Skip to main content

Impact of Space Pharmaceuticals on Cardiovascular System

  • Living reference work entry
  • First Online:
Handbook of Space Pharmaceuticals

Abstract

After half a century full of exciting mix of space flight success and failures, space scientists, governments, and entrepreneurs have learned a little about the mechanisms and challenges of physiological adaptation during long stays in space and orthostatic adaptation after flights. However, new questions develop all the time because of unpredictable results. Urgent attention on human health, safety, and space protocols of long stays and a thorough understanding of microgravity and space radiation influences on human organ metabolisms to design space medication packs are needed before astronauts can be sent on other planets. Experiences with NASA and MIR programs and European and Asian space programs have taught us the influence of microgravity and space radiations on the cardiovascular system. Space crews face cardiovascular and physiological adaptation such as osteoporosis, blood pressure, angina, peripheral vascular disease, congestive heart failure, syncope, cardiac stress, arrhythmia, along with muscle deconditioning, bone density loss, and psychological, renal, and breathing stress. For long space flights to Mars or beyond, on-board space pharmaceuticals with expiry of more than 3 years with conditioned pharmacodynamic capability to metabolize drugs in microgravity and radiation conditioned human organs and cells in space will be needed. Telepathy and telemedicine are miraculous methods for the cardiovascular evaluation, real-time monitoring, and robust tele-intervention for timely management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AbuAlRoos NJ, Azman MN, Bahrul Amin NA, Zainon R (2020) Tungston-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Phys Med 78:48–57

    Article  Google Scholar 

  • Ade CJ, Broxterman RM, Charvat JM, Barstow TJ (2017) Incidence rate of cardiovascular disease end points in the NASA astronaut corps. J Am Heart Assoc 6(8):e005564

    Article  Google Scholar 

  • Anzai T, Frey MA, Nogami A (2014) Cardiac arrhythmia during long-duration spaceflights. Journal of Arrhythmia 30(3):139–149

    Article  Google Scholar 

  • Aubert AE, Larina I, Momken I, Blanc S, White O, Prisk GK, Linnarsson D (2016) Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory and renal research priorities. NPJ Microgravity 2:16031

    Article  Google Scholar 

  • Bello-Klein A, Khaper N, Llesuy S, Vasallo DV, Pantos C (2014) Oxidative stress and antioxidant strategies in cardiovascular disease. Oxid Med Cell Longitiv 2014, article ID 678741,2

    Google Scholar 

  • Blue RS, Bayuse TM, Daniels VR, Wotring VE, Suresh R, Mulcahy RA, Antonsen EI (2019a) Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. NPJ Microgravity 5:14

    Article  Google Scholar 

  • Blue RS, Chancellor JC, Antonsen EI, Bayuse TM, Daniels VR, Wotring VE (2019b) Limitations in predicting radiation-induced pharmaceutical instability during long duration spaceflight. NPJ Microgravity 5:15

    Article  Google Scholar 

  • Blue R, Nusbaum D, Antonsen E (2019c) Development of an accepted medical condition list for exploration medical capacity scoping (report no. JSCC-E-DAA-TN699936). National Aeronautical Space Administration. https://www.ntrs.nasa.gov/citations/20190027540.pdf

  • Boerma M, Nelson GA, Sridharan V, Mao XW, Koturbash I et al (2015) Space radiation and cardiovascular disease risk. World J Cardiol 7(12):882–888

    Article  Google Scholar 

  • Boutros SW, Zimmerman B, Nagy SC, Lee JS et al (2021) Amifostine WR 2721 mitigates cognitive injury induced by heavy ion radiation in male mice and alters behavior and brain connectivity. Front Physiol 12:770502

    Article  Google Scholar 

  • Coleman MA, Sasi SP, Onufrak J et al (2015) Low-dose radiation affects cardiac physiology gene networks and molecular signaling in cardiomyocytes. Am JPhysiol Heart Circ Physiol 309(11):H1947–H1963

    Article  CAS  Google Scholar 

  • Cooper M, Perchonok M, Douglas GL (2017) Initial assessment of the nutritional quality of the space food system over three years of ambient storage. NPJ Microgravity 3:17–22

    Article  Google Scholar 

  • Crucian BE, Makedonas G, Sams CF, Pierson DL et al (2020) Countermeasures based improvements in stress, immune system dysregulationand latent herpes virus reactivation onboard the international space station-relevance for deep space missions and terrestrial medicine. Neurosci Biobehav Rev 115:68–76

    Article  CAS  Google Scholar 

  • D’Aunno DS, Dougherty AH, DeBlock HF, Meck JV (2003) Effect of short and long duration spaceflight on QTc intervals in healthy astronauts. Am J Cardiol 91(4):494–497

    Article  Google Scholar 

  • De Luca M, Ioele G, Rogno G (2019) 1,4-Dihydropyridine antihypertensive drugs: recent advances in photostabilization strategies. Pharmaceutics 11(2):85

    Article  Google Scholar 

  • Ding LH, Shingyoji M, Chen F et al (2005) Gene expression changes in normal human skin fibroblasts induced by HZE-particle radiation. Radiation Res 164(4Pt 2):523–526

    Article  CAS  Google Scholar 

  • Feger BJ, Thompson JW, Dubois LG et al (2016) Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Sci Rep 3:34091

    Article  Google Scholar 

  • Gao R, Chilibeck PD (2020) Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems. Nutrition Res 82:11–24

    Article  CAS  Google Scholar 

  • Garrett-Backelman FE, Darshi M, Green SJ et al (2019) The NASA Twin study. A multi-omic, molecular, physiological, and behavioral analysis of a year-long human spaceflight. Science 364(6439):446

    Article  Google Scholar 

  • Gomez X, Sanon S, Zambrano K et al (2021) Key points for development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species during manned space missions. NPJ Microgravity 7:35

    Article  CAS  Google Scholar 

  • Grace AA, Roden DM (2012) Systems biology and cardiac arrhythmias. Lancet 380(9852):1498–1508

    Article  Google Scholar 

  • Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M (2012) Can I take a space flight? Considerations for doctors. Br Med J 345:e8124

    Article  Google Scholar 

  • Hargens AR, Richardson S (2009) Cardiovascular adaptation, fluid shifts, and countermeasures related to space flight. Resp Physiol Neurobiol 169:530

    Article  Google Scholar 

  • Hodkinson PD, Anderton RA, Posselt BN, Fong KJ (2017) An overview of space medicine. Br J Anesth 119(suppl 1):i143–i153

    Article  CAS  Google Scholar 

  • Hughson RL, Alexander Helm A, Durante M (2018) Heart in space: effect of the extra-terrestrial environment on the cardiovascular system. Nat Rev Cardiol 15:167–180

    Article  Google Scholar 

  • Human life research on ISS Russian segment CARDIOCOG experiment. SP Korolev RSC Energia 2021. http://www.energia.ru/en/iss/researches/medic/25.html

  • Iwase S, Nashimura N, Tanaka K, Mano T (2019) Effects of microgravity on human physiology, Beyond LEO-Human health issues for deep space exploration. Robert J. Reynolds, IntechOpen. https://doi.org/10.5772/intech.90700

  • Jabara J (2020) Pharmacological solutions for deep space traveland colonization: background, challenges, possibilities. Preprints2020110724. https://doi.org/10.20944/preprints202011.0724.v1

  • Jain AK, Mehra NK, Swarnakar NK (2015) Role of antioxidants for the treatment of cardiovascular diseases: challenges and opportunities. Curr Pharm Des 21(30):4441–4455(15)

    Article  CAS  Google Scholar 

  • Janga KY, King T, Ji N, Sarabu S, Sadambikar G et al (2018) Photostability issues in pharmaceutical dosage forms and photostabilization. AAPS PharmSciTech 19(1):48–59

    Article  CAS  Google Scholar 

  • Jaworske DA, Meyers JG (2016) Pharmaceuticals exposed to the space environment: problems and prospects (report no E-19193) NASA

    Google Scholar 

  • Jimenez M, Langer R, Traverso G (2019) Microbial therapeutics: New opportunities for drug delivery. J Exp Med 216(5):1005–1009

    Article  CAS  Google Scholar 

  • Johnson M (2019) NASA report. Using ultrasound to zap kidney stones and other health problems in space. https://www.nasa.gov/mission_pages/station/researches/news/b4h-3rd/hh-ultrasound-to-zap-kidney-stones

  • Kurz FT, Derungs T, Aon MA, O’Rourke B, Armoundas AA (2015) Mitochondrial networks in cardiomyocytes reveal dynamic coupling behavior. Biophysical J 108:1922–1933

    Google Scholar 

  • Kunz H, Quiriarte H, Simpson RJ et al (2017) Alterations in hematologic indices during long duration space flight. BMC Hematol 17:12

    Article  Google Scholar 

  • Lei I (2019) Lettuce manufactured pharmaceuticals. Nat Plants 5(7):646. https://doi.org/10.1038/s41477-019-04844-y

    Article  PubMed  Google Scholar 

  • Li W, Zhang I, Ge X, Xu B, Zhang W et al (2018) Microfluidic fabrication of micropparticles for biomedical applications. Chem Soc Rev 47(15):5646–5683

    Article  CAS  Google Scholar 

  • McDonald K (2020) A plant based platform for just in time medications, NASA textbook report. https://taskbook.nasaprs.com/tbp/ttbpdf.cfm?id=13952

  • National Aeronautical Space Administration (2020) NASA’s plan for sustained lunar exploration and development. http://nasa/gov/sites/default/files/sustained_lunar_presence_nspc_report4220final.pdf

    Google Scholar 

  • Norsk P (2020) Adaptation of the the cardiovascular system to weightlessness: surprises, paradoxes, and implications for deep space missions. Acta Pathologica 228(3):e13434

    CAS  Google Scholar 

  • Norsk P, Asmar A, Damgaard M, Christensen NJ (2015) Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol 593(3):573–584

    Article  CAS  Google Scholar 

  • Pavlakou P, Dounousi E, Roumeliotis S, Eleftheriadis T, Liakopoulos V (2018) Oxidative stress and the kidney in the space environment. Int J Mol Sci 19:3176

    Article  Google Scholar 

  • Prisk GK (2014) Microgravity and the respiratory system. Eur Res J 43:1459–1471

    Article  Google Scholar 

  • Raimi-Abraham BT, Garcia Del Valle A, Varon-Galcera C, Barker SA, Orlu M (2017) Investigating the physical stability of repackaged medicines stored into commercial available multicompartment compliance aids(MCAs). Journal PHS Res 88(2):81–89

    Google Scholar 

  • Stingl JC, Welker S, Hartmann G, Damann V, Gerzer R (2015) Where failure is not an option-personalized medicine in Astronauts. PLoS One 10(10):e0140764

    Article  Google Scholar 

  • Tahimic CGT, Globus RK (2017) Redox signaling and its impact on skeletal and vascular responses to spaceflight. Int J Mol Sci 18(10):2153

    Article  Google Scholar 

  • Tank J, Jordan J (2015) Mighty hearts in space. J Physiol 593(3):485

    Article  CAS  Google Scholar 

  • Verheyden B, Liu J, Beckers F, Aubert AE (2008) Cardiovascular control in space and on earth: the challenge of gravity. IRBM 29:287–288

    Article  Google Scholar 

  • Vigo DE et al (2013) Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars. Aviation Space Environ Med 84:1023–1028

    Article  Google Scholar 

  • Wang M, Scott SR, Koniaris LG, Zimmers TA (2020) Pathological responses of cardiac mitocvhondria to burn trauma. Int J Mol Sci 21:6655. https://doi.org/10.3390/ijms2118655

  • Wotring VE (2016) Chemical potency and degradation potency products of medications stored over 550 earth days at the international space station. AAPS J 18(1):210–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Sharma .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharma, R., Trivedi, M., Trivedi, A. (2022). Impact of Space Pharmaceuticals on Cardiovascular System. In: Pathak, Y., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics