Skip to main content

Ab Initio Electronic Structure Calculations by Auxiliary-Field Quantum Monte Carlo

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

The auxiliary-field quantum Monte Carlo (AFQMC) method provides a computational framework for solving the time-independent Schrödinger equation in atoms, molecules, solids, and a variety of model systems by stochastic sampling. We introduce the theory and formalism behind this framework, briefly discuss the key technical steps that turn it into an effective and practical computational method, present several illustrative results, and conclude with comments on the prospects of ab initio computation by this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

Download references

Acknowledgements

I thank the many colleagues and outstanding students and postdocs whose contributions to the work discussed here are invaluable, among whom I would especially like to mention W. Al-Saidi, H. Krakauer, F. Ma, M. Motta, W. Purwanto, and H. Shi. Support from the National Science Foundation (NSF), the Simons Foundation, and the Department of Energy (DOE) is gratefully acknowledged. Computing was done via XSEDE supported by NSF, on the Oak Ridge Leadership Computing Facilities, and on the HPC facilities at William & Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Zhang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, S. (2018). Ab Initio Electronic Structure Calculations by Auxiliary-Field Quantum Monte Carlo. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_47-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics