Skip to main content

Chemistry, Biological, and Pharmacological Properties of Gum Arabic

  • Living reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

Gum Arabic (GA) is a natural branched-chain multifunctional hydrocolloid with a highly neutral or slightly acidic, arabino-galactan-protein complex containing calcium, magnesium, and potassium. Gum Arabic is dried exudate obtained from the stem and branches of Acacia trees manly Acacia senegal and Acacia seyal. GA was used by the Ancient Egyptians as an adhesive when wrapping mummies and in mineral paints when making hieroglyphs since the second millennium BC. In modern times, GA is used in foods, pharmaceutical, and many other industries. In this chapter, we describe the structure, chemical, and physical properties of Gum Arabic. In addition, biological properties include antioxidant properties of Gum Arabic, an effect of GA on renal function, blood glucose concentration, intestinal absorption, degradation of GA in the intestine, lipid metabolism, tooth mineralization, and hepatic macrophages. Similarly, pharmaceutical, food, and cosmetic properties of Gum Arabic are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AG:

Arabinogalactan

AGP:

Arabinogalactan protein

ATGL:

Adipose triglyceride lipase

CAT:

Catalase

CDC:

Chenodeoxycholic acid

CRF:

Chronic renal failure

GA:

Gum Arabic

GP:

Glycoprotein

GPx:

Glutathione peroxidase

HDL:

High-density lipoprotein

HSL:

Hormone-sensitive lipase

LDL:

Low-density lipoprotein

MDA:

Malondialdehyde

MGL:

Monoacylglycerol lipase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TAP:

2,4,6-Triaminopyrimidine

TC:

Total cholesterol

VLDL:

Very low density lipoprotein

References

  1. Renard D, Lavenant-Gourgeon L, Ralet MC, Sanchez C (2006) Acacia Senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges. Biomacromolecules 11(7):2637–2649. https://doi.org/10.1021/bm060145j

    Article  CAS  Google Scholar 

  2. Phillips GO, Williams P (2001) Tree exudate gums: natural and versatile food additives and ingredients. Food Ingred Anal Int 23:26–28

    Google Scholar 

  3. Abuarra A, Hashim R, Bauk S, Kandaiya S, Tousi ET (2014) Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards. Mater Des 60:108–115. https://doi.org/10.1016/j.matdes.2014.03.032

    Article  CAS  Google Scholar 

  4. Egadu SP, Mucunguzi P, Obua J (2007) Uses of tree species producing gum arabic in Karamoja, Uganda. Afr J Ecol 45:17–21. https://doi.org/10.1111/j.1365-2028.2007.00732.x

    Article  Google Scholar 

  5. Ibrahim OB, Osman ME, Hassan EA (2013) Characterization and simple fractionation of Acacia senegal. J Chem Acta 2:11–17

    CAS  Google Scholar 

  6. Hadi AH, Elderbi MA, Mohamed AW (2010) Effect of gum arabic on coagulation system of albino rats. Int J PharmTech Res 2:1762–1766

    CAS  Google Scholar 

  7. Wyasu G, Okereke NZ-J (2012) Improving the film forming ability of gum arabic. J. Nat. Prod. Plant Resour 2:314–317

    CAS  Google Scholar 

  8. Vanloot P, Dupuy N, Guiliano M, Artaud J (2012) Characterisation and authentication of A. senegal and A. seyal exudates by infrared spectroscopy and chemometrics. Food Chem 135:2554–2560. https://doi.org/10.1016/j.foodchem.2012:06.125

    Article  CAS  Google Scholar 

  9. Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol 63:10–21

    Article  CAS  Google Scholar 

  10. Glicksman M, Line Back DR, Ingett JE (eds) (1982) Food carbohydrates. Avi, CO., West port, CT

    Google Scholar 

  11. Walker B (1984) In: Phillips GO, Wedlock DJ, Williams TA (eds) Gum and stabilizers for the food industry, vol 2. Tergamon Press, Oxford

    Google Scholar 

  12. FAO (1996) A review of production, markets and quality control of gum Arabic in Africa. FAO, Rome. Forestry Dept, 191 p

    Google Scholar 

  13. Rodge AB, Sonkamble SM, Salve RV, Hashmi SI (2012) Effect of hydrocolloid (guar gum) incorporation on the quality characteristics of bread. J Food Process Technol 3:136

    CAS  Google Scholar 

  14. Islam AM, Phillips GO, Sljivo A, Snowden MJ, Williams PA (1997) A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloids 11:493–505. https://doi.org/10.1016/S0268-005X (97)80048-3

    Article  CAS  Google Scholar 

  15. Desplanques S, Renou F, Grisel M, Malhiac C (2012) Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll 27:401–410. https://doi.org/10.1016/j.foodhyd.2011.10.015

    Article  CAS  Google Scholar 

  16. Ray AK, Bird PB, Iacobucci GA, Clark BC (1995) Functionality of gum arabic. Fractionation, characterization and evaluation of gum fractions in citrus oil emulsions and model beverages. Food Hydrocoll 9:123–131. https://doi.org/10.1016/S0268-005X (09)80274-9

    Article  CAS  Google Scholar 

  17. Castellani O, Guibert D, Al-Assaf S, Axelos M, Phillips GO, Anton M (2010) Hydrocolloids with emulsifying capacity. Part 1–emulsifying properties and interfacial characteristics of conventional (Acacia senegal (L.) Willd. var. senegal) and matured (Acacia (sen) SUPER GUM™) Acacia senegal. Food Hydrocoll 24:193–199. https://doi.org/10.1016/j.foodhyd.2009.09.005

    Article  CAS  Google Scholar 

  18. Randall RC, Phillips GO, Williams PA (1989) Fractionation and characterization of gum from Acacia senegal. Food Hydrocoll 3:65–75. https://doi.org/10.1016/S0268-005X(89)80034-7

    Article  CAS  Google Scholar 

  19. Al-Assaf S, Phillips GO, Aoki H, Sasaki Y (2007) Characterization and properties of Acacia senegal (L.) Wild. Var. senegal with enhanced properties (Acacia (sen) SUPER GUM™): part 1-controlled maturation of Acacia senegal var. senegal to increase viscoelasticity, produce a hydrogel form and convert a poor into a good emulsifier. Food Hydrocoll 21:319–328. https://doi.org/10.1016/j.foodhyd.2006.04.011

    Article  CAS  Google Scholar 

  20. Al Assaf S, Phillips GO, Williams PA (2005) Studies on acacia exudate gums. Part I: the molecular weight of Acacia senegal gum exudate. Food Hydrocoll 9:647–660

    Article  CAS  Google Scholar 

  21. Flindt C, Al-Assaf S, Phillips GO, Williams PA (2005) Studies on acacia exudate gums. Part V. Structural features of Acacia seyal. Food Hydrocoll 9:687–701

    Article  CAS  Google Scholar 

  22. Hassan EA, Al-Assaf S, Phillips GO, Williams PA (2005) Studies on acacia gums: part III molecular weight characteristics of Acacia seyal var. seyal and Acacia seyal var fistula. Food Hydrocoll 19:669–677

    Article  CAS  Google Scholar 

  23. Siddig NE, Osman ME, Al-Assaf S, Phillips GO, Williams PA (2005) Studies on acacia exudate gums, part IV. Distribution of molecular components in Acacia seyal in relation to Acacia senegal. Food Hydrocoll 19:679–686

    Article  CAS  Google Scholar 

  24. Osman ME, Williams PA, Menzies AR, Phillips GO (1993) Characterization of commercial samples of gum arabic. J Agric Food Chem 41:71–77. https://doi.org/10.1021/jf00025a016

    Article  CAS  Google Scholar 

  25. Williams PA, Phillips GO (2000) Handbook of Hydrocolloids. CRC Press, Cambridge, pp 155–168

    Google Scholar 

  26. Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC (2008) New insights into the structural characteristics of the arabinogalactan − protein (AGP) fraction of gum arabic. J Agric Food Chem 56:9269–9276

    Article  CAS  Google Scholar 

  27. Menzies AR, Osman ME, Malik AA, Baldwin TC (1996) A comparison of the physicochemical and immunological properties of the plant gum exudates of Acacia senegal (gum arabic) and Acacia seyal (gum tahla)∗. Food Addit Contam 13:991–999

    Article  CAS  Google Scholar 

  28. Idris OH, Haddad GM (2012) Gum Arabic’s (Gum Acacia's) journey from tree to end user. In: Kennedy JF, Phillips GO, Williams PA (eds) Gum Arabic. RSC Publishing, Cambridge, p 3e19

    Google Scholar 

  29. Lopez-Torrez L, Nigen M, Williams P, Doco T, Sanchez C (2015) Acacia senegal vs. Acacia seyal gums–part 1: composition and structure of hyperbranched plant exudates. Food Hydrocoll 51:41–53

    Article  CAS  Google Scholar 

  30. ITC, International Trade Centre, 2008. Gum Arabic. Market News Service (MNS), Quarterly Edition

    Google Scholar 

  31. Hassan EA (2000) Characterization and fractionation of Acacia seyal gum. Doctoral dissertation, Ph. D. Thesis, University of Khartoum, Khartoum

    Google Scholar 

  32. FAO (1990) Specifications for identity and purity of certain food additives. Food and Nutrition Paper, 49. FAO, Rome

    Google Scholar 

  33. Larson BA, Bromely DW (1991) Natural resources prices, export policies, and deforestation: the case of Sudan. World Dev 19:1289–12897

    Article  Google Scholar 

  34. Karamalla KA (1999) Gum arabic production, chemistry and applications. University of Khartoum, Khartoum

    Google Scholar 

  35. Dauqan E, Abdullah A (2013) Utilization of gum arabic for industries and human health. Am J Appl Sci 10:1270–1279. https://doi.org/10.3844/ajassp.2013.1270.1279

    Article  CAS  Google Scholar 

  36. Anderson DM, Weiping W (1990) The characterization of Acacia paolii gum and four commercial Acacia gums from Kenya. Food Hydrocoll 3:475–484. https://doi.org/10.1016/S0268-005X (09)80225-7

    Article  CAS  Google Scholar 

  37. Lelon JK, Jumba IO, Keter JK, Chemuku W, Oduor FD (2010) Assessment of physical properties of gum arabic from Acacia senegal varieties in Baringo District, Kenya. African J Plant Sci 4:95–98

    CAS  Google Scholar 

  38. Elmqvist B (2003) The vulnerability of traditional agroforestry systems: a comparison of the Gum Arabic livelihood strategy before the 1984 drought to that of the present in Kordofan-Sudan. Paper presented at the Environment, Place and Sustainable Natural Resource Management Conference, Uppsala

    Google Scholar 

  39. Mocak J, Jurasek P, Phillips GO, Varga S, Casadei E, Chikemai BN (1998) The classification of natural gums. X. Chemometric characterization of exudate gums that conform to the revised specification of the gum arabic for food use, and the identification of adulterants. Food Hydrocoll 12:141–150

    Article  CAS  Google Scholar 

  40. FAO (1996) A review of production, markets and quality control of gum Arabic in Africa. FAO, Forestry Dept, Rome, 191 p

    Google Scholar 

  41. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  Google Scholar 

  42. Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxidative Med Cell Longev 10:752387

    Google Scholar 

  43. Son SM (2012) Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes Metab J 36:190–198

    Article  Google Scholar 

  44. Zhao Y, Yang K, Wang F, Liang Y, Peng Y, Shen R, Wong T, Wang N (2012) Associations between metabolic syndrome and syndrome components and retinal microvascular signs in a rural Chinese population: the Handan eye study. Graefes Arch Clin Exp Ophthalmol 250:1755–1763

    Article  Google Scholar 

  45. Bondeva T, Wolf G (2014) Reactive oxygen species in diabetic nephropathy: friend or foe? Nephrol Dial Transplant 29:1998–2003. https://doi.org/10.1093/ndt/gfu037

    Article  CAS  Google Scholar 

  46. Borza LR (2014) A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi 118:19–27

    Google Scholar 

  47. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  48. Tiedge M, Lortz S, Munday R, Lenzen S (1998) Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47:1578–1585. https://doi.org/10.2337/diabetes.47.10.1578

    Article  CAS  Google Scholar 

  49. Tsai CJ, Hsieh CJ, Tung SC, Kuo MC, Shen FC (2012) Acute blood glucose fluctuations can decrease blood glutathione and adiponectin levels in patients with type 2 diabetes. Diabetes Res Clin Pract 98:257–263

    Article  CAS  Google Scholar 

  50. Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. J Biomarkers 2013:8 p. https://doi.org/10.1155/2013/378790

  51. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Botany 24:26. https://doi.org/10.1155/2012/217037

    Google Scholar 

  52. Dinçer Y, Akçay T, Alademir Z, İlkova H (2002) Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat Res 505(1):75–81

    Article  Google Scholar 

  53. Góth L (2000) Lipid and carbohydrate metabolism in acatalasemia. Clin Chem 46:560–576

    Google Scholar 

  54. Wang C, Li S, Shang DJ, Wang XL, You ZL, Li HB (2011) Antihyperglycemic and neuroprotective effects of one novel Cu–Zn SOD mimetic. Bioorg Medicinal Chem Lett 21:4320–4324

    Article  CAS  Google Scholar 

  55. Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F, Outeiro TF (2010) Increased serum hsp70 levels are associated with the duration of diabetes. Cell Stress Chaperones 15:959–964

    Article  CAS  Google Scholar 

  56. Nakhjavani M, Morteza A, Nargesi AA, Mostafavi E, Esteghamati A (2013) Appearance of leptin–HSP70 correlation, in type 2 diabetes. Meta Gene 1:1–7

    Article  Google Scholar 

  57. Fujita H, Fujishima H, Chida S, Takahashi K, Qi Z, Kanetsuna Y, Breyer MD, Harris RC, Yamada Y, Takahashi T (2009) Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol 20:1303–1313

    Article  CAS  Google Scholar 

  58. Al-Majed AA, Abd-Allah AR, Al-Rikabi AC, Al-Shabanah OA, Mostafa AM (2003) Effect of oral administration of arabic gum on cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 17:146–153

    Article  CAS  Google Scholar 

  59. Al-Majed AA, Mostafa AM, Al-Rikabi AC, Al-Shabanah OA (2002) Protective effects of oral arabic gum administration on gentamicin-induced nephrotoxicity in rats. Pharmacol Res 46:445–451. https://doi.org/10.1016/S1043661802001251

    Article  CAS  Google Scholar 

  60. Abd-Allah AR, Al-Majed AA, Mostafa AM, Al-Shabanah OA, Din AG, Nagi MN (2002) Protective effect of arabic gum against cardiotoxicity induced by doxorubicin in mice: a possible mechanism of protection. J Biochem Mol Toxicol 16(5):254–259

    Article  CAS  Google Scholar 

  61. Trommer H, Neubert RH (2005) The examination of polysaccharides as potential antioxidative compounds for topical administration using a lipid model system. Int J Pharm 298:153–163. https://doi.org/10.1016/j.ijpharm.2005.04.024

    Article  CAS  Google Scholar 

  62. Ali BH (2004) Does gum Arabic have an antioxidant action in rat kidney. Ren Fail 26:1–3. https://doi.org/10.1081/JDI-120028536

    Article  CAS  Google Scholar 

  63. Marcuse R (1960) Antioxidative effect of amino-acids. Nature 186:886–887

    Article  CAS  Google Scholar 

  64. Park EY, Murakami H, Matsumura Y (2005) Effects of the addition of amino acids and peptides on lipid oxidation in a powdery model system. J Agric Food Chem 53:8334–8341. https://doi.org/10.1021/jf058063u

    Article  CAS  Google Scholar 

  65. Ali BH, Ziada A, Blunden G (2009) Biological effects of gum arabic: a review of some recent research. Food Chem Toxicol 47:1–8

    Article  CAS  Google Scholar 

  66. Liu Y, Hou Z, Yang J, Gao Y (2015) Effects of antioxidants on the stability of β-carotene in O/W emulsions stabilized by Gum Arabic. J Food Sci Technol 52:3300–3311

    CAS  Google Scholar 

  67. Ali BH, Al-Qarawi AA, Haroun EM, Mousa HM (2003) The effect of treatment with Gum Arabic on gentamicin nephrotoxicity in rats: a preliminary study. Ren Fail 25:15–20. https://doi.org/10.1081/JDI-120017439

    Article  CAS  Google Scholar 

  68. Gado AM, Aldahmash BA (2013) Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity. Drug Des Dev Ther 7:1245

    Article  Google Scholar 

  69. Nasir O, Babiker S, Salim AM (2016) Protective Effect of Gum Arabic Supplementation for Type 2 Diabetes Mellitus and its Complications. Int. J. Multidiscip Curr Res 4:288–294

    Google Scholar 

  70. Musa HH, Ahmed AA, Fedail JS, Musa TH, Sifaldin AZ (2016) Gum Arabic attenuates the development of nephropathy in type 1 diabetes rat. In: Gums and stabilisers for the food industry. Royal Society of Chemistry, Cambridge, pp 245–255

    Google Scholar 

  71. Othman RB, Ibrahim H, Mankai A, Abid N, Othmani N, Jenhani N, Tertek H, Trabelsi N, Trimesh A, Mami FB (2013) Use of hypoglycemic plants by Tunisian diabetic patients. Alexandria J Med 49:261–264

    Article  Google Scholar 

  72. Nasir O, Artunc F, Wang K, Rexhepaj R, Föller M, Ebrahim A, Kempe DS, Biswas R, Bhandaru M, Walter M, Mohebbi N (2010) Downregulation of mouse intestinal Na+-coupled glucose transporter SGLT1 by Gum Arabic (Acacia senegal). Cell Physiol Biochem 25:203–210

    Article  CAS  Google Scholar 

  73. Teichberg S, Wingertzahn MA, Moyse J, Wapnir RA (1999) Effect of gum arabic in an oral rehydration solution on recovery from diarrhea in rats. J Pediatr Gastroenterol Nutr 29:411–417

    Article  CAS  Google Scholar 

  74. Rehman KU, Wingertzahn MA, Teichberg S, Harper RG, Wapnir RA (2003) Gum arabic (GA) modifies paracellular water and electrolyte transport in the small intestine. Dig Dis Sci 48:755–760

    Article  CAS  Google Scholar 

  75. Codipilly CN, Wapnir RA (2004) Proabsorptive action of gum arabic in isotonic solutions orally administered to rats. II. Effects on solutes under normal and secretory conditions. Dig Dis Sci 49:1473–1478

    Article  CAS  Google Scholar 

  76. Wapnir RA, Wingertzahn MA, Moyse JE, Teichberg SA (1997) Gum arabic promotes rat jejunal sodium and water absorption from oral rehydration solutions in two models of diarrhea. Gastroenterology 112:1979–1985

    Article  CAS  Google Scholar 

  77. Wapnir RA, Teichberg S, Go JT, Wingertzahn MA, Harper RG (1996) Oral rehydration solutions: enhanced sodium absorption with gum arabic. J Am Coll Nutr 15:377–382

    Article  CAS  Google Scholar 

  78. Turvill JL, Wapnir RA, Wingertzahn MA, Teichberg S, Farthing MJ (2000) Cholera toxin-induced secretion in rats is reduced by a soluble fiber, gum arabic. Dig Dis Sci 45:946–951

    Article  CAS  Google Scholar 

  79. Phillips GO (1998) Acacia gum (gum arabic): a nutritional fibre; metabolism and calorific value. Food Addit Contam 15:251–264

    Article  CAS  Google Scholar 

  80. Kishimoto A, Ushida K, Phillips GO, Ogasawara T, Sasaki Y (2006) Identification of intestinal bacteria responsible for fermentation of gum arabic in pig model. Curr Microbiol 53:173–177

    Article  CAS  Google Scholar 

  81. Babiker R, Merghani TH, Elmusharaf K, Badi RM, Lang F, Saeed AM (2012) Effects of gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: two-arm randomized, placebo controlled, double-blind trial. Nutr J 11:111

    Article  CAS  Google Scholar 

  82. Schneeman BO (1987) Dietary fiber: comments on interpreting recent research. J Am Diet Assoc 87:1163

    CAS  Google Scholar 

  83. Ahmed AA, Musa HH, Fedail JS, Sifaldin AZ, Musa TH (2016) Gum arabic suppressed diet-induced obesity by alteration the expression of mRNA levels of genes involved in lipid metabolism in mouse liver. Bioact Carbohydr Diet Fibre 7:15–20

    Article  CAS  Google Scholar 

  84. Ushida K (2011) Gum arabic and its anti-obese effect. In: Gum Arabic, pp 285–290

    Chapter  Google Scholar 

  85. Ahmed AA, Fedail JS, Musa HH, Kamboh AA, Sifaldin AZ, Musa TH (2015) Gum Arabic extracts protect against hepatic oxidative stress in alloxan induced diabetes in rats. Pathophysiology 22:189–194

    Article  CAS  Google Scholar 

  86. Mohamed RE, Gadour MO, Adam I (2015) The lowering effect of gum Arabic on hyperlipidemia in Sudanese patients. Front Physiol 6:160

    Article  Google Scholar 

  87. Dvir I, Stark AH, Chayoth R, Madar Z, Arad SM (2009) Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Forum Nutr 1:156–167

    CAS  Google Scholar 

  88. Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Forum Nutr 2:1266–1289

    CAS  Google Scholar 

  89. Parnell JA, Reimer RA (2010) Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: a dose–response study in JCR: LA-cp rats. Br J Nutr 103:1577–1584

    Article  CAS  Google Scholar 

  90. Brockman DA, Chen X, Gallaher DD (2014) High-viscosity dietary fibers reduce adiposity and decrease hepatic steatosis in rats fed a high-fat diet. J Nutr 144:1415–1422

    Article  CAS  Google Scholar 

  91. Park JA, Tirupathi Pichiah PB, JJ Y, SH O, Daily JW, Cha YS (2012) Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J Appl Microbiol 113:1507–1516

    Article  Google Scholar 

  92. Kishida T, Nogami H, Ogawa H, Ebihara K (2002) The hypocholesterolemic effect of high amylose cornstarch in rats is mediated by an enlarged bile acid pool and increased fecal bile acid excretion, not by cecal fermented products. J Nutr 132:2519–2524

    CAS  Google Scholar 

  93. Rideout TC, Harding SV, Jones PJ, Fan MZ (2008) Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag 4:1023

    Article  CAS  Google Scholar 

  94. Nielsen TS, Jessen N, Jørgensen JO, Møller N, Lund S (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 52:R199–R222

    Article  CAS  Google Scholar 

  95. Aoba T (2004) Solubility properties of human tooth mineral and pathogenesis of dental caries. Oral Dis 10:249–257

    Article  CAS  Google Scholar 

  96. Cheng KK, Chalmers I, Sheldon TA (2007) Adding fluoride to water supplies. BMJ 335:699–702

    Article  CAS  Google Scholar 

  97. Onishi T, Umemura S, Yanagawa M, Matsumura M, Sasaki Y, Ogasawara T, Ooshima T (2008) Remineralization effects of Gum Arabic on caries-like enamel lesions. Arch Oral Biol 53:257–260

    Article  CAS  Google Scholar 

  98. Clark DT, Gazi MI, Cox SW, Eley BM, Tinsley GF (1993) The effects of Acacia arabica Gum on the in vitro growth and protease activities of periodontopathic bacteria. J Clin Periodontol 4:238–243. ISSN: 0303-6979

    Article  Google Scholar 

  99. Mochida S, Ohno A, Arai M, Tamatani T, Miyasaka M, Fujiwara K (1996) Role of adhesion molecules in the development of massive hepatic necrosis in rats. Hepatology 23:320–328

    Article  CAS  Google Scholar 

  100. Mochida S, Ogata I, Hirata K, Ohta Y, Yamada S, Fujiwara K (1990) Provocation of massive hepatic necrosis by endotoxin after partial hepatectomy in rats. Gastroenterology 99:771–777

    Article  CAS  Google Scholar 

  101. Fujiwara K, Mochida S, Nagoshi S, Iijima O, Matsuzaki Y, Takeda S, Aburada M (1995) Regulation of hepatic macrophage function by oral administration of xiao-chai-hu-tang (sho-saiko-to, TJ-9) in rats. J Ethnopharmacol 46:107–114

    Article  CAS  Google Scholar 

  102. Ali AA, Ali KE, Fadlalla A, Khalid KE (2008) The effects of GA oral treatment on the metabolic profile of chronic renal failure patients under regular haemodialysis in Central Sudan. Nat Prod Res 22:12–21

    Article  CAS  Google Scholar 

  103. Zatz JL, Kushla GP (1989) In: Reiger MM, Banker GS (eds) Pharmaceutical dosage forms: Disperse systems. Marcel Dekker Inc., New York, p 508

    Google Scholar 

  104. Hinson JA, Reid AB, McCullough SS, James LP (2004) Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab Rev 36(3–4):805–822

    Article  CAS  Google Scholar 

  105. Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    Article  CAS  Google Scholar 

  106. Evans AJ, Hood RL, Oaken full DG, Sidhu GS (1992) Relationship between structure and function of dietary fibre: a comparative study of the effects of three galactomannans on cholesterol metabolism in the rat. Br J Nutr 68:217–229

    Article  CAS  Google Scholar 

  107. Tiss A, Carrière F, Verger R (2001) Effects of gum Arabic on lipase interfacial binding and activity. Anal Biochem 294(1):36–43

    Article  CAS  Google Scholar 

  108. Matsumoto N, Riley S, Fraser D, Al-Assaf S, Ishimura E, Wolever T, Phillips GO, Phillips AO (2006) Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia (sen) SUPERGUM (G.A.)? Kidney Int 69:257–265

    Article  CAS  Google Scholar 

  109. Glover DA, Ushida K, Phillips AO, Riley SG (2009) Acacia (sen) SUPERGUMTM (Gum Arabic): an evaluation of potential health benefits in human subjects. Food Hydrocoll 23:2410–2415

    Article  CAS  Google Scholar 

  110. Wapnir RA, Sherry B, Codipilly CN, Goodwin LO, Vancurova I (2008) Modulation of rat intestinal nuclear factor NF-kappaB by Gum Arabic. Dig Dis Sci 53:80–87

    Article  CAS  Google Scholar 

  111. Adiotomre J, Eastwood MA, Edwards CA, Brydon WG (1990) Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. Am J Clin Nutr 52:128–134

    CAS  Google Scholar 

  112. Annison G, Trimble RP, Topping DL (1995) Feeding Australian acacia gums and gum Arabic leads to non-starch polysaccharide accumulation in the cecum of rats. J Nutr 125(2):283–292

    CAS  Google Scholar 

  113. Ross AH, Eastwood MA, Brydon WG, Anderson JR, Anderson DM (1983) A study of the effects of dietary Gum Arabic in humans. Am J Clin Nutr 37:368–375

    CAS  Google Scholar 

  114. Sharma RD (1985) Hypocholesterolaemic effect of Gum acacia in men. Nutr Res 5(12):1321–1326

    Article  Google Scholar 

  115. Jani GK, Shah DP, Prajapati VD, Jain VC (2009) Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci 4:309–323

    Google Scholar 

  116. Elmanan M, Al-Assaf S, Phillips GO, Williams PA (2008) Studies on Acacia exudate gums: part VI. Interfacial rheology of Acacia senegal and Acacia seyal. Food Hydrocoll 22:682e–6689

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors acknowledge all researchers whom conducted studies on Gum Arabic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hussein Musa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Musa, H.H., Ahmed, A.A., Musa, T.H. (2018). Chemistry, Biological, and Pharmacological Properties of Gum Arabic. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics