Skip to main content

Coevolution and Macroevolution

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Coevolution is reciprocal evolution of interacting species driven by natural selection. Selection imposed by interactions between or among species can cause trait changes that alter ecological outcomes, patterns of local adaptation, and diversification of lineages. For example, selection can reduce the effect of the interaction when one species suffers a loss in fitness (antagonistic interactions) or increase the effect when species benefit from the association (mutualistic interactions). The selected traits may either change the cost of the interaction or the probability that the interaction occurs at all. These evolutionary changes can lead to local coadaptation as interacting species adapt and counteradapt to one another over time. In some cases, one or more of the locally coadapted species may become reproductively isolated from other populations as local coevolution decreases the chance of mating among populations. This cessation of gene flow, coupled with further evolutionary change, could lead to the formation of nascent species. There is, then, a direct potential connection between local coadaptation of populations, speciation, and macroevolutionary diversification. Some of the most challenging questions in coevolutionary biology center on understanding how coevolving traits change as they are expressed in a diversity of genetic and environmental backgrounds, how such traits can directly or indirectly lead to reproductive isolation, and whether these traits are likely to cause recurrent patterns of speciation that produce macroevolutionary patterns. This article considers what is currently known about the steps of this hierarchical process of evolutionary, and sometimes coevolutionary, diversification of interactions among species and how shifts in development may play an instrumental role in diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Althoff DM (2014) Shift in egg-laying strategy to avoid plant defense leads to reproductive isolation in mutualistic and cheating yucca moths. Evolution 68:301–307

    Article  PubMed  Google Scholar 

  • Althoff DM (2016) Specialization in the yucca-yucca moth obligate pollination mutualism: a role for antagonism? Am J Bot 103:1803–1809.

    Article  PubMed  Google Scholar 

  • Althoff DM, Segraves KA, Johnson MTJ (2014) Testing for coevolutionary diversification: linking pattern with process. Trends Ecol Evol 29:82–89

    Article  PubMed  Google Scholar 

  • Benkman CW, Smith JW, Keenan PC, Parchman TL, Santisteban L (2009) A new species of the red crossbill (Fringillidae: Loxia) from Idaho. Condor 111:169–176

    Article  Google Scholar 

  • Brakefield PM (2010) Radiations of mycalesine butterflies and opening up their exploration of morphospace. Am Nat 176(Suppl 1):S77–S87

    Article  PubMed  Google Scholar 

  • Conte GL, Schluter D (2013) Experimental confirmation that body size determines date preference via phenotype patching in a stickleback species pair. Evolution 67:1477–1484

    PubMed  Google Scholar 

  • Cruaud A, Ronsted N, Chantarasuwan B, Chou LS, Clement WL, Couloux A, Cousins B, Genson G, Harrison RD, Hanson PE, Hossaert-Mckey M, Jabbour-Zahab R, Jousselin E, Kerdelhue C, Kjellberg F, Lopez-Vaamonde C, Peebles J, Peng YQ, Pereira RAS, Schramm T, Ubaidillah R, van Noort S, Weiblen GD, Yang DR, Yodpinyanee A, Libeskind-Hadas R, Cook JM, Rasplus JY, Savolainen V (2012) An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Syst Biol 61:1029–1047

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrlich P, Raven P (1964) Butterflies and plants: a study in coevolution. Evolution:586–608

    Google Scholar 

  • Foster DJ, Podos J, Hendry AP (2008) A geometric morphometric appraisal of beak shape in Darwin’s finches. J Evol Biol 21(1):263–275

    CAS  PubMed  Google Scholar 

  • Grant PR, Grant R (2014) Forty years of evolution. Princeton University Press Princeton, Princeton

    Book  Google Scholar 

  • Hague MT, Avila JLA, Hanifin CT, Snedden WA, Stokes AN, Brodie ED (2016) Toxicity and population structure of the rough-skinned newt (Taricha granulosa) outside the range of an arms race with resistant predators. Ecol Evol 6:2714–2724

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmon LJ, Schulte JA II, Larson A, Losos JB (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961–964

    Article  CAS  PubMed  Google Scholar 

  • Hembry DH, Yoder JB, Goodman KR (2014) Coevolution and the diversification of life. Am Nat 184:425–438

    Article  PubMed  Google Scholar 

  • Kawakita A (2010) Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biol 25:3–19

    Article  Google Scholar 

  • Laine AL, Burdon JJ, Nemri A, Thrall PH (2014) Host ecotype generates evolutionary and epidemiological divergence across a pathogen metapopulation. Proc R Soc B Biol Sci 281:20140522

    Article  Google Scholar 

  • Li W, Zangerl AR, Schuler MA, Berenbaum MR (2014) Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Mol Biol 13:603–613

    Article  Google Scholar 

  • Losos JB (2009) Lizards in an evolutionary tree. University of California Press, Berkeley

    Google Scholar 

  • Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–295

    Article  CAS  PubMed  Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge, MA

    Google Scholar 

  • Oostra VA, Mateus RA, van der Burg KRL, Piessens T, van Eijk M, Brakefield PM, Beldade P, Zwaan BJ (2014) Ecdysteroid hormones link the juvenile environment to alternative adult life histories in a seasonal insect. Am Nat 184:E79–E92

    Article  PubMed  Google Scholar 

  • Parchman TL, Buerkle CA, Soria-Corrasco V, Benkman CW (2016) Genomic divergence and diversification within a geographic mosaic of coevolution. Mol Ecol 22:5705–5718

    Article  Google Scholar 

  • Pellmyr O (1999) Systematic revision of the yucca moths in the Tegeticula yuccasella complex (Lepidoptera: Prodoxidae) north of Mexico. Syst Entomol 24:243–271

    Article  Google Scholar 

  • Pellmyr O, Krenn HW (2002) Origin of a complex key innovation in an obligate insect-plant mutualism. Proc Natl Acad Sci U S A 99:5498–5502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellmyr O, Leebens-Mack J (1999) Forty million years of mutualism: evidence for eocene origin of the yucca-yucca moth association. Proc Natl Acad Sci U S A 96:9178–9183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrusek A, Tollrian R, Schwenk K, Haas A, Laforsch C (2009) A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. Proc Natl Acad Sci U S A 106:2248–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger TJ, Revell LJ, Gibson-Brown JJ, Losos JB (2012) Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards. Proc R Soc Lond Ser B Biol Sci 279:739–748

    Article  Google Scholar 

  • Schluter D (2016) Speciation, ecological opportunity and latitude. Am Nat 187:1–18

    Article  PubMed  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2013) Relentless evolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN, Fernandez CC (2006) Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology 87:103–112

    Article  PubMed  Google Scholar 

  • Thompson JN, Schwind C, Guimarães PR Jr, Friberg M (2013) Divergence through multitrait evolution in coevolving interactions. Proc Natl Acad Sci U S A 110:11487–11492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Thompson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Thompson, J.N., Segraves, K.A., Althoff, D.M. (2017). Coevolution and Macroevolution. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics