Skip to main content

Heat Transfer in Plasma Arc Cutting

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Experimental and theoretical states-of-the-art in PAC are considered. The emphasis is made on physics of the arc operation and on heat transfer inside the kerf. Special attention is paid to the problems in PAC that put a limit to further expand applicability of the method: the cathode erosion, double arcing, and the processes that determine the quality of the cut. Measures to further PAC development are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arata Y, Maruo H, Miyamoto I, Takeuchi S (1979) Dynamic behavior in laser gas cutting of mild steel. Trans Japan Weld Res Inst 8:15–26

    Google Scholar 

  • Bade WL, Yos YM (1963) Theoretical and experimental study of thermionic arc cathodes. Technical documentary report, ASD-TDR-62-729, vol 1 (part II)

    Google Scholar 

  • Baeva M, Baev P, Kaplan A (1997) An analysis of the heat transfer from a moving elliptic cylinder. J Phys D 30:1190–1196

    Article  Google Scholar 

  • Benilov MS (1992) Theory of structures in near-electrode plasma regions. Phys Rev A 45:5901–5912

    Article  Google Scholar 

  • Benilov MS (2008) Understanding and modelling plasma–electrode interaction in high-pressure arc discharges: a review. J Phys D Appl Phys 41:144001

    Article  Google Scholar 

  • Bunting KA, Cornfield G (1975) Toward a general theory of cutting: a relationship between the incident power density and the cut speed. Trans ASME J Heat Trans 97:116–122

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon, Oxford

    MATH  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2008) Understanding plasma fluid dynamics inside plasma torches through advanced modeling. IEEE Trans Plasma Sci 36(2):389–402

    Article  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2009a) High-speed imaging in plasma arc cutting: a review and new developments. Plasma Sources Sci Technol 18:023001–023023

    Article  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Dallavalle S, Fazzioli R, Vancini M (2009b) Optimization of plasma arc cutting of mild steel thin plates. High Temp Mat Processes Int Q High Technol Plasma Processes 13(3–4):267–285

    Article  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Rotundo F, Dallavalle S (2010) Experimental analysis of the behavior of high current electrodes in plasma arc cutting during first cycles. Plasma Sources Sci Technol 19:065023–065031

    Article  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Rotundo F, Sanibondi P, Boselli M, Dallavalle S, Gherardi M, Nemchinsky VA, Vancini M (2012) Advances in plasma arc cutting technology: the experimental part of an integrated approach. Plasma Chem Plasma Process 32:411–426

    Article  Google Scholar 

  • Eichler S, Hussary N, Siewert E, Schein J (2014) Investigation of the anode attachment process in plasma arc cutting. J Phys Conf Ser 550:012007

    Article  Google Scholar 

  • Freton P, Gonzalez JJ, Gleizes A, Camy Peyret F, Caillibotte G, Delzenne M (2002) Numerical and experimental study of a plasma cutting torch. J Phys D Appl Phys 35:115–131

    Article  Google Scholar 

  • Freton P, Gonzalez JJ, Camy Peyret F, Gleizes A (2003) Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch. J Phys D Appl Phys 36:1269–1283

    Article  Google Scholar 

  • Gariboldi E, Previtali B (2005) High tolerance plasma arc cutting of commercially pure titanium. J Mater Process Technol 160:77–89

    Article  Google Scholar 

  • Ghorui S, Heberlein J, Pfender E (2007) Non-equilibrium modelling of an oxygen-plasma cutting torch. J Phys D Appl Phys 40:1966–1976

    Article  Google Scholar 

  • Girard L, Teulet P, Razafinimanana M, Gleizes A, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: I. Spectroscopic analysis of the plasma jet. J Phys D Appl Phys 39:1543–1556

    Article  Google Scholar 

  • Gonzalez-Aguilar J, Pardo Sanjurjo C, Rodrıguez-Yunta A, Garcıa Calderon MA (1999) A theoretical study of a cutting air plasma torch. IEEE Trans Plasma Sci 27(1):264–271

    Article  Google Scholar 

  • Gruber J, Sonsky J, Hlına J (2014) Diagnostics of cathode material loss in cutting plasma torch. J Phys D Appl Phys 47:295201–295210

    Article  Google Scholar 

  • Hirano K, Fabbro R (2011) Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel. Phys Procedia 12:555–564

    Article  Google Scholar 

  • Ilii S-M, Coteana M, Munteanu A (2010) Experimental results concerning variation of surface roughness parameter (Ra) at plasma arc cutting of a stainless steel workpiece. Int J Modern Manuf Technol II(1):31–36

    Google Scholar 

  • Kavka T, Chumak O, Sonsky J, Heinrich M, Stehrer T, Pauser H (2013) Experimental study of anode processes in plasma arc cutting. J Phys D Appl Phys 46:065202–0652012

    Article  Google Scholar 

  • Kavka T, Tossen S, Maslani A, Konrad M, Pauser H, Stehrer T (2014) Experimental investigation of energy balance in plasma arc cutting process. J Phys Conf Ser 511:012067

    Article  Google Scholar 

  • Long NP, Tanaka Y, Uesugi Y, Yamaguchi Y (2013) Numerical investigation of the effect of cathode holder shape on hafnium cathode evaporation for an oxygen plasma cutting arc. J Phys D Appl Phys 46(22):224012-1–224012-3

    Article  Google Scholar 

  • Luo L, Sanders NA, Couch RW (1992) Process and apparatus for reducing electrode wear in a plasma arc torch. US Patent 5166 494

    Google Scholar 

  • Makashev NK, Asmolov ES, Blinkov VV, Boris AYu, Burmistrov AV, Buzykin OG and Makarov VA (1994) Gas-hydrodynamics of CW laser cutting of metals in inert gas. In: Proceedings of the SPIE 2257, Russia national conference: industrial lasers and laser material processing, 2

    Google Scholar 

  • Manohar M, Snyder JP II (1994) Dross formation during plasma arc cutting of steels. Weld J 73:45–51

    Google Scholar 

  • Martin C, Nemchinsky VA, Severance WS (2013) Measurements of power of oxidation reaction during plasma arc cutting of steel with an oxygen plasma. J Phys D Appl Phys 46:224014–224016

    Article  Google Scholar 

  • Moizhes BY, Nemchinsky VA (1972) Theory of a high-pressure arc with a refractory cathode. Sov Phys-Tech Phys 17:793–799

    Google Scholar 

  • Moizhes BY, Nemchinsky VA (1976) Theory of the cylindrical cathode in a high pressure arc. Sov Phys Techn Phys 20(6):757–762

    Google Scholar 

  • Moizhes BY, Nemchinsky VA (1984) Vaporization rate of impurity and the operation conditions of an activated plasmatron cathode. Sov Phys Tech Phys 29(1):612–616

    Google Scholar 

  • Nemchinsky VA (1997) Dross formation and heat transfer during plasma arc cutting. J Phys D Appl Phys 30:2566–2572

    Article  Google Scholar 

  • Nemchinsky VA (1998) Plasma flow in a nozzle during plasma arc cutting. J Phys D Appl Phys 31(1998):3102–3107

    Article  Google Scholar 

  • Nemchinsky VA (2002a) Cathode erosion rate in high-pressure arcs influence of swirling gas flow. Trans Plasma Sci 30(6):2113–2116

    Article  Google Scholar 

  • Nemchinsky (2002b) Powered metal emissive elements. US Patent 6420673

    Google Scholar 

  • Nemchinsky VA (2003a) Current density at the refractory cathode of a high-current high-pressure arc (two modes of cathode spot attachment). J Phys D Appl Phys 36:3007–3013

    Article  Google Scholar 

  • Nemchinsky VA (2003b) Cyclic erosion of a cathode in high-pressure arcs. J Phys D Appl Phys 36(13):1573–1576

    Article  Google Scholar 

  • Nemchinsky VA (2004) Heat flux at the refractory cathode of a high-current, high-pressure arc (two modes of cathode spot attachment). J Phys D Appl Phys 37:1048–1051

    Article  Google Scholar 

  • Nemchinsky VA (2009) A mechanism that triggers double arcing during plasma arc cutting. J Phys D Appl Phys 42:205209–205216

    Article  Google Scholar 

  • Nemchinsky VA (2011) Temperature created by a tilted moving heat source: heating line and cylinder. Trans ASME J Heat Trans 133:021301

    Article  Google Scholar 

  • Nemchinsky VA (2012) Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc. J Phys D Appl Phys 45(13):135201

    Article  Google Scholar 

  • Nemchinsky VA (2013) Cathode erosion due to evaporation in plasma arc cutting systems. Plasma Chem Plasma Process 33(2):517–526

    Article  Google Scholar 

  • Nemchinsky VA (2014) Erosion of thermionic cathodes in welding and plasma arc cutting systems. IEEE Trans Plasma Sci 42(1):199–215

    Article  Google Scholar 

  • Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma arc cutting. J Phys D Appl Phys 39:R423–R438

    Article  Google Scholar 

  • Nemchinsky VA, Severance WS (2009) Plasma arc cutting: speed and cut quality. J Phys D Appl Phys 42:195204–195210

    Article  Google Scholar 

  • Nemchinsky VA, Showalter MS (2003) Cathode erosion in high-current high-pressure arc. J Phys D Appl Phys 36:704–712

    Article  Google Scholar 

  • O’Brien RL (ed) (1991) Welding handbook, vol 2, 8th edn. AWS, Miami

    Google Scholar 

  • Osterhouse DJ, Lindsay JW, Heberlein JVR (2013) Using arc voltage to locate the anode attachment in plasma arc cutting. J Phys D Appl Phys 46:224013–224016

    Article  Google Scholar 

  • Pardo C, Gonzalez-Aguillar J, Rodriguez-Yunta A, Calderon MAG (1999) Spectroscopic analysis of an air plasma cutting torch. J Phys D Appl Phys 38(32):2181–2188

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York

    MATH  Google Scholar 

  • Peters J, Yin F, Borges CFM, Heberlein J, Hackett C (2005) Erosion mechanisms of hafnium cathodes at high current. J Phys D Appl Phys 38(11):1781–1794

    Article  Google Scholar 

  • Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostics in a highly constricted oxygen arc. J Phys D Appl Phys 40:3960–3971

    Article  Google Scholar 

  • Prevosto L, Kelly H (2014) Diagnostics of cutting arc plasmas. J Phys Conf Ser 511:012065

    Article  Google Scholar 

  • Prevosto L, Kelly H, Minotti FO, Mancinelli B (2006) Interpretation of voltage measurements in cutting torches. AIP Proc 875:207–210

    Article  Google Scholar 

  • Prevosto L, Kelly H, Mancinelli B (2009a) On the physical origin of the nozzle characteristic and its connection with the double-arcing phenomenon in a cutting torch. J Appl Phys 105:013309–013306

    Article  Google Scholar 

  • Prevosto L, Kelly H, Mancinelli B (2009b) An interpretation of langmuir probe floating voltage signals in a cutting arc. IEEE Trans Plasma Sci 37(6):1092–1098

    Article  Google Scholar 

  • Raiser Yu P (2011) Gas discharge physics. Springer, Berlin

    Google Scholar 

  • Ramakrishnan S, Rogozinski MW (1997) Properties of electric arc plasma for metal cutting. J Phys D Appl Phys 30(4):636–644

    Article  Google Scholar 

  • Ramakrishnan S, Gershenzon M, Polivka F, Kearney TN, Rogozinski MW (1997) Plasma generation for the plasma cutting process. Trans Plasma Sci 25(5):937–946

    Article  Google Scholar 

  • Ramakrishnan S, Shrinet V, Polivka FB, Kearney TN, Koltun P (2000) Influence of gas composition on plasma arc cutting of mild steel. J Phys D Appl Phys 33:2288–2299

    Article  Google Scholar 

  • Rosenthal D (1941) Mathematical theory of heat distribution during welding and cutting. Weld J 20:220s–234s

    Google Scholar 

  • Schuocker D (1986) Dynamic phenomena in laser cutting and cut quality. Appl Phys B Lasers Opt 40:9–14

    Article  Google Scholar 

  • Sobih M, Crouse PL, Li L (2007) Elimination of striation in laser cutting of mild steel. J Phys D Appl Phys 40:6908–6916

    Article  Google Scholar 

  • Swift-Hook DT, Gick AEF (1973) Penetration welding with lasers. Weld J 52:429s–499s

    Google Scholar 

  • Teste P, Leblanc T, Rossignol J, Andlauer R (2008) Contribution to the assessment of the power balance at the electrodes of an electric arc in air. PSST 17:035001

    Google Scholar 

  • Teulet P, Girard L, Razafinimanana M, Gleizes A, Bertrand P, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: II. Arc–material interaction, energy transfer and anode attachment. J Phys D Appl Phys 39:1557–1573

    Article  Google Scholar 

  • Toshiyuki M, Geidt WH (1982) Heat transfer from elliptical cylinder moving through an infinite plate applied to electron beam welding. Int J Heat Mass Transfer 25:807–814

    Article  Google Scholar 

  • Vicanek M, Simon G, Urbassek HM, Decker I (1987) Hydrodynamical instability of melt flow in laser cutting. J Phys D Appl Phys 20:140–145

    Article  Google Scholar 

  • Yamaguchi Y, Yoshida K, Uesugi Y, Tanaka Y, Morimoto S, Minonishi M, Saio K (2010) Experimental study of erosion of hafnium electrodes for oxygen plasma arc cutting. Quat J JWS 28:311–318

    Google Scholar 

  • Yin F (1999) Investigation of the cathode behavior in a plasma cutting torch. PhD thesis, University of Minnesota

    Google Scholar 

  • Zhainakov A, Urusov RM, Urusova TE (2005) Calculation of a flow of plasma in the vicinity of a profiled surface of an electric arc cathode. High Temp 43(2):162–168

    Article  Google Scholar 

  • Zhou Q, Li H, Xu X, Liu F, Guo S, Chang X, Guo W, Xu P (2009a) Comparative study of turbulence models on highly constricted plasma cutting arc. J Phys D Appl Phys 42:015210–015213

    Article  Google Scholar 

  • Zhou Q, Yin H, Li H, Xu X, Liu F, Guo S, Chang X, Guo W, Xu P (2009b) The effect of plasma-gas swirl flow on a highly constricted plasma cutting arc. J Phys D Appl Phys 42:095208–095216

    Article  Google Scholar 

  • Zhukov MF, Kozlov NP, Pustogarov AV, An’shakov AS, Khvesyuk VI, Duyzhev GA (1982) Near-electrode processes in arc discharges. Novosibirsk, Russia: Nauka, (in Russian). See, also Zhukov MF, Pustogarov AV, Kucherov YR, Povalyaev OA (1989) Mass transfer at thermionic arc cathodes. Contrib Plasma Phys 29(3):315–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerian Nemchinsky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Nemchinsky, V. (2017). Heat Transfer in Plasma Arc Cutting. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics