Skip to main content

Tumor Therapy with Ion Beams

  • Living reference work entry
  • First Online:
Handbook of Particle Detection and Imaging

Abstract

From 1954 when the first patient was treated at Berkeley to now, tumor therapy using ion beams has developed to high-technology application. In order to achieve an extreme tumor conform irradiation, a fine pencil beam is guided over a three-dimensional grid of pixels that fills the target volume. A main problem is the quality assurance before, during, and after patient irradiation where different types of detectors and monitors are used. In this chapter, the basic principles of ion beam therapy are given and the monitor systems are described more in their functionality rather than in the individual specifications that differ between the various therapy units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Barkas HW (1963) Nuclear research emulsions, vol I. Academic, New York/London

    Google Scholar 

  • Bethe H (1930) Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann Phys 5:325

    Article  Google Scholar 

  • Blakely EA, Tobias CA, Ngo FQH, Curtis SB (1980) Physical and cellular radiobiological properties of heavy ions in relation to cancer therapy. In: Pirucello MD, Tobias CA (eds) Biological and medical research with accelerated heavy ions at the Bevalac. Lawrence Berkeley Laboratory, Berkeley, p 73

    Google Scholar 

  • Bloch F (1933) Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Ann Phys 5:285

    Article  Google Scholar 

  • Chu WT, Ludewigt BA, Renner TR (1993) Instrumentation for treatment of cancer using proton and light-ion beams. Rev Sci Instrum 64:2055

    Article  ADS  Google Scholar 

  • De Vita VT, Hellmann S, Rosenberg SA (1997) Cancer: principles and practice of oncology. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Durante M, Loeffler JS (2010) Charged particles in radiation oncology. Nat Rev Clin Oncol 7:37–43

    Article  Google Scholar 

  • Elsässer T, Weyrather WK, Friedrichs T et al (2010) Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys 78:1177–1183

    Article  Google Scholar 

  • Enghardt WK, Fromm WD, Geissel H, Keller H, Kraft G, Magel A, Manfrass P, Munzenberg G, Nickel F, Pawelke J, Schardt D, Scheidenberger C, Sobiella M (1992) The spatial distribution of positron-emitting nuclei generated by relativistic light ion beams in organic matter. Phys Med Biol 37:2127

    Article  Google Scholar 

  • Enghardt WK, Debus J, Haberer T, Hasch B, Hinz R, Jkel O, Krmer M, Lauckner K, Pawelke J (1999) The application of PET to quality assurance of heavy-ion tumor therapy. Strahlenther Onkol 175:S33

    Article  Google Scholar 

  • Geiss O, Kramer M, Kraft G (1999) Efficiency of thermoluminescent detectors to heavy-charged particles. Nucl Inst Methods Phys Res B 142:592

    Article  ADS  Google Scholar 

  • Gottschalk B, Koehler AM, Schneider RJ, Sisterson JM, Wagner MS (1993) Multiple Coulomb scattering of 160 MeV protons. Nucl Inst Methods A 330:467

    Article  ADS  Google Scholar 

  • Haberer T, Becher W, Schardt D, Kraft G (1993) Magnetic scanning system for heavy ion therapy. Nucl Inst Methods Phys Res A 330:296

    Article  ADS  Google Scholar 

  • Haettner E, Iwase H, Schardt D (2006) Experimental fragmentation studies with 12C therapy beams. Radiat Prot Dosim 122:485

    Article  Google Scholar 

  • Hall E (1994) Radiobiology for the radiologist. Lipincott Company, Philadelphia

    Google Scholar 

  • Hüfner J (1985) Heavy fragments produced in proton–nucleus and nucleus–nucleus collisions at relativistic energies. Phys Rep 125:129

    Article  ADS  Google Scholar 

  • Jäkel O, Hartmann G, Karger C, Heeg P (1999) A quality assurance program for heavy ion treatment planning. Radiother Oncol 51:13

    Google Scholar 

  • Kanai T, Furusawa Y, Fukutsu K, Itsukaichi H, Eguchi-Kasai K, Ohara H (1997) Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy. Radiat Res 147:78

    Article  ADS  Google Scholar 

  • Kanai T et al (1999) Characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys 44:201

    Article  ADS  Google Scholar 

  • Karger CP, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J (2006) Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implication. Int J Radiat Oncol Biol Phys 66:1488

    Article  Google Scholar 

  • Kraft G (2000) Tumor therapy with heavy charged particles. Prog Part Nucl Phys 45:473

    Article  ADS  Google Scholar 

  • Kraft G, Kraft SD (2009) Research needed for improving heavy-ion therapy. New J Phys 11:025001

    Article  Google Scholar 

  • Krämer M, Kraft G (1994) Calculations of heavy track structure. Radiat Environ Biophys 33:91

    Article  Google Scholar 

  • Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D, Weber U (2000) Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol 45:3299

    Article  Google Scholar 

  • Krämer M, Wang JF, Weyrather WK (2003a) Biological dosimetry of complex ion eradiation fields. Phys Med Biol 48:2063

    Article  Google Scholar 

  • Krämer M, Weyrather WK, Scholz M (2003b) The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat 2:427

    Article  Google Scholar 

  • Molière G (1948) Theorie der Streuung schneller geladener Teilchen II, Mehrfach- und Vielfachstreuung. Z Naturforsch 3a:78

    Article  ADS  Google Scholar 

  • Parodi K et al (2007) Patient tomography and computed tomography imaging after proton therapy. J Radiat Oncol Biol Phys 68:920

    Article  Google Scholar 

  • Pedroni E, Blattmann H, Böhringer T, Coray A, Lin S, Scheib S, Schneider U (1991) Voxel scanning for proton therapy. In: Itano A, Kanai T (eds) Proceedings of the NIRS international workshop on heavy charged particle therapy and related subjects, Anagawa

    Google Scholar 

  • Scholz M, Kraft G (1994) Calculation of heavy ion inactivation probabilities based on track structure, X-ray sensitivity and target size. Radiat Prot Dosim 52:29

    Article  Google Scholar 

  • Schulz-Ertner D, Tsujii H (2007) Particle radiation therapy using proton and heavier ion beams. J Clin Oncol 25:953

    Article  Google Scholar 

  • Spielberger B, Kramer M, Kraft G (2003) Three-dimensional dose verification in complex particle radiation fields based on X-ray films. Phys Med Biol 48:497

    Article  Google Scholar 

  • Tsujii H et al (2004) Overview of clinical experience on carbon therapy at NIRS radiotherapy and oncology. Radiother Oncol 73:S41

    Article  Google Scholar 

  • Weber U, Kraft G (2009) Comparison of carbon ions versus protons. Cancer J 15:325

    Article  Google Scholar 

  • Weyrather WK, Kraft G (2004) RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning. Radiother Oncol 73:S161

    Article  Google Scholar 

  • Wilson RR (1946) Radiological use of fast protons. Radiology 47:325

    Google Scholar 

Further Reading

  • Kraft G (2000b) Tumor therapy with heavy charged particles. Prog Part Nucl Phys 45:473

    Article  ADS  Google Scholar 

  • Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383

    Article  ADS  Google Scholar 

  • Schulz-Ertner D, Tsujii H (2007b) Particle radiation therapy using proton and heavier ion beams. J Clin Oncol 25:953

    Article  Google Scholar 

  • Suit H, DeLaney T, Goldberg S et al (2010) Proton versus carbon ion beams in the definitive treatment of cancer patients. Radiother Oncol 95:3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Kraft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kraft, G., Weber, U. (2020). Tumor Therapy with Ion Beams. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-47999-6_47-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47999-6_47-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47999-6

  • Online ISBN: 978-3-319-47999-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics