Skip to main content

Supercell Models of Brønsted and Lewis Sites in Zeolites

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Zeolites are three-dimensional, crystalline silicate-based materials of interest for catalysis and separations. Computational models of zeolites must capture their three-dimensional structure, the intrinsic microscopic heterogeneity introduced by heteroatom substitutions that underlie their interesting chemical behavior, and the dynamic nature of reactive sites within the pores of molecular dimensions. Here we describe the use of supercell density functional theory (DFT) models for tackling these problems, focusing primarily on Brønsted acidic and Cu-exchanged chabazite (CHA) zeolites and their chemistry related to the catalytic chemistry of nitrogen oxides ( NOx). We describe considerations important in model construction, applications of ab initio molecular dynamics to structure annealing and accurate computations of reaction and activation free energies, first-principles thermodynamics approaches for predicting site compositions at realistic conditions, and approaches for incorporating heteroatom distributions into material models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Auerbach S, Carrado K, Dutta PK (2003) Handbook of zeolite science and technology. Dekker, New York

    Book  Google Scholar 

  • Brüssel M, Di Dio PJ, Munñiz K, Kirchner B (2011) Comparison of free energy surfaces calculations from ab initio molecular dynamic simulations at the example of two transition metal catalyzed reactions. Int J Mol Sci 12(2):1389–1409

    Article  Google Scholar 

  • Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134(43):18109–18115

    Article  Google Scholar 

  • Colella C (1996) Ion exchange equilibria in zeolite minerals. Mineral Deposita 31(6):554–562

    Article  ADS  Google Scholar 

  • Corma A (1989) Application of zeolites in fluid catalytic cracking and related processes. In: Jacobs P, van Santen R (eds) Zeolites: facts, figures, future part A – proceedings of the 8th international zeolite conference. Studies in surface science and catalysis, vol 49. Elsevier, pp 49–67. https://doi.org/10.1016/S0167-2991(08)61708-5, http://www.sciencedirect.com/science/article/pii/S0167299108617085

    Google Scholar 

  • den Otter WK (2013) Revisiting the exact relation between potential of mean force and free-energy profile. J Chem Theory Comput 9(9):3861–3865

    Article  Google Scholar 

  • Erichsen MW, Wispelaere KD, Hemelsoet K, Moors SL, Deconinck T, Waroquier M, Svelle S, Speybroeck VV, Olsbye U (2015) How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol. J Catal 328(Supplement C):186–196

    Google Scholar 

  • Fletcher RE, Ling S, Slater B (2017) Violations of Lowenstein’s rule in zeolites. Chem Sci 8:7483–7491

    Article  Google Scholar 

  • Gonzales NO, Chakraborty AK, Bell AT (1998) A density functional theory study of the effects of metal cations on the Brøsted acidity of H-ZSM-5. Catal Lett 50(3):135–139

    Article  Google Scholar 

  • Gunter T, Carvalho HWP, Doronkin DE, Sheppard T, Glatzel P, Atkins AJ, Rudolph J, Jacob CR, Casapu M, Grunwaldt JD (2015) Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chem Commun 51:9227–9230

    Article  Google Scholar 

  • Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29(13):2044–2078

    Article  Google Scholar 

  • Hass KC, Schneider WF, Curioni A, Andreoni W (1998) The chemistry of water on alumina surfaces: reaction dynamics from first principles. Science 282(5387):265–268

    Article  ADS  Google Scholar 

  • Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  ADS  Google Scholar 

  • Hernandez-Tamargo CE, Roldan A, de Leeuw NH (2016) A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets. J Solid State Chem 237:192–203

    Article  ADS  Google Scholar 

  • Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using car-parrinello molecular dynamics. Phys Rev Lett 90:238302

    Article  ADS  Google Scholar 

  • Jones AJ, Iglesia E (2015) The strength of Brønsted acid sites in microporous aluminosilicates. ACS Catal 5(10):5741–5755

    Article  Google Scholar 

  • Jósson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. World Scientific, Singapore, pp 385–404

    Google Scholar 

  • Kramer GJ, De Man AJM, Van Santen RA (1991) Zeolites versus aluminosilicate clusters: the validity of a local description. J Am Chem Soc 113(17):6435–6441

    Article  Google Scholar 

  • Kwak JH, Varga T, Peden CH, Gao F, Hanson JC, Szanyi J (2014) Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study. J Catal 314:83–93

    Article  Google Scholar 

  • Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109(14):6714–6721

    Article  Google Scholar 

  • Li S, Zheng Y, Gao F, Szanyi J, Schneider WF (2017) Experimental and computational interrogation of fast SCR mechanism and active sites on H-form SSZ-13. ACS Catal 7(8):5087–5096

    Article  Google Scholar 

  • Li H, Paolucci C, Schneider WF (2018) Zeolite adsorption free energies from ab initio potentials of mean force. J Chem Theory Comput 14(2):929–938. https://doi.org/10.1021/acs.jctc.7b00716

    Article  Google Scholar 

  • Lopez A, Tuilier M, Guth J, Delmotte L, Popa J (1993) Titanium in MFI-Type zeolites: a characterization by XANES, EXAFS, IR, and 74, 49Ti and 17O MAS NMR spectroscopy and H2O adsorption. J Solid State Chem 102(2):480–491

    Article  ADS  Google Scholar 

  • Matsubayashi N, Shimada H, Imamura M, Sato T, Okabe K, Yoshimura Y, Nishijima A (1996) Determination of Fe-substituted sites in the MFI structure by Fe K-edge EXAFS. Catal Today 29(1):273–277

    Article  Google Scholar 

  • Melson GA, Crawford JE, Crites JW, Mbadcam KJ, Stencel JM, Rao VUS (1983) Evaluation of some new zeolite-supported metal catalysts for synthesis gas conversion, Chap 24. In: Stucky GD, Dwyer FG (eds) Intrazeolite chemistry. American Chemical Society, Washington, pp 397–408

    Chapter  Google Scholar 

  • Moors SLC, De Wispelaere K, Van der Mynsbrugge J, Waroquier M, Van Speybroeck V (2013) Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5. ACS Catal 3(11):2556–2567

    Article  Google Scholar 

  • Nicholas CP (2017) Applications of light olefin oligomerization to the production of fuels and chemicals. Appl Catal A Gen 543(March):82–97. https://doi.org/10.1016/j.apcata.2017.06.011

    Article  Google Scholar 

  • Paolucci C, Verma AA, Bates SA, Kispersky VF, Miller JT, Gounder R, Delgass WN, Ribeiro FH, Schneider WF (2014) Isolation of the copper redox steps in the standard selective catalytic reduction on cu-ssz-13. Angew Chem Int Ed 53(44):11828–11833

    Article  Google Scholar 

  • Paolucci C, Di Iorio J, Ribeiro F, Gounder R, Schneider WF (2016a) Catalysis science of selective catalytic reduction with ammonia over Cu-SSZ-13 and Cu-SAPO-34. In: Advances in Catalysis, vol 59. Academic Press, pp 1–107. https://doi.org/10.1016/bs.acat.2016.10.002

    Google Scholar 

  • Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016b) Catalysis in a cage: condition-dependent speciation and dynamics of exchanged cu cations in SSZ-13 zeolites. J Am Chem Soc 138(18):6028–6048

    Article  Google Scholar 

  • Paolucci C, Khurana I, Parekh AA, Li S, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357:898–903

    Article  ADS  Google Scholar 

  • Pappas DK, Borfecchia E, Dyballa M, Pankin IA, Lomachenko KA, Martini A, Signorile M, Teketel S, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Lillerud KP, Svelle S, Beato P (2017) Methane to methanol: structure-activity relationships for Cu-CHA. J Am Chem Soc 139(42):14961–14975. https://doi.org/10.1021/jacs.7b06472

    Article  Google Scholar 

  • Psofogiannakis GM, McCleerey JF, Jaramillo E, van Duin ACT (2015) Reaxff reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers. J Phys Chem C 119(12):6678–6686

    Article  Google Scholar 

  • Rozanska X, van Santen RA, Demuth T, Hutschka F, Hafner J (2003) A periodic DFT study of isobutene chemisorption in proton-exchanged zeolites: dependence of reactivity on the zeolite framework structure. J Phys Chem B 107(6):1309–1315

    Article  Google Scholar 

  • Rybicki M, Sauer J (2015) Acidity of two-dimensional zeolites. Phys Chem Chem Phys 17:27873–27882

    Article  Google Scholar 

  • Sauer J, Hobza P, Zahradnik R (1980) Quantum chemical investigation of interaction sites in zeolites and silica. J Phys Chem 84(24):3318–3326

    Article  Google Scholar 

  • Schneider W, Hass K, Ramprasad R, Adams J (1998) Density functional theory study of transformations of nitrogen oxides catalyzed by cu-exchanged zeolites. J Phys Chem B 102(19):3692–3705

    Article  Google Scholar 

  • Sherry HS (1966) The ion-exchange properties of zeolites. I. Univalent ion exchange in synthetic faujasite. J Phys Chem 70(4):1158–1168

    Google Scholar 

  • Sherwood P, de Vries AH, Collins SJ, Greatbanks SP, Burton NA, Vincent MA, Hillier IH (1997) Computer simulation of zeolite structure and reactivity using embedded cluster methods. Faraday Discuss 106:79–92

    Article  ADS  Google Scholar 

  • Sierka M, Sauer J (2001) Proton mobility in chabazite, faujasite, and ZSM-5 zeolite catalysts. Comparison based on ab initio calculations. J Phys Chem B 105(8):1603–1613

    Article  Google Scholar 

  • Sierka M, Sauer J (2005) Hybrid quantum mechanics/molecular mechanics methods and their application. Springer, Netherlands, pp 241–258

    Google Scholar 

  • Thang HV, Rubeš M, Bludský O, Nachtigall P (2014) Computational investigation of the Lewis acidity in three-dimensional and corresponding two-dimensional zeolites: Utl vs IPC-1P. J Phys Chem A 118(35):7526–7534

    Article  Google Scholar 

  • Trout BL, Chakraborty AK, Bell AT (1996) Local spin density functional theory study of copper ion-exchanged zsm-5. J Phys Chem 100(10):4173–4179

    Article  Google Scholar 

  • Tuma C, Sauer J (2006) Treating dispersion effects in extended systems by hybrid MP2:DFT calculations-protonation of isobutene in zeolite ferrierite. Phys Chem Chem Phys 8:3955–3965

    Article  Google Scholar 

  • Verma AA, Bates SA, Anggara T, Paolucci C, Parekh AA, Kamasamudram K, Yezerets A, Miller JT, Delgass WN, Schneider WF, Ribeiro FH (2014) No oxidation: a probe reaction on Cu-SSZ-13. J Catal 312(Supplement C):179–190

    Article  Google Scholar 

  • Wong KY, York DM (2012) Exact relation between potential of mean force and free-energy profile. J Chem Theory Comput 8(11):3998–4003

    Article  Google Scholar 

Download references

Acknowledgements

This work was prepared in part with the financial support of the BASF Corporation. Numerous valuable discussions with C. Paolucci, H. Li, A. DeBellis, and I. Müller are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Schneider .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, S., Schneider, W.F. (2018). Supercell Models of Brønsted and Lewis Sites in Zeolites. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_4-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics