Skip to main content

Riboswitches as Sensor Entities

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

Riboswitches are regulatory noncoding RNAs, predominantly located in the 5′ untranslated region of mRNA, that can serve as molecular switches able to regulate the level of gene expression. This occurs through the conformational changes caused by binding to a specific metabolite. Riboswitches contain two structural domains: an aptamer domain that senses and binds to a metabolite and an expression platform that undergoes a conformational change in response to aptamer-ligand binding resulting in regulation of expression of downstream gene. In addition to natural riboswitches found in living organisms, a variety of synthetic riboswitches that respond to nonnatural small molecules have been developed. Synthetic riboswitches can be engineered to regulate expression of any gene in response to any nonnatural molecule that is capable of being bound by RNA and is not toxic to cells. This feature demonstrates a strong possibility for RNA switches to serve as sensor entities for design and development of cell-based biosensors with a variety of different applications. This chapter gives an overview of riboswitch selection techniques, describes reporter systems for monitoring riboswitch activation and approaches for riboswitch tuning and performance optimization in order to fulfill biosensor requirements, and discusses riboswitch applications as sensor entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Antunes D, Jorge NAN, Caffarena ER, Passetti F (2018) Using RNA sequence and structure for the prediction of riboswitch aptamer: a comprehensive review of available software and tools. Front Genet 8:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beisel CL, Smolke CD (2009) Design principles for riboswitch function. PLoS Comput Biol 5(4):e1000363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berens C, Suess B (2015) Riboswitch engineering – making the all-important second and third steps. Curr Opin Biotechnol 31:10–15

    Article  CAS  PubMed  Google Scholar 

  • Berens C, Thain A, Schroeder R (2001) A tetracycline-binding RNA aptamer. Bioorg Med Chem 9(10):2549–2556

    Article  CAS  PubMed  Google Scholar 

  • Blouin S, Mulhbacher J, Penedo JC, Lafontaine DA (2009) Riboswitches: ancient and promising genetic regulators. Chembiochem 10:400–416

    Article  CAS  PubMed  Google Scholar 

  • Breaker RR (2012) Riboswitches and the RNAworld. Cold Spring Harbor Perspect Biol 4:a003566

    Article  CAS  Google Scholar 

  • Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci U S A 104:17300–17304

    Article  PubMed  PubMed Central  Google Scholar 

  • Caron M-P, Bastet L, Lussier A et al (2012) Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci U S A 109:3444–3453

    Article  Google Scholar 

  • Carothers JM, Goler JA, Kapoor Y et al (2010) Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res 38:2736–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceres P, Trausch JJ, Batey RT (2013) Engineering modular ‘ON’ RNA switches using biological components. Nucleic Acids Res 41:10449–10461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    Article  CAS  PubMed  Google Scholar 

  • Coppins RL, Hall KB, Groisman EA (2007) The intricate world of riboswitches. Curr Opin Chem Biol 10:176–181

    Article  CAS  Google Scholar 

  • Davidson ME, Harbaugh SV, Chushak YG et al (2013) Development of 2,4-dinitrotoluene-responsive synthetic riboswitch in E. coli cells. ACS Chem Biol 8:234–241

    Article  CAS  PubMed  Google Scholar 

  • Desai SK, Gallivan JP (2004) Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc 126:13247–13254

    Article  CAS  PubMed  Google Scholar 

  • Dixon N, Duncan JN, Geerlings T et al (2010) Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A 107:2830–2835

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon N, Robinson CJ, Geerling T et al (2012) Orthogonal riboswitches for tuneable coexpression in bacteria. Angew Chem Int Ed 51:3620–3624

    Article  CAS  Google Scholar 

  • Domin G, Findeiß S, Wachsmuth M et al (2017) Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Res 45:4108–4119

    CAS  PubMed  Google Scholar 

  • Edwards AL, Batey RT (2010) Riboswitches: a common RNA regulatory element. Nat Educ 3:9

    Google Scholar 

  • Ehrentreich-Förster E, Orgel D, Krause-Griep A et al (2008) Biosensor-based on-site explosives detection using aptamers as recognition elements. Anal Bioanal Chem 391:1793–1800

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Emadpour M, Karcher D, Bock R (2015) Boosting riboswitch efficiency by RNA amplification. Nucleic Acids Res 43:e66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espah Borujeni A, Mishler DM, Wang J et al (2015) Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res 44:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etzel M, Mörl M (2017) Synthetic riboswitches: from plug and pray toward plug and play. Biochemistry 56:1181–1198

    Article  CAS  PubMed  Google Scholar 

  • Filonov GS, Moon JD, Svensen N, Jaffrey SR (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc 136:16299–16308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findeiß S, Etzel M, Will S, Mörl M, Stadler PE (2017) Design of artificial riboswitches as biosensors. Sensors 17:1990

    Article  CAS  PubMed Central  Google Scholar 

  • Folliard T, Mertins B, Steel H et al (2017) Ribo-attenuators: novel elements for reliable and modular riboswitch engineering. Sci Rep 7:4599–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. Chembiochem 9:1906–1911

    Article  CAS  PubMed  Google Scholar 

  • Friedland AE, Lu TK, Wang X et al (2009) Synthetic gene networks that count. Science 324:1199–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghazi Z, Fowler CC, Li Y (2014) Artificial riboswitch selection: a FACS-based approach. Methods Mol Biol 1111:57–75

    Article  CAS  PubMed  Google Scholar 

  • Gong S, Wang Y, Wang Z, Zhang W (2017a) Computational methods for modeling aptamers and designing riboswitches. Int J Mol Sci 18:2442

    Article  CAS  PubMed Central  Google Scholar 

  • Gong S, Wang Y, Wang Z, Zhang W (2017b) Co-transcriptional folding and regulation mechanisms of riboswitches. Molecules 22:1169–1183

    Article  CAS  PubMed Central  Google Scholar 

  • Goodson MS, Harbaugh SV, Chushak YG, Kelley-Loughnane N (2015) Integrating and amplifying signal from riboswitch biosensors. Methods Enzymol 550:73–91

    Article  CAS  PubMed  Google Scholar 

  • Goodson MS, Bennett AC, Jennewine BR et al (2017) Amplifying riboswitch signal output using cellular wiring. ACS Synth Biol 18:1440–1444

    Article  CAS  Google Scholar 

  • Groher F, Suess B (2014) Synthetic riboswitches – a tool comes of age. Biochim Biophys Acta 1839:964–973

    Article  CAS  PubMed  Google Scholar 

  • Groher F, Bofill-Bosch C, Schneider C et al (2018) Riboswitching with ciprofloxacin – development and characterization of a novel RNA regulator. Nucleic Acids Res 46:2121–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallberg ZF, Su Y, Kitto RZ, Hammond MC (2017) Engineering and in vivo applications of riboswitches. Annu Rev Biochem 86:515–539

    Article  CAS  PubMed  Google Scholar 

  • Han SR, Yu J, Lee S-W (2014) In vitro selection of RNA aptamers that selectively bind danofloxacin. Biochem Biophys Res Commun 448:397–402

    Article  CAS  PubMed  Google Scholar 

  • Hanson S, Berthelot K, Fink B et al (2003) Tetracycline-aptamer-mediated translational regulation in yeast. Mol Microbiol 49:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Harbaugh S, Kelley-Loughnane N, Davidson M et al (2009) FRET-based optical assay for monitoring riboswitch activation. Biomacromolecules 10:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Harbaugh SV, Goodson MS, Dillon K et al (2017) Riboswitch-based reversible dual color sensor. ACS Synth Biol 6:766–781

    Article  CAS  PubMed  Google Scholar 

  • Harvey I, Garneau P, Pelletier J (2002) Inhibition of translation by RNA-small molecule interactions. RNA 8:452–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hybarger Z, Bynum J, Robert F. Williams, James J. Valdes, James P. Chambers (2006) A microfluidic SELEX prototype. Analytical and Bioanalytical Chemistry 384 (1):191–198

    Google Scholar 

  • Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Watt RM, Danchin A, Huang JD (2009) Use of a riboswitch-controlled conditional hypomorphic mutation to uncover a role for the essential csrA gene in bacterial autoaggregation. J Biol Chem 284:28738–28745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karig D, Weiss R (2005) Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system. Biotechnol Bioeng 89:709–718

    Article  CAS  PubMed  Google Scholar 

  • Kim D-S, Gusti V, Pillai SG, Gaur RK (2005) An artificial riboswitch for controlling pre-mRNA splicing. RNA 11:1667–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kötter P, Weigand JE, Meyer B et al (2009) A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 37:e120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemay J-F, Desnoyers G, Blouin S et al (2011) Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet 7:e1001278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz R, Bernhart SH, Zu Siederdissen CH et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou X, Qian J, Xiao Y et al (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci U S A 106:2989–2994

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou C, Liu X, Ni M et al (2010) Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol 6:350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch SA, Gallivan JP (2009) A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res 37:184–192

    Article  CAS  PubMed  Google Scholar 

  • Lynch SA, Desai S, Sajja HK, Gallivan JP (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80:6704–6713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machtel P, Bąkowska-Żywicka K, Żywicki M (2016) Emerging applications of riboswitches – from antibacterial targets to molecular tools. J Appl Genet 57:531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  CAS  PubMed  Google Scholar 

  • Mandal M, Lee M, Barrick JE et al (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279

    Article  CAS  PubMed  Google Scholar 

  • Martini L, Meyer AJ, Ellefson JW et al (2015) In vitro selection for small-molecule-trigged strand displacement and riboswitch activity. ACS Synth Biol 4:1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure1. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Disney MD, Childs JL et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishler DM, Topp S, Reynoso GM, Gallivan JP (2010) Engineering bacteria to recognize and follow small molecules. Curr Opin Biotechnol 21:653–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon TS, Lou C, Tamsir A et al (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse DP (2007) Direct selection of RNA beacon aptamers. Biochem Biophys Res Commun 359:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muranaka N, Yokobayashi Y (2010) A synthetic riboswitch with chemical band-pass response. Chem Commun 46:6825–6827

    Article  CAS  Google Scholar 

  • Muranaka N, Abe K, Yokobayashi Y (2009a) Mechanism-guided library design and dual genetic selection of synthetic OFF riboswitches. Chembiochem 10:2375–2384

    Article  CAS  PubMed  Google Scholar 

  • Muranaka N, Sharma V, Nomura Y, Yokobayashi Y (2009b) An efficient platform for genetic selection and screening of gene switches in Escherichia coli. Nucleic Acids Res 37:e39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahira Y, Ogawa A, Asano H et al (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synecbococcus elongatus PCC 7942. Plant Cell Physiol 54:1724–1735

    Article  CAS  PubMed  Google Scholar 

  • Nomura Y, Yokobayashi Y (2007) Reengineering a natural riboswitch by dual genetic selection. J Am Chem Soc 129:13814–13815

    Article  CAS  PubMed  Google Scholar 

  • Nudler E (2006) Flipping riboswitches. Cell 126:19–22

    Article  CAS  PubMed  Google Scholar 

  • Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17

    Article  CAS  PubMed  Google Scholar 

  • Ogawa A (2011) Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. RNA 17:478–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa A (2012) Rational construction of eukaryotic OFF-riboswitches that downregulate internal ribosome entry site-mediated translation in response to their ligands. Bioorg Med Chem Lett 22:1639–1642

    Article  CAS  PubMed  Google Scholar 

  • Ohbayashi R, Akai H, Yoshikawa H et al (2016) A tightly inducible riboswitch system in Synecbocystis sp. PCC 6803. J Gen Appl Microbiol 159:154–159

    Article  CAS  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peselis A, Serganov A (2014) Themes and variations in riboswitch structure and function. Biochim Biophys Acta 1839:908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham HL, Wong A, Chua N et al (2017) Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat Commun 8:411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinholt SJ, Ozer A, Lis JT, Craighead HG (2016) Highly multiplexed RNA aptamer selection using a microplate-based microcolumn device. Sci Rep 6:29771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynoso CMK, Miller MA, Bina JE et al (2012) Riboswitches for intracellular study of genes involved in Francisella pathogenesis. mBio 3:e00253–e00212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson CJ, Vincent HA, Wu M-C et al (2014) Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species. J Am Chem Soc 136:10615–10624

    Article  CAS  PubMed  Google Scholar 

  • Rodionov DA, Dubchak I, Arkin A et al (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90

    Article  PubMed  PubMed Central  Google Scholar 

  • Roßmanith J, Narberhaus F (2017) Modular arrangement of regulatory RNA elements. RNA Biol 14:287–292

    Article  PubMed  Google Scholar 

  • Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph MM, Vockenhuber MP, Suess B (2013) Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology 159:1416–1422

    Article  CAS  PubMed  Google Scholar 

  • Seeliger JC, Topp S, Sogi KM et al (2012) A riboswitch-based inducible gene expression system for mycobacteria. PLoS One 7:e29266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Google Scholar 

  • Sharma V, Nomura Y, Yokobayashi Y (2008) Engineering complex riboswitch regulation by dual genetic selection. J Am Chem Soc 130:16310–16315

    Article  CAS  PubMed  Google Scholar 

  • Sinha J, Topp S, Gallivan JP (2011) From SELEX to cell: dual selections for synthetic riboswitches. Methods Enzymol 497:207–220

    Article  CAS  PubMed  Google Scholar 

  • Suess B, Hanson S, Berens C et al (2003) Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res 31:1853–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suess B, Fink B, Berens C et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto K, Craighead HG (2014) Devices and approaches for generating specific high-affinity nucleic acid aptamers. Appl Phys Rev 11:2727–2732

    Google Scholar 

  • Szeto K, Latulippe DR, Ozer A et al (2013) RAPID-SELEX for RNA aptamers. PLoS One 8:e82667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor JJ, Salis HM, Simpson ZB et al (2009) A synthetic genetic edge detection program. Cell 137:1272–1281

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:212–215

    Article  CAS  PubMed  Google Scholar 

  • Topp S, Gallivan JP (2007) Guiding bacteria with small molecules and RNA. J Am Chem Soc 129:6807–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp S, Gallivan JP (2008a) Random walks to synthetic riboswitches – a high-throughput selection based on cell motility. Chembiochem 9:210–213

    Article  CAS  PubMed  Google Scholar 

  • Topp S, Gallivan JP (2008b) Riboswitches in unexpected places – a synthetic riboswitch in a protein coding region. RNA 14:2498–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp S, Gallivan JP (2010) Emerging applications of riboswitches in chemical biology. ACS Chem Biol 5:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp S, Reynoso CMK, Seeliger JC et al (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76:7881–7884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker BJ, Breaker RR (2005) Riboswitches as versatile gene control elements. Curr Opin Struct Biol 15:342–348

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Vallée-Bélisle A, Ricci F, Plaxco KW (2009) Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors. Proc Natl Acad Sci U S A 106:13802–13807

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci U S A 107:6204–6209

    Article  PubMed  PubMed Central  Google Scholar 

  • Wachsmuth M, Findeiß S, Weissheimer N et al (2012) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41(4):2541–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachsmuth M, Domin G, Lorenz R et al (2015) Design criteria for synthetic riboswitches acting on transcription. RNA Biol 12(2):221–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Wachter A (2010) Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol 7:67–76

    Article  CAS  PubMed  Google Scholar 

  • Wang S, White KA (2007) Riboswitching on RNA virus replication. Proc Natl Acad Sci U S A 104:10406–10411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigand JE, Suess B (2007) Tetracycline-aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res 35:4179–4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigand JE, Sanchez M, Gunnesch E-B et al (2008) Screening for engineered neomycin riboswitches that control translation initiation. RNA 14:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welz R, Breaker RR (2007) Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. RNA 13:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werstuck G, Green MR (1998) Controlling gene expression in living cells through small molecule-RNA interactions. Science 282:296–298

    Article  CAS  PubMed  Google Scholar 

  • Wieland M, Hartig JS (2008) Artificial riboswitches: synthetic mRNA-based regulators of gene expression. Chembiochem 9:1873–1878

    Article  CAS  PubMed  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  CAS  PubMed  Google Scholar 

  • Wittmann A, Suess B (2012) Engineered riboswitches: expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett 586:2076–2083

    Article  CAS  PubMed  Google Scholar 

  • Wu M-C, Lowe PT, Robinson CJ et al (2015) Rational re-engineering of transcriptional silencing PreQ1 riboswitch. J Am Chem Soc 137:9015–9021

    Article  CAS  PubMed  Google Scholar 

  • Xiu Y, Jang S, Jones JA et al (2017) Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnol Bioeng 114:2235–2244

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Carrocci TJ, Hoskins AA (2016) Evolution and characterization of abenzylguanine-binding RNA aptamer. Chem Commun 52:549–552

    Article  CAS  Google Scholar 

  • Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Harbaugh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harbaugh, S., Goodson, M., Chushak, Y., Chávez, J., Kelley-Loughnane, N. (2019). Riboswitches as Sensor Entities. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics