Skip to main content

Postharvest Disease Management

  • Living reference work entry
  • First Online:
Handbook of Florists' Crops Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

Abstract

Pre- and postharvest disease control for ornamental plants is mainly provided via fungicide or bactericide application. However, disease control with conventional chemical compounds carries the risk of resistance development by new pathogen races. Additionally, there is increasing public concern over fungicide usage in terms of human and environmental risk. For this reason, and over the past 20 years, researchers developed novel postharvest disease management strategies for cut flowers and other ornamentals. For example, the generally recognized as safe host defense inducers may provide an alternative solution to socially and environmentally less desirable control using conventional fungicides. There are also various biological agents and microorganisms that affect disease development via antagonism and, in many cases, help in integrated disease management (IDM) strategies. However, most of those biotic and/or abiotic agents have not yet been put into practice by growers, who merely rely on chemical control. The current chapter offers an overview on postharvest disease management of various pathogens infecting ornamental plants and cut flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal M, Gupta JS (1984) A new leaf spot disease on petunia caused by Alternaria alternata. Indian Phytopathol 36:76–78

    Google Scholar 

  • Agarwal A, Garg GK, Devi S, Mishra DP, Singh US (1997) Ultrastructural changes in Brassica leaves caused by Alternaria brassicae and destruxin B. J Plant Biochem Biotechnol 6:25–28

    Article  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic, London

    Google Scholar 

  • Altman SA, Solomos T (1995) Differential respiratory and morphological responses of carnations pulsed or continuously treated with silver thiosulfate. Postharvest Biol Technol 5:331–341

    Article  CAS  Google Scholar 

  • Anais G, Darrasse A, Prior P (2000) Breeding anthuriums (Anthurium andraeanum L) for resistance to bacterial blight caused by Xanthomonas campestris pv dieffenbachiae. Acta Hortic 508:135–140

    Article  Google Scholar 

  • Akoumianaki–Ioannidou A, Darras AI, Diamantaki A (2010) Postharvest vase solutions and storage effects on cut Nerium oleander inflorescences. J Hortic Sci Biotechnol 85(1):1–6

    Article  Google Scholar 

  • Arbeláez G (1987) Overview of the cut flower pathology in Colombia. Acta Hortic 482:91–96

    Google Scholar 

  • Beasley DR, Joyce DC, Coates LM, Wearing AH (2001) Saprophytic microorganisms with potential for biological control of Botrytis cinerea on Geraldton waxflower flowers. Aust J Exp Agric 41:697–703

    Article  Google Scholar 

  • Beasley DR (2001) Strategies for control of Botrytis cinerea on Geraldton waxflower flowers. PhD thesis. The University of Queensland, Australia

    Google Scholar 

  • Beyer EM (1976) Silver ion: a potent antiethylene agent in cucumber and tomato. HortScience 11:195–196

    CAS  Google Scholar 

  • Bezuidenhout CM, van der Berg G, Denman S (2010) Post harvest control of Botrytis cinerea on Leucospermum ‘high gold’ flowers. Acta Hortic 869:49–56

    Article  CAS  Google Scholar 

  • Blank G, Corrigan D (1995) Comparison of resistance of fungal spores to gamma and electron beam radiation. Int J Food Microbiol 26:269–277

    Article  CAS  PubMed  Google Scholar 

  • Blom TJ, Brown W (1999) Preplant copper-based compounds reduce Erwinia soft rot on calla lilies. HortTechnology 9:56–59

    CAS  Google Scholar 

  • Bloomfield SF, Arthur M (1989) Effect of chlorine-releasing agents on Bacillus subtilis vegetative cells and spores. Lett Appl Microbiol 8:101–104

    Article  CAS  Google Scholar 

  • Buck JW (2004) Combinations of fungicides with phylloplane yeasts for improved control of Botrytis cinerea on geranium seedlings. Phytopathology 94:196–202

    Article  CAS  PubMed  Google Scholar 

  • Burge GK, Bicknell RA, Dobson BG (1996) Postharvest treatments to increase water uptake and the vase life of Leptospermum scoparium Forst. N Z J Crop Hort Sci 24:371–378

    Article  CAS  Google Scholar 

  • Cameron AC, Reid MS (1983) Use of silver thiosulfate to prevent flower abscission from potted plants. Sci Hortic 19:373–378

    Article  CAS  Google Scholar 

  • Capdeville G, Maffia LA, Finger FL, Batista UG (2005) Gray mold severity and vase life of rose buds after pulsing with citric acid, salicylic acid, calcium sulfate, sucrose and silver thiosulfate. Fitopatol Bras 28:380–385

    Article  Google Scholar 

  • Chase AR, Brunk DD (1984) Bacterial leaf blight incited by Pseudomonas cichorii in Schefflera arboricola and some related plants. Plant Dis 68:73–74

    Article  Google Scholar 

  • Chu E-H, Shin E-J, Park H-J, Jeong R-D (2015) Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses. Radiat Phys Chem 115:22–29

    Article  CAS  Google Scholar 

  • Cia P, Pascholati SF, Benato AE, Camili EC, Santos CA (2007) Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biol Technol 43:366–373

    Article  CAS  Google Scholar 

  • Colbaugh PF, Mackay WA, George S (2001) Alternaria alternata flower blight of Zinnia acerosa in Texas. Plant Dis 85:228

    Article  Google Scholar 

  • Cooksey DA, Koike SD (1990) A new foliar blight of Impatiens caused by Pseudomonas syringae. Plant Dis 74:180–182

    Article  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St Paul MN

    Google Scholar 

  • Damunupola JW, Joyce DC (2008) When is a vase solution biocide not, or not only, anti-microbial? J Jpn Soc Hort Sci 77:211–228

    Article  CAS  Google Scholar 

  • Darras AI, Joyce DC, Terry LA (2004) A survey of possible associations between preharvest environment conditions and postharvest rejections of cut freesia flowers. Aust J Exp Agric 44:103–108

    Article  Google Scholar 

  • Darras AI, Terry LA, Joyce DC (2005) Methyl jasmonate vapour treatment suppresses specking caused by Botrytis cinerea on cut Freesia hybrida L. flowers. Postharvest Biol Technol 38:175–182

    Article  CAS  Google Scholar 

  • Darras AI, Joyce DC, Terry LA, Vloutoglou I (2006a) Postharvest infections of Freesia hybrida L. flowers by Botrytis cinerea. Australas Plant Pathol 35:55–63

    Article  Google Scholar 

  • Darras AI, Joyce DC, Terry LA (2006b) Acibenzolar-S-methyl and methyl jasmonate of glasshouse-grown freesias suppress postharvest petal specking caused by Botrytis cinerea. J Hortic Sci Biotechnol 81(6):1043–1051

    Article  CAS  Google Scholar 

  • Darras AI, Joyce DC, Terry LA, Pompodakis NE, Dimitriadis CI (2007) Efficacy of postharvest treatments with acibenzolar-S-methyl and methyl jasmonate against Botrytis cinerea infecting cut Freesia hybrida L. flowers. Australas Plant Pathol 36:332–340

    Article  CAS  Google Scholar 

  • Darras AI, Joyce DC, Terry LA (2010a) Post-harvest UV-C irradiation on cut Freesia hybrida L. inflorescences suppresses petal specking caused by Botrytis cinerea. Postharvest Biol Technol 56(3):186–188

    Article  CAS  Google Scholar 

  • Darras AI, Akoumianaki-Ioannidou A, Pompodakis NE (2010b) Evaluation and improvement of post-harvest performance of cut Viburnum tinus inflorescences. Sci Hortic 124:276–280

    Article  Google Scholar 

  • Darras AI, Demopoulos V, Tiniakou CA (2012a) UV-C irradiation induces defence responses and improves vase life of cut gerbera flowers. Postharvest Biol Technol 64:168–174

    Article  CAS  Google Scholar 

  • Darras AI, Demopoulos V, Kazana E, Tiniakou CA (2012b) Effects of UV-C irradiation on Botrytis cinerea floret specking and quality of cut gerbera flowers. Acta Hortic 937:493–498

    Article  Google Scholar 

  • Darras AI, Bali I, Argyropoulou E (2015) Disease resistance and growth responses in Pelargonium x hortorum plants to brief pulses of UV-C irradiation. Sci Hortic 181:95–101

    Article  CAS  Google Scholar 

  • Daughtrey ML, Bridgen MP (2013) Evaluating resistance to Botrytis elliptica in field-grown lilies. Acta Hortic 1002:313–318

    Article  Google Scholar 

  • De Witte Y, van Doorn WG (1992) The mode of action of bacteria in the vascular occlusion of cut rose flowers. Acta Hortic 298:165–167

    Google Scholar 

  • Dickey RS, Zumoff CH (1987) Bacterial leaf blight of Syngonium caused by a pathovar of Xanthomonas campestris. Phytopathology 77:1257–1262

    Article  Google Scholar 

  • Dinh S-Q, Joyce DC, Irving DE, Wearing AH (2007) Field applications of three different classes of known host plant defence elicitors did not suppress infection of Geraldton waxflower by Botrytis cinerea. Australas Plant Pathol 36:142–148

    Article  CAS  Google Scholar 

  • Dole JM, Wilkins HF (2004) Floriculture. Principles and species. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Durkin DJ (1979) Some characteristics of water flow through isolated rose stem segments. J Am Soc Hortic Sci 104:777–783

    Google Scholar 

  • Dychdala GR (1983) Chlorine and chlorine compounds. In: Block SS (ed) Disinfection, sterilization, and preservation, 3rd edn. Lea & Febiger, Philadelphia, pp 157–182

    Google Scholar 

  • Elad Y (1988) Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Prot 7:361–366

    Article  CAS  Google Scholar 

  • Elad Y, Kirshner B, Gotlib Y (1993) Attempts to control Botrytis cinerea on roses by pre- and postharvest treatments with biological and chemical agents. Crop Prot 12:69–73

    Article  CAS  Google Scholar 

  • Ellis MB, Walter JM (1974) Sclerotinia fuckeliana (conidial state: Botrytis cinerea). In: CMI Descriptions of Pathogenic Fungi and Bacteria, vol 431. Commonwealth Mycological Institute, Eastern Press, London, p 2

    Google Scholar 

  • Elmhirst JF, Haselhan C, Punja ZK (2011) Evaluation of biological control agents for control of botrytis blight of geranium and powdery mildew of rose. Can J Plant Pathol 33(4):499–505

    Article  Google Scholar 

  • Engelhard AW, Mellinger HC, Ploetz RC, Miller JW (1983) A leaf spot of florist’s geranium incited by Pseudomonas cichorii. Plant Dis 67:541–544

    Article  Google Scholar 

  • Eyre JX, Faragher J, Joyce DC, Franz PR (2006) Effects of postharvest jasmonate treatments against Botrytis cinerea on Geraldton waxflower (Chamelaucium uncinatum). Australas Plant Pathol 46:717–723

    CAS  Google Scholar 

  • Faragher J, Slater T, Joyce D, Williamson V (2002) Postharvest handling of Australian flowers – from Australian native plants and related species, a practical workbook., Rural Industries Research and Development Corporation (RIRDC). Barton, ACT, Australia

    Google Scholar 

  • Favero BT, Benato EA, DIA GM, Cia P (2015) Gibberellic acid, ozone and 1-methylcyclopropene on the gray mold control in ‘Avant Garde’ Rose. Acta Hortic 1060:177–182

    Article  Google Scholar 

  • Florack DEA, Stiekema WJ, Bosch D (1996) Toxicity to peptides to bacteria present in the vase water of cut roses. Postharvest Biol Technol 8:285–291

    Article  CAS  Google Scholar 

  • Furukawa T, Kishi K (2001) Alternaria leaf spot on three species of Pelargonium caused by Alternaria alternata in Japan. J Gen Plant Pathol 67:268–272

    Article  Google Scholar 

  • Gast K (2001) Methyl jasmonate and long term storage of fresh cut peony flowers. Acta Hortic 543:327–330

    Article  CAS  Google Scholar 

  • Golkhandan E, Kamaruzaman S, Sariah M, Zainal Abidin MA, Nasehi A (2013) Characterisation of Pectobacterium carotovorum causing soft rot on Kalanchoe gastonis-bonnieri in Malaysia. Arc Phytopathol Plant Prot 46:1809–1815

    Article  Google Scholar 

  • Gracia-Garza JA, Blom TJ, Brown W, Roberts DP, Schneider K, Freisen M, Gombert M (2004) Increased incidence of Erwinia soft-rot on calla lilies in the presence of phosphorous. Eur J Plant Pathol 110:293–298

    Article  CAS  Google Scholar 

  • Grinstein A, Riven Y, Elad Y (1997) Improved chemical control of botrytis blight in roses. Phytoparasitica 25:87S–92S

    Article  CAS  Google Scholar 

  • Halevy AH, Mayak S (1979) Senescence and postharvest physiology of cut flowers, Part 1. Hortic Rev 1:204–236

    CAS  Google Scholar 

  • Halevy AH, Mayak S (1981) Senescence and postharvest physiology of cut flowers, Part 2. Hortic Rev 3:59–143

    CAS  Google Scholar 

  • Hallman GJ (2011) Phytosanitary applications of irradiation. Compr Rev Food Sci Food Saf 10:143–151

    Article  Google Scholar 

  • Hammer PE, Marois JJ (1989) Nonchemical methods for postharvest control of Botrytis cinerea on cut roses. Phytopathology 84:1305–1312

    Article  Google Scholar 

  • Han SS (1998) Postharvest handling of cut Heuchera sanguinea Engelm. Flowers: effects of sucrose and silver thiosulphate. HortScience 33:731–733

    CAS  Google Scholar 

  • Harkema H, Mensink MGJ, Somhorst DPM, Pedreschi RP, Westra EH (2013) Reduction of Botrytis cinerea incidence in cut roses (Rosa hybrida L.) during long term transport in dry conditions. Postharvest Biol Technol 76:135–138

    Article  Google Scholar 

  • Hayward AC (1972) A bacterial disease of Anthurium in Hawaii. Plant Dis Rep 56:904–908

    Google Scholar 

  • He SG, Joyce DC, Irving DE, Faragher JD (2006) Stem end blockage in cut Grevillea ‘Crimson Yul-lo’ inflorescences. Postharvest Biol Technol 41:78–84

    Article  CAS  Google Scholar 

  • Himelblau E, Amasino RM (2000) Delivering copper within plant cells. Curr Opin Plant Biol 3:205–210

    Article  CAS  PubMed  Google Scholar 

  • Hoogerwerf A, van Doorn WG (1992) Numbers of bacteria in aqueous solutions used for postharvest handling of cut flowers. Postharvest Biol Technol 1:295–304

    Article  Google Scholar 

  • Hu J, Dinh SQ, Joyce DC (2009) S-carvone effects on Botrytis cinerea and harvested waxflower (Chamelaucium uncinatum). N Z J Crop Hortic Sci 37:79–83

    Article  CAS  Google Scholar 

  • Jarvis WR (1977) Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. A guide to the literature, vol 15, Monograph. Research Branch Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Jones JB, Raju BC, Engelhard AW (1984) Effects of temperature and leaf wetness on development of bacterial spot of geraniums and chrysanthemums incited by Pseudomonas cichorii. Plant Dis 68:248–251

    Article  Google Scholar 

  • Jones JB, Randhawa PS, Sasser M (1990) Selective isolation of Pseudomonas cichorii from soil and from leaves and buds of Dendranthema grandiflora. Plant Dis 74:300–303

    Article  Google Scholar 

  • Jones R (1991) Post-harvest care of cut flowers – a manual for retail florists. Victoria Department of Agriculture Institute of Plant Sciences, Knoxfield

    Google Scholar 

  • Jones R, Faragher JD, van Doorn WG (1993) Water relations of cut flowering branches of Thryptomene calycina (Lindl.) Stapf. (Myrtaceae). Postharvest Biol Technol 3:57–67

    Article  Google Scholar 

  • Joyce DC (1992) Waxflower: to STS or not. Aust Hort 90:52–57

    Google Scholar 

  • Joyce DC (1993) Postharvest floral organ fall in Geraldton waxflowers (Chamelaucium uncinatum Schauer). Aust J Exp Agric 33:48–487

    Google Scholar 

  • Joyce DC, Beal PR (1999) Cut flower characteristics of terminal flowering tropical Grevillea: a brief review. Aust J Exp Agric 39:781–794

    Article  Google Scholar 

  • Joyce DC, Meara SA, Hetherington SE, Jones PN (2000) Effects of cold storage on cut Grevillea ‘Sylvia’ inflorescences. Postharvest Biol Technol 18:49–56

    Article  Google Scholar 

  • Ketsa S, Piyasaengthong Y, Prathuangwong S (1995) Mode of action of AgNO3 in maximizing vase life of Dendrobium ‘Pompadour’ flowers. Postharvest Biol Technol 5:109–117

    Article  CAS  Google Scholar 

  • Kim JH, Lee AK, Suh JK (2004) Effect of certain pre-treatment substances on vase life and physiological character of Lilium spp. Acta Hortic 673:307–314

    Google Scholar 

  • Knee M (2000) Selection of biocides for use in floral preservatives. Postharvest Biol Technol 18:227–234

    Article  CAS  Google Scholar 

  • Kohl J, Gerlagh M, De Haas BH, Krijger MC (1998) Biological control of Botrytis cinerea in cyclamen with Ulocladium atrum and Gliocladium roseum under commercial growing conditions. Phytopathology 88:568–575

    Article  CAS  PubMed  Google Scholar 

  • Kumar GSA, Kamanna BC, Benagi VI (2011) Management of chrysanthemum leaf blight caused by Alternaria alternata (FR.) Keisler under field condition. Plant Arch 11:553–555

    Google Scholar 

  • Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of fusarium wilt of tomato. Plant Dis 82:1022–1028

    Article  Google Scholar 

  • Ligawa JK, Joyce DC, Hetherington SE (1997) Exogenously supplied sucrose improves the postharvest quality of Grevillea ‘Sylvia’ inflorescences. Aust J Exp Agric 37:809–816

    Article  CAS  Google Scholar 

  • Loubaud M, van Doorn WG (2004) Wound-induced and bacteria-induced xylem blockage in roses, Astilbe, and Viburnum. Postharvest Biol Technol 32:281–288

    Article  CAS  Google Scholar 

  • Lü P, He H, Li H, Cao J, Xu H-l (2010) Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. J Food Agric Environ 8:1118–1122

    Google Scholar 

  • Luzzatto T, Yishay M, Lipsky A, Ion A, Belausov E, Yedidia I (2007) Efficient, long-lasting resistance against the soft rot bacterium Pectobacterium carotovorum in calla lily provided by the plant activator methyl jasmonate. Plant Pathol 56:692–701

    Article  CAS  Google Scholar 

  • MacRae CF, Harrigan EKS, Brown JF (1984) Effect of temperature, due period and inoculum density on blight of sunflower caused by Alternaria carthami. Plant Dis 68:408–410

    Article  Google Scholar 

  • Macnish AJ, Leonard RT, Nell TA (2008) Treatment with chlorine dioxide extends the vase life of selected cut flowers. Postharvest Biol Technol 50:197–207

    Article  CAS  Google Scholar 

  • Macnish AJ, Morris KL, de Theije A, Mensink MGJ, Boerrigter HAM, Reid MS, Jiang C-Z, Woltering EJ (2010) Sodium hypochlorite: a promising agent for reducing Botrytis cinerea infection on rose flowers. Postharvest Biol Technol 58:262–267

    Article  CAS  Google Scholar 

  • Marousky FJ (1969) Vascular blockage, water absorption stomatal opening and respiration of cut ‘Better Times’ roses treated with 8-hydroxyquinoline citrate and sucrose. J Am Soc Hortic Sci 94:223–226

    CAS  Google Scholar 

  • Marousky FJ (1971) Inhibition of vascular blockage and increased moisture retention in cut roses induced by pH, 8-hydroxyquinoline citrate, and sucrose. J Am Soc Hortic Sci 96:38–41

    CAS  Google Scholar 

  • Marousky FJ (1972) Water relations, effects of floral preservatives on bud opening, and keeping quality of cut flowers. HortScience 7:114–116

    Google Scholar 

  • Martinez JA, Valdes R, Vicente MJ, Banon S (2008) Phenotypical differences among Botrytis cinerea isolates from ornamental plants. Commmun Agric Appl Biol Sci 73:121–129

    CAS  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSpadden Gardener BB, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Online. Plant Health Progress. doi:10.1094/PHP-2002-0510-01-RV

    Google Scholar 

  • Meir S, Droby S, Davidson H, Alsvia S, Cohen L, Horev B, Philosoph-Hadas S (1998) Suppression of Botrytis rot in cut rose flowers by postharvest application of methyl jasmonate. Postharvest Biol Technol 13:235–243

    Article  CAS  Google Scholar 

  • Mor Y, Reid MS, Kofranek M (1984) Pulse treatments with silver thiosulfate and sucrose improve the vase life of sweet peas. J Am Soc Hort Sci 109:866–868

    CAS  Google Scholar 

  • Mullen JM, Cobb GS (1984) Leaf spot of southern magnolia caused by Pseudomonas cichorii. Plant Dis 68:1013–1015

    Article  CAS  Google Scholar 

  • Nagrale DT, Gaikwad AP, Goswami S, Sharma L (2012) Fungicidal management of Alternaria alternata (Fr.) Keissler causing blight of gerbera (Gerbera jamesonii H. Bolus ex J.D. Hook). J Appl Nat Sci 4(2):220–227

    CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  CAS  PubMed  Google Scholar 

  • Ogawa JM, Gilpatric JD, Ciarapa L (1977) Review of plant pathogens resistance to fungicides and bactericides. In: FAO plant protection bulletin, a publication of the world reporting service on ‘plant diseases and pests’, AGRIS, Rome, Italy: vol 25. pp 97–110

    Google Scholar 

  • Oraee T, Zadeh AA, Kiani M, Oraee A (2011) The role of preservative compounds on number of bacteria on the end of stems and vase solutions of cut gerbera. J Ornam Hort Plants 1:161–165

    Google Scholar 

  • Pal S, Tak KY, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panagiotarou N, Chrisaugi M (1998) Manual of chemical control of plant diseases. Benaki Phytopathological Institute, Kifissia, p 204

    Google Scholar 

  • Pie K, de Leeuw GTN (1991) Histopathology of the initial stages of interaction between rose flowers and Botrytis cinerea. Neth J Plant Pathol 97:335–344

    Article  Google Scholar 

  • Pompodakis NE, Joyce DC, Terry LA, Lydakis DE (2004) Effects of vase solution pH and abscisic acid on the longevity of cut ‘Baccara’ roses. J Hortic Sci Biotechnol 79:828–832

    Article  CAS  Google Scholar 

  • Premawardena PS, Peiris BCN, Peiris SE (2000) Effects of selected post-harvest treatments on vase life of cut-flower Gladiolus (Gladiolus grandiflorus). Trop Agric Res 12:325–333

    Google Scholar 

  • Put HMC, Clerkx ACM (1988) The infiltration ability of micro-organisms Bacillus, Fusarium, Kluyveromyces and Pseudomonas spp. into xylem vessels of Gerbera cv. ‘Fleur’ and Rosa cv. ‘Sonia’ cut flowers: a scanning electron microscope study. J App Bacteriol 64:515–530

    Article  Google Scholar 

  • Put HMC, Jansen L (1989) The effects on the vase life of cut Rosa cultivar ‘Sonia’ of bacteria added to the vase water. Sci Hortic 39:167–179

    Article  Google Scholar 

  • Put HMC, Rombouts FM (1989) The influence of purified microbial pectic enzymes on the xylem anatomy, water uptake and vase life of Rosa cultivar ‘Sonia’. Sci Hortic 38:147–160

    Article  CAS  Google Scholar 

  • Rotem J (1994) The Genus Alternaria: biology, epidemiology and pathogenicity. APS Press, St. Paul

    Google Scholar 

  • Salinas J, Glandorf DCM, Picavet FD, Verhoeff K (1989) Effects of temperature, relative humidity and age of conidia on the incidence of specking on gerbera flowers caused by Botrytis cinerea. Neth J Plant Pathol 95:51–64

    Article  Google Scholar 

  • Salinas J, Verhoeff K (1995) Microscopic studies of the infection of gerbera flowers by Botrytis cinerea. Eur J Plant Pathol 101:377–386

    Article  Google Scholar 

  • Seglie L, Spadano D, Devecchi M, Larcher F, Gullino ML (2009) Use of 1-methylcyclopropene for the control of Botrytis cinerea on cut flowers. Phytopathol Mediterr 48:253–261

    CAS  Google Scholar 

  • Seglie L, Spadaro D, Trotta F, Devecchi M, Lodovica Gullino M, Scariot V (2012) Use of 1-methylcylopropene in cyclodextrin-based nanosponges to control grey mould caused by Botrytis cinerea on Dianthus caryophyllus cut flowers. Postharvest Biol Technol 64:55–57

    Article  CAS  Google Scholar 

  • Serek M, Sisler EC, Reid MS (1995) Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul 16:93–97

    Article  CAS  Google Scholar 

  • Serek M, Woltering EJ, Sisler EC, Frello S, Sriskandarajah S (2006) Controlling ethylene responses in flowers at the receptor level. Biotechnol Adv 24:368–381

    Article  CAS  PubMed  Google Scholar 

  • Shaul O, Elad E, Zieslin N (1995) Suppression of Botrytis blight in cut rose flowers with gibberellic acid. Effects of exogenous application of abscisic acid and paclobutrazol. Postharvest Biol Technol 7:145–150

    Article  Google Scholar 

  • Simmons EG (1992) Alternaria taxonomy: current status, viewpoint, challenge. In: Chelkowski J, Visconti A (eds) Alternaria biology. Plant Diseases and Metabolites Elsevier Science Publishers, Amsterdam, pp 1–35

    Google Scholar 

  • Slater AT, Blakemore MC, Faragher JD, Franz PR, Henderson B, Green K (2001) Leptospermum as an export cut flower crop. Rural Industries Research and Development Corporation (RIRDC), Barton

    Google Scholar 

  • Strider DL (1985) Diseases of floral crops, vol 2. Praeger Publishers, New York

    Google Scholar 

  • Suslow T (1997) Postharvest handling for horticultural crops. University of California, CA, USA. Publication 7254

    Google Scholar 

  • Taylor MN, Joyce DC, Wearing AH, Simons DH (1999) Evaluation of pyrimethanil (Scala) for the control of Botrytis cinerea on harvested Geraldton waxflower. Aust J Exp Agric 39:639–641

    Article  Google Scholar 

  • Tewari JP (1983) Cellular alterations in the blackspot of rapeseed caused by Alternaria brassicae. Phytopathology 73:831

    Google Scholar 

  • Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4(4):225–236

    Article  CAS  PubMed  Google Scholar 

  • Tomas A, Wearing AH, Joyce DC (1995) Botrytis cinerea: a causal agent of premature flower drop in packaged Geraldton waxflower. Australas Plant Pathol 24:26–28

    Article  Google Scholar 

  • van der Sman RGM, Evelo RG, Wilkinson EC, van Doorn WG (1996) Quality loss in packed rose flowers due to Botrytis cinerea infection as related to temperature regimes and packaging design. Postharvest Biol Technol 7:341–350

    Article  Google Scholar 

  • van Doorn WG (1997) Water relations of cut flowers. Hortic Rev 18:1–85

    Google Scholar 

  • van Doorn WG, De Witte Y, Perik RRJ (1990) Effect of antimicrobial compounds on the number of bacteria in stems of cut rose flowers. J App Bacteriol 68:117–122

    Article  Google Scholar 

  • van Doorn WG, De Witte Y (1991) Effect of bacterial suspensions on vascular occlusion in stems of cut rose flowers. J App Bacteriol 71:119–123

    Article  Google Scholar 

  • van Doorn WG, Clerkx ACM, Boekestein A (1991) Bacteria as a cause of vascular occlusion in cut fronds of Adiantum raddianum: a scanning electron microscope study. Sci Hortic 48:299–309

    Article  Google Scholar 

  • van Doorn WG, Bakker L, Veken M (1994) Effect of dry storage on scape bending in cut Gerbera jamesonii flowers. Postharvest Biol Technol 4:261–269

    Article  Google Scholar 

  • van Doorn WG, Harkema H, Song JS (1995) Water relations and senescence of cut Iris flowers: effects of cycloheximide. Postharvest Biol Technol 5:345–351

    Article  CAS  Google Scholar 

  • van Doorn WG, Cruz P (2000) Evidence for a wounding-induced xylem occlusion in stems of cut chrysanthemum flowers. Postharvest Biol Technol 19:73–83

    Article  Google Scholar 

  • van Doorn J, Vreeburg PJM, van Leeuwen PJ, Dees RHL (2011) The presence and survival of soft rot (Erwinia) in flower bulb production systems. Acta Hortic 886:365–379

    Article  Google Scholar 

  • Veen H (1979) Effects of silver on ethylene synthesis and action in cut carnations. Planta 145:467–470

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ED (1957) The mutual effects of antimicrobial compounds and metallic cations. Bacteriol Rev 21:46–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wegulo SN, Vilchez M (2007) Evaluation of Lisianthus cultivars for resistance to Botrytis cinerea. Plant Dis 91:997–1001

    Article  Google Scholar 

  • Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y, Zimand G (1995) Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol Res 99:1303–1310

    Article  Google Scholar 

  • Wilson CL, El-Chaouth A, Upchurch B, Stevens C, Khan V, Droby S, Chalutz E (1997) Using an on-line UV-C apparatus to treat harvested fruit for controlling postharvest decay. HortTechology 7:278282

    Google Scholar 

  • Wolkan SM, Grego PJ (2004) Sclerotium rolfsii causing collar dry rot on Impatiens walleriana in Argentina. Australas Plant Dis Notes 4:54–55

    Google Scholar 

  • Woltering EJ, Boerrigter HAM, Mensink MGJ, Harkema H, Macnish AJ, Reid MS, Jiang C-Z (2015) Validation of the effects of a single one second hypochlorite floral dip on Botrytis cinerea incidence following long-term shipment of cut roses. Acta Hortic 1064:211–219

    Article  Google Scholar 

  • Xie L, Joyce DC, Irving DE, Eyre JX (2007) Chlorine demand in cut flower vase solutions. Postharvest Biol Technol 47:267–270

    Article  CAS  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli studied by energy filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapa SS, Peiris BCN, Peiris SE (2000) Potential low cost treatments for extending the vase-life of Anthurium (Anthurium andraeanum Lind.) flowers. Trop Agric Res 12:334–343

    Google Scholar 

  • Zainuri A, Joyce DC, Wearing AH, Coates L, Terry LA (2001) Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of ‘Kensington Pride’ mango fruit. Aust J Exp Agric 41:805–813

    Article  CAS  Google Scholar 

  • Zagory D, Reid MS (1986) Role of vase solutions microorganisms in the life of cut flowers. J Am Soc Hort Sci 111:154–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios I. Darras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Darras, A.I. (2016). Postharvest Disease Management. In: McGovern, R., Elmer, W. (eds) Handbook of Florists' Crops Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-319-32374-9_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32374-9_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-32374-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics