Skip to main content

Microbial Fuel Cells, Concept, and Applications

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

The first published report of microbial fuel cells (MFCs) was over 100 years ago, yet it is only recently that interest in the technology has grown exponentially with the discovery that bacteria can transfer electrons to the anode without the need for external mediators. Diverse bioelectrochemical technologies have since been developed. Microbial fuel cells have captured the attention of scientists due to the simultaneous removal of organics and pollutants and generation of electricity. Therefore, the MFC technology can become an integrated part of wastewater treatment as a renewable power system for low power consuming devices or even for real-time biosensing. In this work, a brief story of microbial fuel cells is presented followed by the description of existing bioelectrochemical systems. The diverse range of organic compounds treated in MFCs is presented followed by the description of the main MFC components (anode, cathode, and separator) their development and optimisation. Finally, the implementation of the technology for wastewater treatment and practical implementations are discussed. A final detailed part is dedicated to the utilisation of bioelectrochemical systems for biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abrevaya XC, Mauas PJD, Cortón E (2010) Microbial fuel cells applied to the metabolically based detection of extraterrestrial life. Astrobiology 10:965–971

    Article  CAS  PubMed  Google Scholar 

  • Aelterman P, Rabaey K, Pham HT et al (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  PubMed  Google Scholar 

  • Almatouq A, Babatunde AO (2018) Identifying optimized conditions for concurrent electricity production and phosphorus recovery in a mediator-less dual chamber microbial fuel cell. Appl Energ 230:122–134

    Article  CAS  Google Scholar 

  • Amari S, Boshrouyeh Ghandashtani M (2019) Non-steroidal anti-inflammatory pharmaceutical wastewater treatment using a two-chambered microbial fuel cell. Water Environ J. https://doi.org/10.1111/wej.12476

  • Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70

    Article  CAS  PubMed  Google Scholar 

  • Arias-Thode YM, Hsu L, Anderson G et al (2017) Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection. J Power Sources 356:419–429

    Article  CAS  Google Scholar 

  • Bajracharya S, Srikanth S, Mohanakrishna G et al (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273

    Article  CAS  Google Scholar 

  • Baudler A, Schmidt I, Langner M et al (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055

    Article  CAS  Google Scholar 

  • Behera M, Jana PS, Ghangrekar MM (2010) Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour Technol 101:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Bennetto HP (1990) Electricity generation by microorganisms. Biotechnol Educ I 4:163–168

    Google Scholar 

  • Berk RS, Canfield JH (1964) Bioelectrochemical energy conversion. Appl Microbiol 12:10–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Huang X, Liang P et al (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Article  CAS  PubMed  Google Scholar 

  • Catal T, Kul A, Atalay VE et al (2019) Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. J Power Sources 414:1–7

    Article  CAS  Google Scholar 

  • Cecconet D, Molognoni D, Callegari A et al (2018) Agro-food industry wastewater treatment with microbial fuel cells: energetic recovery issues. Int J Hydrog Energy 43:500–511

    Article  CAS  Google Scholar 

  • Chang IS, Jang JK, Gil GC et al (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    Article  CAS  PubMed  Google Scholar 

  • Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20:1856–1859

    Article  CAS  PubMed  Google Scholar 

  • Chiu H, Pai T, Liu M et al (2016) Electricity production from municipal solid waste using microbial fuel cells. Waste Manag Res 34:619–629

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Gu MB (2003) Toxicity biomonitoring of degradation byproducts using freeze-dried recombinant bioluminescent bacteria. Anal Chim Acta 481:229–238

    Article  CAS  Google Scholar 

  • Choi JDR, Chang HN, Han JI (2011) Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol Lett 33:705–714. https://doi.org/10.1007/s10529-010-0507-2

    Article  CAS  PubMed  Google Scholar 

  • Cohen B (1931) The bacterial culture as an electrical half-cell. J Bacteriol 21:18–19

    CAS  Google Scholar 

  • Corbella C, Puigagut J (2018) Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: influence of anode material and external resistance. Sci Total Environ 631–632:1406–1414

    Article  PubMed  CAS  Google Scholar 

  • Corbella C, Guivernau M, Vinas M et al (2015) Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands. Water Res 84:232–242

    Article  CAS  PubMed  Google Scholar 

  • Costa de Oliveira MA, Mecheri B, D’Epifanio A et al (2017) Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. J Power Sources 356:381–388

    Article  CAS  Google Scholar 

  • Cristiani P, Perboni G, Debenedetti A (2008) Effect of chlorination on the corrosion of cu/Ni 70/30 condenser tubing. Electrochim Acta 54:100–107

    Article  CAS  Google Scholar 

  • Cui Y, Lai B, Tang X (2019) Microbial fuel cell-based biosensors. Biosensors 9:92

    Article  PubMed Central  Google Scholar 

  • Cusick RD, Bryan B, Parker DS et al (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Xu Z, Wang T et al (2019) In-situ oil presence sensor using simple-structured upward open-channel microbial fuel cell (UOC-MFC). Biosens Bioelectron X 1:100014

    Google Scholar 

  • Daud SM, Kim BH, Ghasemi M et al (2015) Separators used in microbial electrochemical technologies: current status and future prospects. Bioresour Technol 195:170–179

    Article  CAS  PubMed  Google Scholar 

  • Davila D, Esquivel JP, Sabate N, Mas J (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26:2426–2430

    Article  CAS  PubMed  Google Scholar 

  • Davis JB, Yarbrough HF (1962) Preliminary experiments on a microbial fuel cell. Science 137:615–616

    Article  CAS  PubMed  Google Scholar 

  • Di Lorenzo M, Curtis TP, Head IM et al (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Qu Y, He W et al (2015) A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour Technol 195:66–72

    Article  CAS  PubMed  Google Scholar 

  • ElMekawy A, Diels L, De Wever H, Pant D (2013) Valorization of cereal based biorefinery byproducts: reality and expectations. Environ Sci Technol 47:9014–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing T, Ha PT, Beyenal H (2017) Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources. Appl Energy 192:490–497

    Article  CAS  Google Scholar 

  • Feng Y, Harper WF (2013) Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations. J Environ Managem 130:369–374

    Article  CAS  Google Scholar 

  • Feng Y, Kayode O, Harper WF (2013) Using microbial fuel cell output metrics and nonlinear modeling techniques for smart biosensing. Sci Total Environ 449:223–228

    Article  CAS  PubMed  Google Scholar 

  • Feng YJ, He WH, Liu J et al (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 156:132–138

    Article  CAS  PubMed  Google Scholar 

  • Gajda I, Stinchcombe A, Greenman J et al (2015) Ceramic MFCs with internal cathode producing sufficient power for practical applications. Int J Hydrog Energy 40:14627–14631

    Article  CAS  Google Scholar 

  • Gajda I, Greenman J, Melhuish C et al (2016) Electricity and disinfectant production from wastewater: microbial fuel cell as a self-powered electrolyser. Sci Rep 6:25571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Z, Li J, Xiao L et al (2013) Recovery of electrical energy in microbial fuel cells: brief review. Environ Sci Technol Lett 1:137–141

    Article  CAS  Google Scholar 

  • Ge Z, Wu L, Zhang F et al (2015) Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J Power Sources 297:260–264

    Article  CAS  Google Scholar 

  • Geesey G (1991) What is biocorrosion? In: Flemming HC, Geesey GG (eds) Biofouling and biocorrosion in industrial water systems. Springer, Berlin/Heidelberg

    Google Scholar 

  • Ghasemi M, Daud WRW, Ismail AF et al (2013) Simultaneous wastewater treatment and electricity generation by microbial fuel cell: performance comparison and cost investigation of using Nafion 117 and SPEEK as separators. Desalination 325:1–6

    Article  CAS  Google Scholar 

  • Grattieri M, Minteer SD (2018) Self-powered biosensors. ACS Sensors 3:44–53

    Article  CAS  PubMed  Google Scholar 

  • Greenman J, Gálvez A, Giusti L et al (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzym Microb Technol 44:112–119

    Article  CAS  Google Scholar 

  • Greenman J, Ieropoulos IA, Melhuish C (2011) Microbial Fuel Cells – Scalability and their Use in Robotics. In: Eliaz N (eds) Applications of Electrochemistry and Nanotechnology in Biology and Medicine I. Modern Aspects of Electrochemistry, vol 52. Springer, New York, NY

    Google Scholar 

  • Gu T (2012) Methods and devices for the detection of biofilms. World Intellectual Property Organization: Patent WO2012/149487

    Google Scholar 

  • Guo K, Freguia S, Dennis PG et al (2013) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47:7563–7570

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Prévoteau A, Patil SA et al (2015) Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 33:149–156

    Article  CAS  PubMed  Google Scholar 

  • Habermann W, Pommer EH (1991) Biological fuel-cells with sulfide storage capacity. Appl Microbiol Biotechnol 35(1):128–133

    Article  CAS  Google Scholar 

  • Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. Chem Sus Chem 2:921–926

    Article  CAS  Google Scholar 

  • Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448

    Article  CAS  PubMed  Google Scholar 

  • Harnisch F, Schröder U, Scholz F (2008) The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ Sci Technol 42:1740–1746

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Fernandez FJ, de los Rios AP, Salar-García MJ et al (2015) Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Processing Technol 138:284–297

    Article  CAS  Google Scholar 

  • Hiegemann H, Herzer D, Nettmann E et al (2016) An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol 218:115–122

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Li X, Ren Y et al (2017) Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell. RCS Adv 7:20824–20832

    CAS  Google Scholar 

  • Ieropoulos I, Melhuish C, Greenman J (2003) Artificial metabolism: towards true energetic autonomy in artificial life. Adv Artif Life Proc 2801:792–799

    Article  Google Scholar 

  • Ieropoulos I, Melhuish C, Greenman J (2004) Energetically autonomous robots. 8th Intell Auton Syst Conf 128–135

    Google Scholar 

  • Ieropoulos I, Melhuish C, Greenman J, Horsfield I (2005a) EcoBot-II: an artificial agent with a natural metabolism. Int J Adv Robot Syst 2:295–300

    Article  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C et al (2005b) Energy accumulation and improved performance in microbial fuel cells. J Power Sources 145:253–256

    Article  CAS  Google Scholar 

  • Ieropoulos I, Melhuish C, Greenman J (2007) Artificial gills for robots: MFC behaviour in water. Bioinspir Biomim 2(3):S83

    Article  CAS  PubMed  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C (2008) Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32(13):1228–1240

    Article  CAS  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C (2010a) Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry 78:44–50

    Article  CAS  PubMed  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C, Horsfield I (2010b) EcoBot-III: a robot with guts. 12th Int Conf synth Simul living Syst 733–740

    Google Scholar 

  • Ieropoulos IA, Ledezma P, Stinchcombe A et al (2013) Waste to real energy: the first MFC powered mobile phone. Phys Chem Chem Phys 15:15312–15316

    Article  CAS  PubMed  Google Scholar 

  • Ieropoulos I, Stinchcombe A, Gajda I et al (2016a) Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environ Sci Water Res Technol 2:336–343

    Article  CAS  Google Scholar 

  • Ieropoulos I, Winfield J, Gajda I et al (2016b) Chapter 12 – the practical implementation of microbial fuel cell technology. In: Scott K (ed) Microbial electrochemical and fuel cells. Woodhead Publishing, Cambridge, pp 357–380

    Chapter  Google Scholar 

  • Ivars-Barceló F, Zuliani A, Fallah M et al (2018) Novel applications of microbial fuel cells in sensors and biosensors. Appl Sci 8:1184

    Article  CAS  Google Scholar 

  • Jiang D, Curtis M, Troop E et al (2011) A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrog Energy 36:876–884

    Article  CAS  Google Scholar 

  • Jiang Y, Liang P, Zhang CY et al (2015) Enhancing the response of microbial fuel cell based toxicity sensors to Cu (II) with the applying of flow-through electrodes and controlled anode potentials. Bioresour Technol 190:367–372

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chu N, Zeng RJ (2019) Submersible probe type microbial electrochemical sensor for volatile fatty acids monitoring in the anaerobic digestion process. J Clean Prod 232:1371–1378

    Article  CAS  Google Scholar 

  • Kannan P, Jogdeo P, Mohidin AF et al (2019) A novel microbial-bioelectrochemical sensor for the detection of n-cyclohexyl-2-pyrrolidone in wastewater. Electrochim Acta 317:604–611

    Article  CAS  Google Scholar 

  • Karube I, Suzuki S (1988) Biochemical energy-conversion by immobilized photosynthetic Bacteria. Methods Enzymol 137:668–674

    Article  CAS  Google Scholar 

  • Karube I, Matsunaga T, Mitsuda S, Suzuki S (1977) Microbial electrode BOD sensors. Biotechnol Bioeng 19:1535–1547

    Article  CAS  PubMed  Google Scholar 

  • Karube I, Okada T, Suzuki S (1981) Amperometric determination of Ammonia gas with immobilized nitrifying Bacteria. Anal Chem 53:1852–1854

    Article  CAS  Google Scholar 

  • Kaur A, Ibrahim S, Pickett CJ et al (2014) Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor. Sensors Actuators B Chem 201:266–273

    Article  CAS  Google Scholar 

  • Keller J, Rabaey K (2008) Experiences from MFC Pilot Plant Operation. Available from: https://www.yumpu.com/en/document/view/47122823/experiences-from-mfc-pilot-plant-operation-microbial-fuel-cells

  • Kim T, Han JI (2013) Fast detection and quantification of Escherichia coli using the base principle of the microbial fuel cell. J Environ Manag 130:267–275

    Article  CAS  Google Scholar 

  • Kim M-N, Kwon H-S (1999) Biochemical oxygen demand sensor using Serratia marcescens LSY 4. Biosens Bioelectron 14:1–7

    Article  PubMed  Google Scholar 

  • Kim BH, Chang IS, Gil GC et al (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Hyun SM, Gadd GM, Kim HJ (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monitor 9:1323–1328

    Article  CAS  Google Scholar 

  • Kim B, Lee BGP, Kim BH et al (2015) Assistance current effect for prevention of voltage reversal in stacked microbial fuel cell systems. ChemElectroChem 2(5):755–760

    Article  CAS  Google Scholar 

  • Kodali M, Gokhale R, Santoro C et al (2017a) High performance platinum group metal-free cathode catalysts for microbial fuel cell (MFC). J Electrochem Soc 164:H3041–H3046

    Article  CAS  Google Scholar 

  • Kodali M, Santoro C, Serov A et al (2017b) Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts. Electrochim Acta 231:115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Huan-Hsuan Hsu L, Kavanagh P et al (2017) The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem 1:24

    Article  CAS  Google Scholar 

  • Larrosa-Guerrero A, Scott K, Head IM et al (2010) Effect of temperature on the performance of microbial fuel cells. Fuel 89:3985–3994

    Article  CAS  Google Scholar 

  • Ledezma P, Greenman J, Ieropoulos I (2013a) MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresour Technol 134:158–165

    Article  CAS  PubMed  Google Scholar 

  • Ledezma P, Stinchcombe A, Greenman J et al (2013b) The first self-sustainable microbial fuel cell stack. Phys Chem Chem Phys 15:2278–2281

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Zikmund E, Yang W et al (2018) The impact of Ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells. Environ Sci Technol 52:8977–8985

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Rossi R, Ragab A et al (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17:307–319

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Chen S, Babanova S et al (2017) Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater. J Power Sources 356:274–287

    Article  CAS  Google Scholar 

  • Luo H, Xu G, Lu Y et al (2017) Electricity generation in a microbial fuel cell using yogurt wastewater under alkaline conditions. RSC Adv 7:32826–32832

    Article  CAS  Google Scholar 

  • Martinucci E, Pizza F, Perrino D et al (2015) Energy balance and microbial fuel cells experimentation at wastewater treatment plant Milano-Nosedo. Int J Hydrog Energy 40:14683–14689

    Article  CAS  Google Scholar 

  • Mathuriya AS, Yakhmi JV (2014) Microbial fuel cells to recover heavy metals. Environ Chem Lett 12(4):483–494

    Article  CAS  Google Scholar 

  • Mathuriya AS, Yakhmi JV (2016) Microbial fuel cells – applications for generation of electrical power and beyond. Crit Rev Microbiol 42:127–143

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6(2):153–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Melhuish C, Ieropoulos I, Greenman J et al (2006) Energetically autonomous robots: food for thought. Auton Robot 21:187–198

    Article  Google Scholar 

  • Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173

    Article  CAS  Google Scholar 

  • Modin O, Wilén BM (2012) A novel bioelectrochemical BOD sensor operating with voltage input. Water Res 46:6113–6120

    Article  CAS  PubMed  Google Scholar 

  • Mustakeem (2015) Electrode materials for microbial fuel cells: nanomaterial approach. Mater Renew Sustain Energy 4:22

    Article  Google Scholar 

  • Ni G, Christel S, Roman P et al (2016) Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms. Res Microbiol 167:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SE, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. App Microbiol Biotechnol 70:162–169

    Article  CAS  Google Scholar 

  • Pandey P, Shinde VN, Deopurkar RL et al (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723

    Article  CAS  Google Scholar 

  • Pant D, Van Bogaert G, Diels L et al (2010a) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Van Bogaert G, De Smet M et al (2010b) Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim Acta 55:7710–7716

    Article  CAS  Google Scholar 

  • Pant D, Van Bogaert G, Alvarez-Gallego Y et al (2016) Evaluation of bioelectrogenic potential of four industrial effluents as substrate for low cost microbial fuel cells operation. Environ Eng Manag J 51(8):1897–1904

    Article  Google Scholar 

  • Papaharalabos G, Greenman J, Melhuish C et al (2013) Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC). Int J Hydrog Energy 38:11552–11558

    Article  CAS  Google Scholar 

  • Papaharalabos G, Stinchcombe A, Horsfield I et al (2017) Autonomous energy harvesting and prevention of cell reversal in MFC stacks. J Electrochem Soc 164(3):H3047–H3051

    Article  CAS  Google Scholar 

  • Pasternak G, Greenman J, Ieropoulos (2017) Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring. Sens Actuators B Chem 244:815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto L, Min B, Martins G et al (2011) In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry 81:99–103

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292

    Article  CAS  Google Scholar 

  • Philamore H, Rossiter J, Stinchcombe A et al (2015) Row-bot: an energetically autonomous artificial water boatman. 2015 IEEE/RSJ international conference on Intelligent Robots and Systems (IROS). Sept 28 – Oct 2, 2015. Hamburg

    Google Scholar 

  • Philamore H, Ieropoulos I, Stinchcombe A et al (2016) Toward energetically autonomous foraging soft robots. Soft Robot 3:186–197

    Article  Google Scholar 

  • Pocaznoi D, Calmet A, Etcheverry L et al (2012) Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environ Sci 5:9645–9652

    Article  CAS  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B Biol Sci 84:260–276

    Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Carbonell S, Santoro C, Serov A et al (2017) Transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in neutral electrolyte. Electrochem Commun 75:38–42

    Article  CAS  Google Scholar 

  • Rojas-Carbonell S, Artyushkova K, Serov A et al (2018) Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. ACS Catal 8:3041–3053

    Article  CAS  Google Scholar 

  • Rossiter J, Philamore H, Stinchcombe A et al (2015) Row-bot: an energetically autonomous artificial water boatman. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp 3888–3893

    Google Scholar 

  • Roy S, Schievano A, Pant D (2016) Electro-stimulated microbial factory for value added product synthesis. Bioresour Technol 213:129–139

    Article  CAS  PubMed  Google Scholar 

  • Salar-García MJ, Ortiz-Martínez VM, de los Rios AP et al (2015) A method based on impedance spectroscopy for predicting the behavior of novel ionic liquid-polymer inclusion membranes in microbial fuel cells. Energy 89:648–654

    Article  CAS  Google Scholar 

  • Salar-García MJ, Ortiz-Martínez VM, Baicha Z et al (2016) Scaled-up continuous up-flow microbial fuel cell based on novel embedded ionic liquid-type membrane-cathode assembly. Energy 101:113–120

    Article  CAS  Google Scholar 

  • Santoro C, Serov A, Stariha L et al (2016a) Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells. Energy Environ Sci 9:2346–2353

    Article  CAS  Google Scholar 

  • Santoro C, Babanova S, Erable B, Schuler A, Atanassov P (2016b) Bilirubin oxidase based enzymatic air-breathing cathode: operation under pristine and contaminated conditions. Bioelectrochemistry 108:1–7

    Article  CAS  PubMed  Google Scholar 

  • Santoro C, Mohidin AF, Grasso LL et al (2016c) Sub-toxic concentrations of volatile organic compounds inhibit extracellular respiration of Escherichia coli cells grown in anodic bioelectrochemical systems. Bioelectrochem 112:173–177

    Article  CAS  Google Scholar 

  • Santoro C, Arbizzani C, Erable B et al (2017) Microbial fuel cells: from fundamentals to applications. A Rev J Power Sources 356:225–244

    Article  CAS  Google Scholar 

  • Santoro C, Rojas-Carbonell S, Awais R et al (2018) Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance. J Power Sources 375:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schievano A, Colombo A, Grattieri M et al (2017) Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. J Power Sources 340:80–88

    Article  CAS  Google Scholar 

  • Schievano A, Colombo A, Cossettini A et al (2018) Single-chamber microbial fuel cells as on-line shock-sensors for volatile fatty acids in anaerobic digesters. Waste Manag 71:785–791

    Article  CAS  PubMed  Google Scholar 

  • Shantaram A, Beyenal H, Veluchamy RRA et al (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042

    Article  CAS  PubMed  Google Scholar 

  • Shen YJ, Lefebvre O, Tan Z et al (2012) Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Sci Technol 65(7):1223

    Article  CAS  PubMed  Google Scholar 

  • Shen YJ, Wang M, Chang IS et al (2013) Effect of shear rate on the response of microbial fuel cell toxicity sensor to cu(II). Bioresour Technol 136:707–710

    Article  CAS  PubMed  Google Scholar 

  • Sonawane JM, Adeloju SB, Ghosh PC (2017) Landfill leachate: A promising substrate for microbial fuel cells. Int J Hydrogen Energy 42:23794–23798

    Google Scholar 

  • Song N, Yan Z, Xu H et al (2019) Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci Tot Environ 673:272–280

    Article  CAS  Google Scholar 

  • Stein NE, Hamelers HV, Straten GV et al (2012) Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. Biosensors 2:255–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoll ZA, Dolfing J, Xu P (2018) Minimum performance requirements for microbial fuel cells to achieve energy-neutral wastewater treatment. Water 10:243

    Article  CAS  Google Scholar 

  • Su L, Jia W, Hou C et al (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  PubMed  Google Scholar 

  • Tender LM, Gray SA, Groveman E et al (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179(2):571–575

    Article  CAS  Google Scholar 

  • Tian Y, Mei X, Liang Q, Wu D, Ren N, Xing D (2017) Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells. RSC Adv 7(14):8376–8380

    Google Scholar 

  • Thurston CF, Bennetto HP, Delaney GM et al (1985) Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a Thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. Microbiol 131:1393–1401

    Article  CAS  Google Scholar 

  • Tront JM, Fortner JD, Plötze M et al (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590

    Article  CAS  PubMed  Google Scholar 

  • Ucar D, Zhang Y, Angelidaki I (2017) An overview of electron acceptors in microbial fuel cells. Front Microbiol 8:643

    Article  PubMed  PubMed Central  Google Scholar 

  • Varcoe JR, Atanassov P, Dekel DR (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Sarma PN (2010) Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour Technol 101:970–976

    Article  CAS  PubMed  Google Scholar 

  • Videla HA, Herrera LK (2014) Studies in surface science and catalysis. Chapter 7 Biocorrosion. Elsevier Book series volume 151:193–218

    Google Scholar 

  • Virdis B, Rabaey K, Rozendal RA et al (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44:2970–2980

    Article  CAS  PubMed  Google Scholar 

  • Walter XA, Gajda I, Forbes S et al (2016) Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnol Biofuels 9(1):93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walter XA, Stinchcombe A, Greenman J et al (2017) Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging. Appl Energy 192:575–581

    Article  CAS  Google Scholar 

  • Walter XA, Merino-Jiménez I, Greenman J et al (2018) PEE POWER® urinal II – urinal scale-up with microbial fuel cell scale-down for improved lighting. J Power Sources 392:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Jiang H (2019) Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor. Sci Tot Environ 697:134009

    Article  CAS  Google Scholar 

  • Wang Z, Cao C, Zheng Y, Chen S et al (2014) Abiotic oxygen reduction reaction catalysts used in microbial fuel cells. Chem Electro Chem 1:1813–1821

    CAS  Google Scholar 

  • Wang H, Park JD, Ren ZJ (2015) Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol 49:3267–3277

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Mahadevan GD, Wu Y et al (2017) Progress of air-breathing cathode in microbial fuel cells. J Power Sources 356:245–255

    Article  CAS  Google Scholar 

  • Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S (2000) “Gastrobots” – benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robot 9(2):99–111

    Article  Google Scholar 

  • Williams KH, Nevin KP, Franks A et al (2010) Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environ Sci Technol 44:47–54

    Article  CAS  PubMed  Google Scholar 

  • Winfield J, Ieropoulos I, Greenman J (2012) Investigating a cascade of seven hydraulically connected microbial fuel cells. Bioresour Technol 110:245–250

    Article  CAS  PubMed  Google Scholar 

  • Winfield J, Ieropoulos I, Rossiter J et al (2013) Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation 24:733–739

    Article  CAS  PubMed  Google Scholar 

  • Winfield J, Gajda I, Greenman J et al (2016) A review into the use of ceramics in microbial fuel cells. Bioresour Technol 215:296–303

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeterior Biodegrad 91:74–81

    Article  CAS  Google Scholar 

  • Xu D, Li Y, Song F, Gu T (2013) Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium bacillus licheniformis. Corros Sci 77:385–390

    Article  CAS  Google Scholar 

  • Xu Z, Liu Y, Williams et al (2016) Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time “shock” biosensor for wastewater. Biosens Bioelectron 85:232–239

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Hayashi T, Iwasaki H et al (2019) Ultra-low-power energy harvester for microbial fuel cells and its application to environmental sensing and long-range wireless data transmission. J Power Sources 430:1–11

    Article  CAS  Google Scholar 

  • Yang H, Zhou M, Liu M et al (2015) Microbial fuel cells for biosensor applications. Biotechnol Lett 37:2357–2364

    Article  CAS  PubMed  Google Scholar 

  • You J, Greenman J, Melhuish C et al (2016) Electricity generation and struvite recovery from human urine using microbial fuel cells. J Chem Technol Biotechnol 91:647–654

    Article  CAS  Google Scholar 

  • You J, Greenman J, Ieropoulos I (2018) Novel analytical microbial fuel cell design for rapid in situ optimisation of dilution rate and substrate supply rate, by flow, volume control and anode placement. Energies 11:2377

    Article  CAS  Google Scholar 

  • Yuan H, Hou Y, Abu-Reesh IM et al (2016) Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Mater Horiz 3:382–401

    Article  CAS  Google Scholar 

  • Zeng L, Li X, Shi Y et al (2017) FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin. Biosens Bioelectron 91:367–373

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Angelidaki I (2011) Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability. Biotechnol Bioeng 108:2339–2347

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Angelidaki I (2012) A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens Bioelectron 38:189–194

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cheng S, Pant D et al (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11:2177–2179

    Article  CAS  Google Scholar 

  • Zhang L, Fu G, Zhang Z (2019) Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresour Technol 272:105–113

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wu G, Lu N et al (2017) A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants. J Hazardous Mater 324:272–280

    Article  CAS  Google Scholar 

  • Zhuang L, Yuan Y, Wang Y et al (2012) Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresour Technol 123:406–412

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Ieropoulos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Santoro, C. et al. (2020). Microbial Fuel Cells, Concept, and Applications. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics