2,1}a_{3,2}\cdots a_{k, k-1}}det (xI-A)_{k \times k}. \end{aligned}$$
(33)

The following lemma is given in [7, 8] and is a consequence of Definition 8 and [37].

Lemma 10

Let A be an (H, 1)-quasiseparable matrix specified by its generators as in Definition 8. Then a system of polynomials \(\{r_k(x)\}\) satisfies the recurrence relations

$$\begin{aligned} r_k(x)=\frac{1}{q_k}\left[ (x-d_k)r_{k-1}(x) - \displaystyle \sum _{j=0}^{k-2}g_{j+1}b_{j+1, k}^{\times }h_k\,r_j(x) \right] \end{aligned}$$
(34)

if and only if \(\{r_k(x) \}\) is related to A via (33).

With the help of the system of quasiseparable polynomials \(\{r_k(x)\}_{k=0}^n\) satisfying k-term recurrence relations (34), we will define a confederate matrix for the polynomial

$$\begin{aligned} a(x)=a_0r_0(x)+a_1r_1(x)+\cdots +a_{n}r_n(x) \end{aligned}$$
(35)

by

$$\begin{aligned} C_{R}(a)=\begin{bmatrix} d_1&g_1h_2&g_1b_2h_3&\cdots&\cdots&g_1b_{1,n}^{\times }h_n-\frac{a_{0}}{a_n} \\ q_{1}&d_{2}&g_2h_3&\cdots&\cdots&g_2b_{2,n}^{\times }h_n-\frac{a_{1}}{a_n}\\ 0&q _{2}&d_{3}&\cdots&\cdots&g_3b_{3,n}^{\times }h_n-\frac{a_{1}}{a_n}\\ \vdots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&q_{n-2}&d _{n-1}&g_{n-1}h_n-\frac{a_{n-2}}{a_n}\\ 0&\cdots&\cdots&0&q _{n-1}&d_n-\frac{a_{n-1}}{a_n}. \end{bmatrix} \end{aligned}$$
(36)

The matrix (36) is an upper Hessenberg matrix so following Theorem 4 the Bezoutian associated with quasiseparable polynomials satisfies \(C_R^TS_R-S_RC_R=0\), where R is the system of quasiseparable polynomials satisfying recurrence relations (34), \(C_R=\tilde{I}[C_R(a)]^T\tilde{I}\), and a(x) is defined via (35). Though one can state a Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with quasiseparable polynomials using the Schur–Euclid–Hessenberg algorithm in Sect. 4.2 it is not cheap because the structure of the confederate matrix \(C_R\) is not sparse. Thus to reduce the cost of the Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with quasiseparable polynomials one has to explore the structure of the confederate matrix \(C_R\) via matrix decomposition.

Theorem 5

Let \(C_R\) be the matrix specified by generators \(\{q_k, d_k, g_k, b_k, h_k\}\) and coefficients \(a_k\) via

$$\begin{aligned} C_R=\begin{bmatrix} d_n-\frac{a_{n-1}}{a_n}&g_{n-1}h_n-\frac{a_{n-2}}{a_n}&g_{n-2}b_{n-1}h_n-\frac{a_{n-3}}{a_n}&\cdots&\cdots&g_1b_{1,n}^{\times }h_n-\frac{a_{0}}{a_n} \\ q_{n-1}&d_{n-1}&g_{n-2}h_{n-1}&\cdots&\cdots&g_1b_{1,n-1}^{\times }h_{n-1}\\ 0&q _{n-2}&d_{n-2}&\cdots&\cdots&g_1b_{1,n-2}^{\times }h_{n-2}\\ \vdots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&q_{2}&d _{2}&g_1h_2 \\ 0&\cdots&\cdots&0&q _{1}&d_1 \end{bmatrix} \end{aligned}$$
(37)

then the following decomposition holds:

$$\begin{aligned} C_R=\left[ \tilde{\theta }_n \left( \cdots \left( \tilde{\theta }_3 \left( \tilde{\theta }_2\tilde{\theta }_1+\tilde{\varDelta }_2\right) +\tilde{\varDelta }_3\right) \cdots \right) + \tilde{\varDelta }_n\right] + \frac{1}{a_n} \cdot \tilde{A}_1 \tilde{A}_2 \cdots \tilde{A}_{n} \end{aligned}$$
(38)

where

$$\begin{aligned} \tilde{\theta }_1=\begin{bmatrix} I_{n-2}&\\&d_2&g_1 \\&q_1&d_1 \end{bmatrix}, \quad \tilde{\theta }_k=\begin{bmatrix} I_{n-k-1}&&\\&d_{k+1}&b_{k}&\\&q_{k}&h_{k}&\\&\,&\,&I_{k-1} \end{bmatrix}, \quad \tilde{\theta }_n=\begin{bmatrix} h_n&\\&I_{n-1} \end{bmatrix} \nonumber \\ \tilde{\varDelta }_k=\begin{bmatrix} 0_{n-k-1}&&\\&0&g_k-d_kb_k&\\&0&d_k-d_kh_k&\\&\,&\,&0_{k-1} \end{bmatrix}, \quad \tilde{\varDelta }_{n}=\begin{bmatrix} d_n-d_nh_n&\\&0_{n-1} \end{bmatrix} \end{aligned}$$
(39)

and

$$\begin{aligned} \tilde{A}_k=\begin{bmatrix} I_{k-1}&&\\&-a_{n-k}&1&\\&0&0&\\&\,&\,&I_{n-k-1} \end{bmatrix}, \quad \tilde{A}_{n}=\begin{bmatrix} I_{n-1}&\\&-a_{0}. \end{bmatrix} \end{aligned}$$
(40)

Proof

Let us split the matrix \(C_R\) into \(C_R=\tilde{H} + \frac{1}{a_n}C\) where

$$ \tilde{H}=\begin{bmatrix} d_n&g_{n-1}h_n&g_{n-2}b_{n-1}h_n&\cdots&\cdots&g_1b_{1,n}^{\times }h_n \\ q_{n-1}&d_{n-1}&g_{n-2}h_{n-1}&\cdots&\cdots&g_1b_{1,n-1}^{\times }h_{n-1}\\ 0&q _{n-2}&d_{n-2}&\cdots&\cdots&g_1b_{1,n-2}^{\times }h_{n-2}\\ \vdots&\ddots&\ddots&\ddots&\ddots&\vdots \\ \vdots&\ddots&\ddots&q_{2}&d _{2}&g_1h_2 \\ 0&\cdots&\cdots&0&q _{1}&d_1 \end{bmatrix} $$

and \(C=\begin{bmatrix} -a_{n-1}&-a_{n-2}&\cdots&-a_1&-a_0 \\ 0&0&\cdots&0&0\\ 0&0&\cdots&0&0 \\ \cdot&\cdot&\cdot&\cdot&\cdot \\ 0&0&\cdots&0&0 \end{bmatrix}\). One can easily show by matrix multiplication that the latter matrix admits the factorization \(C=\tilde{A}_1 \tilde{A}_2 \cdots \tilde{A}_{n}\) with the given \(\tilde{A}_k\) for \(k=1,2, \cdots ,n\). Thus we only have to prove the decomposition for \(\tilde{H}\) in terms of \(\tilde{\theta }_k\)’s and \(\tilde{\varDelta }_k\)’s.

Showing the decomposition for \(\tilde{H}=\tilde{\theta }_n \left( \cdots \left( \tilde{\theta }_3 \left( \tilde{\theta }_2\tilde{\theta }_1+\tilde{\varDelta }_2\right) +\tilde{\varDelta }_3\right) \cdots \right) + \tilde{\varDelta }_n\) is equivalent to showing that the matrix \(\tilde{H}\) satisfies the iteration:

$$\begin{aligned} \tilde{H}_0=I_n, \,\, \tilde{H}_k=\tilde{\theta }_k\tilde{H}_{k-1}+\tilde{\varDelta }_k, \,\, k=1,2,\cdots ,n, \,\, \tilde{H}=\tilde{H}_n. \end{aligned}$$
(41)

Let us show by induction that for every \(k=3, 4, \cdots ,n:\)

$$\begin{aligned} \tilde{H}_{k-1}(n-k+1:n, n-k+1:n) = \tilde{H}(n-k+1:n, n-k+1:n) \end{aligned}$$
(42)

The basis of induction (k=3) is trivial

$$ \tilde{H}(n-2:n, n-2:n)=\begin{bmatrix} d_2&g_1h_2\\ q_1&d_1 \end{bmatrix}=\tilde{H}_2(n-2:n, n-2:n). $$

Assume that (42) holds for all indices up to k. Consider the matrix \(\tilde{H}_{k}(n-k+2:n, n-k+2:n):\)

$$\begin{aligned} \begin{bmatrix} d_{k+1}&b_{k}&\\ q_{k}&h_{k}&\\&\,&I_{k-1} \end{bmatrix}\left[ \begin{array}{c|ccc} 1 &{} 0 &{} \cdots &{} 0\\ \hline 0 &{} &{} &{} \\ \vdots &{} &{} \tilde{H}_{k-1}(n-k+1:n, n-k+1:n) &{} \\ 0 &{} &{} &{} \end{array}\right] +\begin{bmatrix} 0&g_k-d_kb_k&\\ 0&d_k-d_kh_k&\\&\,&0_{k-1}.\\ \end{bmatrix} \end{aligned}$$
(43)

The first row of the matrix \(\tilde{H}_{k-1}(n-k+1:n, n-k+1:n)\) equals the first row of the matrix \(\tilde{H}(n-k+1:n, n-k+1:n)\). Therefore, performing the matrix product in (43) we get:

$$ \left[ \begin{array}{c|c|c} d_{k+1} &{}d_kb_k+(g_k-d_kb_k) &{} \tilde{H}_{k-1}(n-k-2, n-k:n)b_k \\ \hline q_{k} &{} d_kh_k+(d_k-d_kh_k) &{} \tilde{H}_{k-1}(n-k-1, n-k:n)h_k \\ \hline 0 &{} &{} \\ \vdots &{} \tilde{H}_{k-1}(n-k:n, n-k-1) &{} \tilde{H}_{k-1}(n-k:n, n-k:n) \\ 0 &{} &{} \\ \end{array}\right] $$

which is equal to \(\tilde{H}(n-k+2:n, n-k+2:n)\). By induction we get \(\tilde{H}_{n-1}(1:n, 1:n)=\tilde{H}(1:n, 1:n)\). Substituting this into recursion (41) we get

$$ \tilde{H}_n=\begin{bmatrix} h_n&\\&I_{n-1} \end{bmatrix}\tilde{H}_{n-1}+\begin{bmatrix} d_n-d_nh_n&\\&0_{n-1} \end{bmatrix}=\tilde{H}. $$

Now we have the decomposition of the confederate matrix \(C_R\) (38) over quasiseparable polynomials and Hessenberg-1-quasiseparable displacement structure of the Bezoutian \(C_R^TS_R-S_RC_R=0\). Thus the following Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with quasiseparable polynomials can be used to recover coefficients of the remainder c(x) of the polynomial division a(x) by b(x) over the basis \(\{R\}=\{r_k\}_{k=0}^n\) where deg \(r_k(x)=k\) and \(\{R\}\) satisfies the recurrence relations (34), and also to obtain the triangular factorization of Bezoutian over the system of quasiseparable polynomials \(\{R\}\).

The Schur–Euclid–Hessenberg Algorithm for Bezoutian Over Quasiseparabale polynomials

Input: Generators \(\{q_k, d_k, g_k, b_k, h_k\}\). Coefficients of a(x) and b(x), say \(a_0,a_1,\cdots ,a_n\) and \(b_0,b_1,\cdots ,b_{n-1}\), and if the degree of b(x) is \(n-k < n-1\) then list its coefficients as \(b_0, b_1, \cdots , b_{n-k}, 0\) here "0" means a zero vector of appropriate length up to \(n-1\).

Initialization: Set \(\tilde{\theta }_k\) and \(\tilde{\varDelta }_k\) in terms of generators \(\{q_k, d_k, g_k, b_k, h_k\}\), and \(\tilde{A}_k\) in terms of \(a_k\) and \(C_{R}^{(1)}=C_{R}\) via (38). Set \({\hat{s}}_{.,1}^{(1)}={\hat{s}}_{.,1}\) .

Recursion: For \(k=1,\cdots ,n-1\) compute

  1. 1.

    The k-th entry D, the k-th row of U, and k-th column of L by     \(d^{(k)}={\hat{s}}_{11}^{(k)}\),    \(u^{(k)}=\frac{1}{d^{(k)}}{\hat{s}}_{1, \cdot }^{(k)}\),   \(l^{(k)}=[u^{(k)}]^T\)

  2. 2.

    The second row and column of \(S_{R}^{(k)}\) by If \(k=1\)     \({\hat{s}}_{2, \cdot }^{(k)}= \frac{1}{q_{n-1}}{\hat{s}}_{1,\cdot }^{(k)}\left[ C_R^{(1)}-\left( d_{n}-\frac{a_{n-1}}{a_n} \right) I\right] \),      \({\hat{s}}_{\cdot , 2}^{(k)}=[{\hat{s}}_{2, \cdot }^{(k)}]^T\) else     \({\hat{s}}_{2,\cdot }^{(k)}= \frac{1}{q_{n-k}}{\hat{s}}_{1,\cdot }^{(k)}\left[ C_R^{(k)}-d_{n-k+1}I\right] \),      \({\hat{s}}_{\cdot , 2}^{(k)}=[{\hat{s}}_{2, \cdot }^{(k)}]^T\)

  3. 3.

    The first row and column of \(S_{R}^{(k+1)}\) which is the Schur complement of \(S_R^{(k)}\) by     \({\hat{s}}_{1,\cdot }^{(k+1)}= {\hat{s}}_{2, \cdot }^{{(k)}'}-{\hat{s}}_{21}^{(k)}\left( \frac{1}{{\hat{s}}_{11}^{(k)}}{\hat{s}}_{1, \cdot }^{(k)}\right) '\),      \({\hat{s}}_{\cdot , 1}^{(k+1)}=[{\hat{s}}_{1, \cdot }^{(k+1)}]^T\) Here the prime means the first component is peeled off. (If deg \(b(x)=n-k\), then peel off the first k components for the first step).

  4. 4.

    Coefficients of the remainder c(x) by \(c_{.,1}^{(k+1)}=\frac{1}{{\hat{s}}_{11}^{(k+1)}}{\hat{s}}_{\cdot ,1}^{(k+1)}\)

  5. 5.

    Confederate matrix after peeling off row(s) and column(s) by \(\tilde{C}_{R}^{(k)}=\tilde{\theta }''_{n-k} \left( \cdots \left( \tilde{\theta }''_3 \left( \tilde{\theta }''_2\tilde{\theta }''_1+\tilde{\varDelta }''_2\right) +\tilde{\varDelta }''_3\right) \cdots \right) +\tilde{\varDelta }''_{n-k}\) Here the double prime means peel off the top row and the first column of matrices. (If deg \(b(x)=n-k\), then peel off the first k rows and columns of the matrix for the first step).

  6. 6.

    New confederate matrix generated by \(C_{R}^{(k+1)}=\tilde{C}_{R}^{(k)}-q_{n-k}(e_1)'\left( \frac{1}{{\hat{s}}_{11}^{(k)}}{\hat{s}}_{1, \cdot }^{{(k)'}} \right) \)

Output: Coefficients of the remainder and triangular factorization of the Bezoutian associated with quasiseparable polynomials.

As we have seen in Proposition 1, the cost of the Schur–Euclid–Hessenberg algorithm is dominated by M(n) which is the cost of multiplication of a confederate matrix by vectors and this occurs in step 2 of the algorithm. Also note that for the multiplication of \({C}_{R}^{(k)}\) by vectors, i.e., for \(k=1\) we have to multiply n factors of \(\tilde{\theta }_k\), \(n-1\) factors of \(\tilde{\varDelta }_k\), and n factors of \(\tilde{A}_k\) together with the scaling factor \(\frac{1}{a_n}\) (note that we do not have to scale for the monic polynomial case) by a vector and for \(k=2,3, \cdots , n-1\) we have to multiply at most \(n-k\) factors of \(\tilde{\theta }\) and \(n-k-1\) factors of \(\tilde{\varDelta }\) by a vector. Thus the most expensive step in the recursion is when \(k=1\). Now for \(k=1\) in step 2 of the Schur–Euclid–Hessenberg algorithm in the quasiseparable case, we have at most 4 multiplications and 2 additions corresponding to multiplication of \(\tilde{\theta }_k\), at most 2 multiplications corresponding to multiplication of \(\tilde{\varDelta }_k\), and at most 1 multiplication and 1 addition corresponding to multiplication of \(\tilde{A}_k\) by the first row of the Bezoutian. Thus the arithmetic cost of computing \(C_R^{(1)}\) by a vector is at most \(11n-2\) operations as opposed to Hessenberg structured matrix \(C_R\) (37) by a vector, which is \(n^2-2\) operations. Hence \(\forall n > 11\), one can design a fast Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials.

Proposition 2

The arithmetic cost of computing the Schur–Euclid–Hessenberg algorithm for the Bezoutian associated with the quasiseparable polynomials satisfying recurrence relations (34) is \(\mathscr {O}(n^2)\).

5.2 Cost of Schur–Euclid–Hessenberg Algorithm for Orthogonal Polynomials

In this section, we observe the cost of computing the Schur–Euclid–Hessenberg Algorithm for a Bezoutian associated with the orthogonal polynomials. The main idea here is to explore the confederate matrix with respect to the orthogonal polynomial system to reduce the cost of computing M(n) in Proposition 1.

It is well known [16] that systems of polynomials \(R=\{r_k(x)\}_{k=0}^n\) orthogonal with respect to an inner product of the form

$$ <p(x), q(x)> = \displaystyle \int _{a}^b p(x)q(x)w^2(x) dx $$

satisfy a three-term recurrence relation of the form

$$\begin{aligned} r_k(x)=\frac{1}{q_k}(x-d_k)r_{k-1}(x) - \frac{g_{k-1}}{q_k}\cdot r_{k-2}(x), \quad q_k \ne 0. \end{aligned}$$
(44)

Define for the polynomial

$$\begin{aligned} a(x)=a_0r_0(x)+a_1r_1(x)+\cdots +a_{n-1}r_{n-1}(x)+a_nr_n(x) \end{aligned}$$
(45)

its confederate matrix, given by

$$\begin{aligned} C(a)=\begin{bmatrix} d_1&g_1&0&\cdots&0&-\frac{a_0}{a_n} \\ q_1&d_2&g_2&\ddots&\vdots&-\frac{a_1}{a_n}\\ 0&q_2&d_3&\ddots&0&-\frac{a_2}{a_n} \\ \vdots&\ddots&\ddots&\ddots&\ddots&\vdots \\ 0&\cdots&0&q_{n-2}&d_{n-1}&g_{n-1}-\frac{a_{n-2}}{a_n} \\ 0&0&\cdots&0&q_{n-1}&d_n-\frac{a_{n-1}}{a_n} \end{bmatrix} \end{aligned}$$
(46)

which has been called a comrade matrix in [4].

The matrix (46) is an upper Hessenberg matrix so by Theorem 4 the Bezoutian associated with orthogonal polynomials satisfies \(C_R^TS_R-S_RC_R=0\), where R is the system of orthogonal polynomials satisfying recurrence relations (44), \(C_R=\tilde{I}C(a)^T\tilde{I}\), and a(x) is defined via (45). Moreover orthogonal polynomials are a sub class of quasiseparable polynomials [7] so to express Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with the orthogonal polynomials one has to revise the Schur–Euclid–Hessenberg Algorithm in the quasiseparable case in Sect. 5.1. To do so one has to consider the Bezoutian associated with orthogonal polynomials and initialize the algorithm with the comrade matrix \(C_R=\tilde{I}C(a)^T\tilde{I}\) having generators \(\{q_k, d_k, g_k\}\) with the coefficients \(a_k\). Due to the sparse structure of the comrade matrix, we could ignore step 5 of the Schur–Euclid–Hessenberg Algorithm in the quasiseparable case and revise the first matrix in the RHS of step 6 to be the comrade matrix \(C_R=\tilde{I}C(a)^T\tilde{I}\).

The matrix \(C_R\) is almost tridiagonal. Thus the cost of multiplication of \(C_R\) by vectors is only \(M(n)=\mathscr {O}(n)\) operations. Hence one can design a fast Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with orthogonal polynomials having complexity \(\mathscr {O}(n^2)\) operations.

Proposition 3

The arithmetic cost of computing the Schur–Euclid–Hessenberg algorithm for the Bezoutian associated with the orthogonal polynomials satisfying (44) is \(\mathscr {O}(n^2)\).

5.3 Cost of Schur–Euclid–Hessenberg Algorithm for Szegö Polynomials

In this section, we observe the cost of computing the Schur–Euclid–Hessenberg Algorithm for a Bezoutian associated with the Szegö polynomials. The main idea here is to explore the confederate matrix with respect to the Szegö polynomial system to reduce the cost of computing M(n) in Proposition 1.

Szegö polynomials \(S=\{{\phi }^{\sharp }_k(x)\}_{k=0}^n\) or polynomials orthonormal on the unit circle with respect to an inner product of the form

$$ <p(x), q(x)> = \frac{1}{2\pi }\displaystyle \int _{-\pi }^{\pi } p(e^{i\theta })[q(e^{i\theta })]^{*}w^{2}(\theta ) d\theta , $$

for any such inner product, it is known [22] that there exist a set of reflection coefficients \(\{\rho _k\}\) satisfying

$$ \rho _0=-1, \quad |\rho _k|<1, \quad k=1,2,\cdots , n-1, \quad |\rho _n| \le 1, $$

and complementary parameters \(\{\mu _k\}\) defined by the reflection coefficients via

$$ \mu _k=\left\{ \begin{array}{cc} \sqrt{1-\left| \rho _k \right| ^{2}}, &{} \left| \rho _k \right| <1 \\ 1, &{} \left| \rho _k \right| =1 \end{array}\right. $$

such that the corresponding Szegö polynomials satisfying the two-term recurrence relations

$$\begin{aligned} \begin{bmatrix} \phi _k(x)\\ \phi _k^{\sharp }(x) \end{bmatrix}=\frac{1}{\mu _0}\begin{bmatrix} 1\\ 1 \end{bmatrix},\,\, \begin{bmatrix} \phi _k(x)\\ \phi _k^{\sharp }(x) \end{bmatrix}=\frac{1}{\mu _k}\begin{bmatrix} 1&-\rho _k^{\star }\\ -\rho _k&1 \end{bmatrix}\begin{bmatrix} \phi _{k-1}(x)\\ x\,\phi _{k-1}^{\sharp }(x) \end{bmatrix} \end{aligned}$$
(47)

where \(\{\phi _k(x)\}\) is a system of auxiliary polynomials. Define for the polynomial

$$\begin{aligned} a(x)=a_0\phi _0^{\sharp }(x)+a_1\phi _1^{\sharp }(x)+\cdots +a_{n-1}\phi _{n-1}^{\sharp }(x)+a_n\phi _n^{\sharp }(x) \end{aligned}$$
(48)

its confederate matrix is given by

$$\begin{aligned} C_{S}(a)=\begin{bmatrix} -\rho _0^*\rho _1&-\rho _0^*\mu _1\rho _2&-\rho _0^*\mu _1\mu _2\rho _3&\cdots&-\rho _0^*\mu _1\mu _2\cdots \mu _{n-1}\rho _n-\frac{a_{0}}{a_n} \\ \mu _{1}&-\rho _{1}^*\rho _{2}&-\rho _1^*\mu _2\rho _3&\cdots&-\rho _1^*\mu _2\mu _3\cdots \mu _{n-1}\rho _n-\frac{a_{1}}{a_n}\\ 0&\mu _{1}&-\rho _{2}^*\rho _{3}&\cdots&-\rho _2^*\mu _3\mu _4\cdots \mu _{n-1}\rho _n-\frac{a_{1}}{a_n}\\ \ddots&\ddots&\ddots&\ddots&\vdots \\ 0&\cdots&0&\mu _{n-1}&-\rho _{n-1}^*\rho _{n} -\frac{a_{n-1}}{a_n}. \end{bmatrix} \end{aligned}$$
(49)

The matrix (49) is an upper Hessenberg matrix so following Theorem 4 the Bezoutian associated with Szegö polynomials satisfies \(C_S^TS_S-S_SC_S=0\) where S is the system of Szegö polynomials satisfying recurrence relations (47), \(C_S=\tilde{I}[C_S(a)]^T\tilde{I}\), and a(x) is defined via (48). The matrix \(C_S\) is not sparse like the orthogonal polynomial case so to reduce the cost of multiplication of \(C_S\) by vectors one has to use the nested factorization of \(C_S\).

Lemma 11

Let \(C_S\) be the matrix specified by generators \(\{\rho _k^*, \rho _k, \mu _k\}\) and coefficients \(a_k\) via

$$\begin{aligned} C_S=\tilde{I}[C_S(a)]^T\tilde{I} \end{aligned}$$
(50)

then the following decomposition holds:

$$\begin{aligned} C_S=\tilde{\varGamma }_0 \tilde{\varGamma }_1 \tilde{\varGamma }_2 \cdots \tilde{\varGamma }_n + \frac{1}{a_n} \cdot \tilde{A}_1 \tilde{A}_2 \cdots \tilde{A}_{n} \end{aligned}$$
(51)

where

$$\begin{aligned} \tilde{\varGamma }_0=\begin{bmatrix} -\rho _n&\\&I_{n-1} \end{bmatrix}, \quad \tilde{\varGamma }_k=\begin{bmatrix} I_{k-1}&&\\&\rho _{n-k}^*&\mu _{n-k}&\\&\mu _{n-k}&-\rho _{n-k}&\\&\,&\,&I_{n-k-1} \end{bmatrix}, \quad \tilde{\varGamma }_n=\begin{bmatrix} I_{n-1}&\\&\rho _0^* \end{bmatrix} \end{aligned}$$
(52)

and

$$ \tilde{A}_k=\begin{bmatrix} I_{k-1}&&\\&-a_{n-k}&1&\\&0&0&\\&\,&\,&I_{n-k-1} \end{bmatrix}, \quad \tilde{A}_{n}=\begin{bmatrix} I_{n-1}&\\&-a_{0}. \end{bmatrix} $$

Proof

The matrix \(C_S\) can be split into \(C_S=\tilde{U}+\frac{1}{a_n}C\) where

$$ \tilde{U}=\begin{bmatrix} -\rho _{n-1}^*\rho _{n}&-\rho _{n-2}^*\mu _{n-1}\rho _{n}&-\rho _{n-3}^\star \mu _{n-2}\mu _{n-1}\rho _n&\cdots&-\rho _0^*\mu _1\mu _2\cdots \mu _{n-1}\rho _n \\ \mu _{n-1}&-\rho _{n-2}^\star \rho _{n-1}&-\rho _{n-3}^\star \mu _{n-2}\rho _{n-1}&\cdots&-\rho _0^*\mu _1\mu _2\cdots \mu _{n-2}\rho _{n-1}\\ 0&\mu _{n-2}&-\rho _{n-3}^\star \rho _{n-2}&\cdots&-\rho _0^*\mu _1\mu _2\cdots \mu _{n-3}\rho _{n-2}\\ \ddots&\ddots&\ddots&\ddots&\vdots \\ 0&\cdots&0&\mu _{1}&-\rho _{0}^\star \rho _{1} \end{bmatrix} $$

and \(C=\begin{bmatrix} -a_{n-1}&-a_{n-2}&\cdots&-a_1&-a_0 \\ 0&0&\cdots&0&0\\ 0&0&\cdots&0&0 \\ \cdot&\cdot&\cdot&\cdot&\cdot \\ 0&0&\cdots&0&0 \end{bmatrix}\). Let U be the unitary Hessenberg matrix [9] corresponding to Szegö polynomials \(\{\phi _k^{\sharp }(x)\}\) satisfying 2-term recurrence relations (47), then we can see that

$$ \tilde{U} = \tilde{I} U^T \tilde{I} $$

It is well known that unitary Hessenberg matrix U can be written as the product \(U={\varGamma }_0 {\varGamma }_1 {\varGamma }_2 \cdots {\varGamma }_n\) where

$$ {\varGamma }_0=\begin{bmatrix} \rho _0^*&\\&I_{n-1} \end{bmatrix}, \quad {\varGamma }_k=\begin{bmatrix} I_{k-1}&&\\&-\rho _{k}&\mu _{k}&\\&\mu _{k}&\rho _{k}^*&\\&\,&\,&I_{n-k-1} \end{bmatrix}, \quad {\varGamma }_n=\begin{bmatrix} I_{n-1}&\\&-\rho _n \end{bmatrix}. $$

Thus \(\tilde{U}\) has the factorization

$$ \tilde{\varGamma }_0 \tilde{\varGamma }_1 \tilde{\varGamma }_2 \cdots \tilde{\varGamma }_n $$

where \(\tilde{\varGamma }_k=\tilde{I}{\varGamma }_k^T\tilde{I}\) for \(k=0, 1, \cdots , n\).

One can see clearly by the matrix multiplication that the matrix C admits the factorization

$$ C= \tilde{A}_1 \tilde{A}_2 \cdots \tilde{A}_{n} $$

where \( \tilde{A}_k=\begin{bmatrix} I_{k-1}&&\\&-a_{n-k}&1&\\&0&0&\\&\,&\,&I_{n-k-1} \end{bmatrix}, \quad \tilde{A}_{n}=\begin{bmatrix} I_{n-1}&\\&-a_0 \end{bmatrix} \), hence the result.

Szegö polynomials are a sub class of quasiseparable polynomials [7] so to express the Schur–Euclid–Hessenberg algorithm for the Bezoutian associated with the Szegö polynomials one has to revise the Schur–Euclid–Hessenberg Algorithm in the quasiseparable case, in Sect. 5.1. To do so one has to consider the Bezoutian associated with Szegö polynomials and initialize the algorithm with the confederate matrix (51) having generators \(\{\rho ^*_k, \rho _k, \mu _k\}\) with the coefficients \(a_k\). But to reduce the complexity M(n) one has to revise step 5 of the Schur–Euclid–Hessenberg Algorithm for the quasiseparable case with the decomposition \(\tilde{C}_{S}^{(k)}=\tilde{\varGamma }''_k \tilde{\varGamma }''_{k+1} \cdots \tilde{\varGamma }''_n\) where \(\tilde{\varGamma }_k\)’s are given in (52) and the double prime means peel off the top k column(s) and row(s) if deg \(b(x) = n-k\) where deg \(a(x)=n\) while revising the first matrix in the RHS of step 6 to be the confederate matrix \(\tilde{C}_{S}^{(k)}\) in step 5.

Due to the decomposition of \(C_S\), in step 2 of the Schur–Euclid–Hessenberg algorithm for Szegö polynomials, we have at most 4 multiplications and 2 additions corresponding to multiplication of \(\tilde{\varGamma }_k\) by the first row of the Bezoutian, and at most 1 multiplication and 1 addition corresponding to multiplication of \(\tilde{A}_k\) by the first row of the Bezoutian. Thus the total cost of multiplication of \(n+1\) factors of \(\tilde{\varGamma }_k\) which is \(\tilde{U}\) by the vector is \(6(n+1)\) operations, and n factors of \(\tilde{A}_k\) which is C by the vector costs 2n operations. Together with the multiplication of C by quantity \(\frac{1}{a_n}\) gives the overall cost of multiplication of \(C_S\) by vectors as \(M(n)=\mathscr {O}(n)\) complexity. Hence one can design a fast Schur–Euclid–Hessenberg algorithm for Szegö polynomials.

Proposition 4

The arithmetic cost of computing the Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with the Szegö polynomials satisfying recurrence relations (47) is \(\mathscr {O}(n^2)\).

6 Conclusion

In this paper, we have derived a Schur–Euclid–Hessenberg algorithm to compute the triangular factorization of a generalized Bezoutian. In this case, it is associated with the system of polynomials \(\{Q\}=\{Q_k(x)\}_{k=0}^n\), where deg \(Q_k(x)=k\) and satisfies k-term recurrence relations while recovering the coefficients of the remainder of the polynomial division over basis \(\{Q\}\). Once the generalization results were established, we explore a fast Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials. This algorithm generalizes the result for fast Schur–Euclid–Hessenberg algorithm for orthogonal polynomials and Szegö polynomials. To derive the fast algorithm we exploit the decomposition of confederate matrices over quasiseparable and Szegö polynomials and use the sparse comrade matrix for orthogonal polynomials. The presented Schur–Euclid–Hessenberg algorithm enables us to compute a fast triangular factorization of the Bezoutian associated with quasiseparable, Szegö, and orthogonal polynomials, and to recover coefficients of the remainder in polynomial division over quasiseparable, Szegö, and orthogonal basis with complexity \(\mathscr {O}(n^2)\) operations.