Skip to main content

Boiling and Two-Phase Flow in Narrow Channels

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 443 Accesses

Abstract

As the channel dimensions become smaller, the heat transfer surface area and the resulting heat transfer rate per unit flow volume become larger. This is further aided by the higher heat transfer coefficients during single-phase flow in the laminar flow region. Boiling, being an efficient transfer process, could also potentially benefit from this reduction in channel hydraulic diameter. The heat transfer mechanisms and flow instabilities resulting from the boiling process are now generally well understood in minichannels and microchannels. Recent advances in this field indicate that it is possible to achieve excellent heat transfer performance with little pressure drop penalty through appropriate design of the fluid flow passages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Flow area, m2

A c :

Cross-sectional area, m2

a, b :

Sides of a rectangular channel, m

a1…a5 :

Coefficients, dimensionless

Bo:

Boiling number, dimensionless, Bo = q″/(Gh LV)

Ca:

Capillary number, \( \mathrm{Ca}=\frac{\upmu_{\mathrm{L}} G}{\uprho_{\mathrm{L}}\upsigma} \)

Co:

Convection number, dimensionless, Co = [(1 – x)/x]0.9 [ρ V/ρ L]0.5

D :

Diameter, m

F F1 :

Fluid-surface parameter accounting for the nucleation characteristics of different fluid surface combinations, dimensionless

f :

single-phase friction factor, dimensionless

G :

Mass flux, kg/m2s

g :

Acceleration due to gravity, m/s2

h :

Heat transfer coefficient, W/m2-K

h LV :

Latent heat of vaporization, J/kg

K 2 :

Ratio of evaporation momentum to surface tension forces at the liquid–vapor

\( \dot{m} \) :

Mass flow rate, kg/s

Nu:

Nusselt number, dimensionless, Nu = hD h /k

P :

Wetted perimeter, m

p :

Pressure, Pa

Po:

Poiseuille number, Po = f × Re

Pr:

Prandtl number, dimensionless, Pr = μcp/k

q″:

Heat flux, W/m2

Re:

Reynolds number, dimensionless, Re = GD/μ

r c,min , r c,max :

Minimum and maximum cavity radii respectively at ONG, m

T :

Temperature, K

u :

Velocity, m/s

ν :

Specific volume, ν = 1/ρ, m3/kg

V :

Flow volume, m3

We:

Weber number, dimensionless, We = ρV S 2 D/σ

x :

Mass quality, dimensionless

z :

length from the channel entrance, m

α 1; α 2; α 3 :

Coefficients for the pressure distribution along a plane microchannel, dimensionless (Chapter “Microchannel definition”)

α c :

Channel aspect ratio, dimensionless, α c = a/b (between 0 and 1)

Δp :

Pressure drop, Pa

ΔT sat :

Temperature difference between wall and saturation, K

ΔT sub :

Temperature difference between saturation and subcooled liquid, K

δ t :

Thermal boundary layer thickness, m

θ :

tube inclination angle to horizontal, degrees

θ :

Contact angle, degrees

μ :

Dynamic viscosity, kg/ms

ρ :

Density, kg/m3

σ :

Surface tension, N/m

A:

Accelerational

CBD:

Convective boiling dominant

CHF:

Critical heat flux

Ent:

Entry

F :

Frictional

G:

Gravitational

h:

Hydraulic

L:

Liquid

LV :

Latent

LO:

Entire flow as liquid

m :

Mean

NBD:

Nucleate boiling dominant

r :

Receding

SP:

Single-phase

sat:

Saturated condition

TP:

Two-phase

t :

Thermal

V:

Vapor

References

  • Balasubramanian P, Kandlikar SG (2005) An experimental study of flow patterns, pressure drop and flow instabilities in parallel rectangular minichannels. Heat Tran Eng 26(3):20–27

    Article  Google Scholar 

  • Bergles AE, Kandlikar SG (2005) On the nature of critical heat flux in microchannels. J Heat Transf 127(1):101–107

    Article  Google Scholar 

  • Chawla JM (1966) Warmeubergang und Druckabfall in Waagerechten Rohren bei der Stromung von verdampfenden Kaltemitteln, VDI-Forschungschefte, vol 523. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Collier JG (1981) Convective boiling and condensation. McGraw-Hill International Book Co., New York

    Google Scholar 

  • Cornwell K, Kew PA (1992) Boiling in small parallel channels. In: Proceedings of CEC conference on energy efficiency in process technology. Elsevier Applied Sciences, Athens, pp 624–638. Paper 22

    Google Scholar 

  • Dario ER, Passos JC, Simón ML, Tadrist L (2016) Pressure drop during flow boiling inside parallel microchannels. Int J Refrig 72:111–123. doi:10.1016/j.ijrefrig.2016.08.002

    Article  Google Scholar 

  • David MP, Miler J, Steinebrenner JE, Yang Y, Touzelbaev M, Goodson KE (2011) Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger. Int J Heat Mass Transf 54(25–26):5504–5516

    Article  Google Scholar 

  • Davis EJ, Anderson GH (1966) The incipience of nucleate boiling in forced convection flow. AICHE J 12(4):774–780

    Article  Google Scholar 

  • Fazeli A, Mortazavi M, Moghaddam S (2015) Hierarchical biphilic micro/nanostructures for a new generation phase-change heat sink. Appl Therm Eng 78:380–386

    Article  Google Scholar 

  • Hsu YY (1962) On the size range of active nucleation cavities on a heating surface. J Heat Transf 84:207–216

    Article  Google Scholar 

  • Hsu YY, Graham R (1961) An analytical and experimental study of the thermal boundary layer and ebullition cycle in nucleate boiling, Nasa TN-d, vol 594. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Kalani A, Kandlikar SG (2014) Evaluation of pressure drop performance during enhanced flow boiling in open microchannels with tapered manifolds. J Heat Transf 136(5), 7 pages. doi: 10.1115/1.4026306

  • Kalani A, Kandlikar SG (2015a) Effect of taper on pressure recovery during flow boiling in open microchannels with manifold using homogeneous flow model. Int J Heat Mass Transf 83:109–117

    Article  Google Scholar 

  • Kalani A, Kandlikar SG (2015b) Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling. Appl Phys Lett 107:181601. doi:10.1063/1.4935211

    Article  Google Scholar 

  • Kandlikar SG (1990) A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J Heat Transf 112(1):219–228. doi:10.1115/1.2910348

    Article  Google Scholar 

  • Kandlikar SG (2002a) Fundamental issues related to flow boiling in minichannels and microchannels. Exp Thermal Fluid Sci 26:389–407. doi:10.1016/S0894-1777(02)00150-4

    Article  Google Scholar 

  • Kandlikar SG (2002b) Two-phase flow patterns, pressure drop, and heat transfer during flow boiling in minichannel flow passages of compact evaporators. Heat Tran Eng 23(5):5–23

    Article  Google Scholar 

  • Kandlikar SG (2004) Heat transfer mechanisms during flow boiling in microchannels. J Heat Transf 126:8–16

    Article  Google Scholar 

  • Kandlikar SG (2006) Nucleation characteristics and stability considerations during flow boiling in microchannels. Exp Thermal Fluid Sci 30(5):441–447

    Article  Google Scholar 

  • Kandlikar SG (2010a) Similarities and differences between flow boiling in microchannels and pool boiling. Heat Tran Eng 31(3). doi:10.1080/01457630903304335

  • Kandlikar SG (2010b) Scale effects of flow boiling in microchannels: a fundamental perspective. Int J Therm Sci 49(7):1073–1085

    Article  Google Scholar 

  • Kandlikar SG (2010c) A scale analysis based theoretical force balance model for critical heat flux (CHF) during saturated flow boiling in microchannels and minichannels. J Heat Transf 132(8):0181501-1–018150113

    Article  Google Scholar 

  • Kandlikar SG (2016) Mechanistic considerations for enhancing flow boiling heat transfer in microchannels. J Heat Transf 138(2):02150. doi:10.1115/1.4031648. (16 pages)

    Google Scholar 

  • Kandlikar, SG, Steinke, ME, Tian, S, Campbell, LA (2001) High-speed photographic observation of flow boiling of water in parallel minichannels. Paper presented at the ASME national heat transfer conference, ASME, Anaheim, 10–12 June 2001, NHTC01-11262

    Google Scholar 

  • Kandlikar SG, Grande WJ (2003) Evolution of microchannel flow passages – thermohydraulic performance and fabrication technology. Heat Tran Eng 24(1):3–17

    Article  Google Scholar 

  • Kandlikar, SG, Willistein, DA, Borrelli, J, and ASME (2005) Experimental evaluation of pressure drop elements and fabricated nucleation sites for stabilizing flow boiling in minichannels and microchannels. In: Proceedings of the 3rd international conference on microchannels and minichannels, ASME, 13–15 June, pp 115–124. doi:10.1115/ICMM2005-75197

  • Kandlikar SG, Kuan WK, Willistein DA, Borrelli J (2006) Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. J Heat Transf 128(4):389–396. doi:10.1115/1.2165208

    Article  Google Scholar 

  • Kandlikar, SG, Widger, T, Kalani, A, and Mejia, V (2013) Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds (OMM), 75th Anniversary Issue. J Heat Transf 135(6):061401 (9 pages)

    Google Scholar 

  • Kandlikar SG, Garimella S, Li D, Colin S, King MR (2014) Heat transfer and fluid flow in minichannnels and microchannels. Elsevier, Oxford, UK

    Google Scholar 

  • Khanikar V, Mudawar I, Fisher T (2009) Flow boiling in a microchannel coated with carbon nanotubes. IEEE Trans Compon Packag Technol 32(3):639–649

    Article  Google Scholar 

  • Kosar A, Kuo C-J, Peles Y (2005a) Boiling heat transfer in rectangular microchannels with reentrant cavities. Int J Heat Mass Transf 48(23–24):4867–4886. doi:10.1016/j.ijheatmasstransfer.2005.06.003

    Article  Google Scholar 

  • Kosar A, Kuo CJ, Peles Y (2006) Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. J Heat Transf 128(3):251–260. doi:10.1115/1.2150837

    Article  Google Scholar 

  • Krishnamurthy S, Peles Y (2008) Flow boiling of water in a circular staggered micro-pin fin heat sink. Int J Heat Mass Transf 51:1349–1364

    Article  MATH  Google Scholar 

  • Lazarek GM, Black SH (1982) Evaporative heat transfer, pressure drop and critical heat flux in a small diameter vertical tube with R-113. Int J Heat Mass Transf 25(7):945–960. doi:10.1016/0017-9310(82)90070-9

    Article  Google Scholar 

  • McAdams WH, Woods WK, Heroman LC (1942) Vaporization inside horizontal tubes II-benzene-oil mixtures. Trans ASME 64(3):193–200

    Google Scholar 

  • Morshed AKMM, Yang F, Ali MY, Khan JA, Li C (2012) Enhanced flow boiling in a microchannel with integration of nanowires. Appl Therm Eng 32:68–75. doi:10.1016/j.applthermaleng.2011.08.031

    Article  Google Scholar 

  • Mukherjee, A, and Kandlikar, SG (2004) Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel. In: Proceedings of the second international conference on microchannels and minichannels, Rochester, pp 565–572. (Also published in Microfluidics and Nanofluidics 1(2):137–145) ASME paper no. ICMM 2004–2382

    Google Scholar 

  • Mukherjee, A and Kandlikar, SG (2005) Numerical study of the effect of inlet constriction on flow boiling stability in microchannels. In: Proceedings of the third international conference on microchannels and minichannels, Toronto, 13–15 June 2005 ASME paper no. ICMM2005–75143

    Google Scholar 

  • Mukherjee A, Kandlikar SG (2009) The effect of inlet constriction on bubble growth during flow boiling in microchannels. Int J Heat Mass Transf 52(21–22):5204–5212

    Article  MATH  Google Scholar 

  • Peles Y (2012) In: Kandlikar SG (ed) Contemporary perspectives on flow boiling instabilities in microchannels and minichannels, series in contemporary perspectives in emerging technologies. Begell House, Redding

    Google Scholar 

  • Recinella, A, Kalani, A,and Kandlikar, SG (2016) Enhanced flow boiling heat transfer using radial microchannels. In: ASME 2016 14th international conference on nanochannels, microchannels, and minichannels, Washington, DC, 10–14 July 2016, paper no. ICNMM2016–7975, doi:10.1115/ICNMM2016-7975

  • Schultz M, Yang F, Colgan E, Polastre R, Dang B, Tsang C, Gaynes M, Parida P, Knickerbocker J, Chainer T (2015) Embedded two-phase cooling of large three-dimensional compatible chips with radial channels. J Electron Packag 138(2). doi:10.1115/1.4033309. (5 pages)

  • Serizawa A, Feng A, Kawara Z (2002) Two-phase flow in microchannels. Exp Thermal Fluid Sci 26(6–7):703–714. doi:10.1016/S0894-1777(02)00175-9

    Article  Google Scholar 

  • Shah RK, London AL (1978) Laminar flow forced convection in ducts, supplement 1 to advances in heat transfer. Academic, New York

    Google Scholar 

  • Shenoy S, Tullius JF, Bayazitoglu Y (2011) Minichannels with carbon nanotube structures surfaces for cooling applications. Int J Heat Mass Transf 54(25–26):5379–5385

    Article  Google Scholar 

  • Steinke ME, Kandlikar SG (2004) An experimental investigation of flow boiling characteristics of water in parallel microchannels. J Heat Transf 126(4):518–526

    Article  Google Scholar 

  • Tuckerman DB, Pease RFW (1981) High performance heat sink for VLSI. IEEE Electron Devices Lett EDL 2(5):126–129

    Article  Google Scholar 

  • Wambsganss MW, France DM, Jendrzejczyk JA, Tran TN (1993) Boiling heat transfer in a small diameter tube. ASME J Heat Transfer 115(4):963–972

    Article  Google Scholar 

  • Woodcock C, Houshmand F, Plawsky J, Izenson M, Hill R, Phillips S,and Peles Y (2014) Piranha pin-fins (PPF): voracious boiling heat transfer by vapor venting from microchannels–system calibration and single-phase fluid dynamics. In: 14th IEEE ITherm conference, Orlando, 27–30 May, pp 282–289

    Google Scholar 

  • Xu J, Vaillant R, Attinger D (2010) Use of a porous membrane for gas bubble removal in microchannels: physical mechanisms and design criteria. Microfluid Nanofluid 9:765–772. doi:10.1007/s10404-010-0592-5

  • Zhu Y, Antao DS, Chu K-H, Hendricks TJ, and Wang EN (2014) Enhanced flow boiling heat transfer in microchannels with structured surfaces. In: 15th international heat transfer conference, paper no. IHTC15–9508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish G. Kandlikar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kandlikar, S.G. (2017). Boiling and Two-Phase Flow in Narrow Channels. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics