Skip to main content

Medical Treatment of Hydrocephalus

  • Living reference work entry
  • First Online:
Textbook of Pediatric Neurosurgery
  • 200 Accesses

Abstract

Medical treatment of cerebrospinal fluid disorders has been for a long time applied with the original aim to treat hydrocephalus without surgery, but with the realistic still considered objectives of gaining time until surgery, accompany surgical treatment, and/or increase its effectiveness. The main physiopathogenetic mechanisms that have been investigated are those involved in cerebrospinal fluid (CSF) production, brain water content, and inflammation and those leading to arachnoid fibrosis. Carbonic anhydrase inhibitors (acetazolamide) and loop diuretics (furosemide) have been the main substances that have been used. In addition, osmotic agents, intraventricular fibrinolytic agents (streptokinase, urokinase, recombinant tissue plasminogen activator), and steroids have been investigated; these last particularly in premature infants with hydrocephalus due to intraventricular hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R (2008) Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 121(5):1167–1177

    Article  Google Scholar 

  • Aquilina K, Hobbs C, Tucker A, Whitelaw A, Thoresen M (2008) Do drugs that block transforming growth factor beta reduce posthemorrhagic ventricular dilatation in a neonatal rat model? Acta Pediatr 97(9):1181–1186

    Article  CAS  Google Scholar 

  • Aschoff A, Kremer P, Hashemi B, Kunze S (1999) The scientific history of hydrocephalus and its treatment. Neurosurg Rev 22(2–3):67–93

    Article  CAS  PubMed  Google Scholar 

  • Botfild H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, JP MA 2nd, Logan A (2013) Decorin prevents the development of juvenile communicating hydrocephalus. Brain 136:2842–2858

    Article  Google Scholar 

  • Cherian S, Thoresen M, Silver IA, Whitelaw A, Love S (2004) Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol 30(6):585–600

    Article  CAS  PubMed  Google Scholar 

  • Connolly DL, Shanahan CM, Weissberg PL (1998) The aquaporins. A family of water channel proteins. Int J Biochem Cell Biol 30(2):169–172

    Article  CAS  PubMed  Google Scholar 

  • De Lange SA (1977) Treatment of hydrocephalus. In: Vinken PJ, Bruyn GW, Myrianthopoulos NC (eds) Congenital malformations of the brain and skull, part I. Handbook of clinical neurology, vol 30. North-Holland Publishing Company, Amsterdam/New York/Oxford, pp 565–606

    Google Scholar 

  • Del Bigio MR, Di Curzio DL (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Douglas MR, Daniel M, Lagord C, Akinwunmi J, Jackowski A, Cooper C, Berry M, Logan A (2009) High CSF transforming growth factor beta levels after subarachnoid haemorrhage: association with chronic communicating hydrocephalus. J Neurol Neurosurg Psychiatry 80(5):545–550

    Article  CAS  PubMed  Google Scholar 

  • Gilmore H (1990) Medical treatment of hydrocephalus. In: Red S (ed) Hydrocephalus, vol 3. Williams & Wilkins, Baltimore, pp 37–46

    Google Scholar 

  • Haines SJ, Lapointe M (1999) Fibrinolytic agents in the management of posthemorrhagic hydrocephalus in preterm infants: the evidence. Childs Nerv Syst 15:226–234

    Article  CAS  PubMed  Google Scholar 

  • Hayden PW, Shurtleff DB (1972) The medical management of hydrocephalus. Dev Med Child Neurol 14:52–58

    Article  Google Scholar 

  • Hayden PW, Foltz EL, Shurtleff PED (1968) Effect of an oral osmotic agent on ventricular fluid pressure of hydrocephalic children. Pediatrics 41(5):955–967

    CAS  PubMed  Google Scholar 

  • Heep A, Stoffl-Wagner B, Bartmann P, Benseler S, Schaller C, Groneck P, Obladen M, Felderhoff-Mueser U (2004) Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 56(5):768–774

    Article  CAS  PubMed  Google Scholar 

  • Henle A (1896) Beitrag zur Pathologie und Therapie des Hydrocephalus. Mitteilungen aus dem Grenzgebiet. Medizin und Chir 1:264–302

    Google Scholar 

  • Kaestner S, Dimitriou I (2013) TGF beta1 and TGF beta2 and their role in posthemorrhagic hydrocephalus following SAH and IVH. J Neurol Surg A Cent Eur Neurosurg 74(5):279–284

    Article  PubMed  Google Scholar 

  • Kennedy CR, Ayers S, Campbell MJ, Elbourne D, Hope P, Johnson A (2001) Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics 108(3):597–607

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa K, Tada T (1994) Elevation of transforming growth factor-beta 1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage. Stroke 25:1400–1404

    Article  CAS  PubMed  Google Scholar 

  • Li T, Zhang P, Yuan B, Zhao D, Chen Y, Zhang X (2013) Thrombin-induced TGF-beta1 pathway: a cause of communicating hydrocephalus postsubarachnoid hemorrhage. Int J Mol Med 31(3):660–666

    Article  CAS  PubMed  Google Scholar 

  • Lifshutz JI, Johnson WD (2001) History of hydrocephalus and its treatments. Neurosurg Focus 11(2):E1

    Article  CAS  PubMed  Google Scholar 

  • Liptak GS, Gellerstedt ME, Klionsky N (1992) Isosorbide in the medical management of hydrocephalus in children with myelodysplasia. Dev Med Child Neurol 34(2):150–154

    Article  CAS  PubMed  Google Scholar 

  • Lorber J (1975) Isosorbide in treatment of infantile hydrocephalus. Arch Dis Child 50(6):431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo AV, Hornig G, Zavala LM, Boss V, Welch K (1986) Furosemide lowers intracranial pressure by inhibiting CSF production. Z Kinderchir 41(Suppl 1):10–12

    PubMed  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47:595–781

    CAS  PubMed  Google Scholar 

  • Marlin AE, Gaskill SJ (1990) The etiology and management of hydrocephalus in the preterm infant. In: Scott RM (ed) Hydrocephalus, vol 3. Williams & Wilkins, Baltimore, pp 67–78

    Google Scholar 

  • Mazzola CA, Choudhri AF, Auguste KI et al (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: management of posthemorrhagic hydrocephalus in premature infants. J Neurosurg Pediatr 14(Suppl1):8–23

    Article  PubMed  Google Scholar 

  • Mccullough DC (1990) History of the treatment of hydrocephalus. In: Scott RM (ed) Hydrocephalus, vol 3. Williams & Wilkins, Baltimore, pp 1–10

    Google Scholar 

  • Muizelaar JP, Lutz HA 3rd, Becker DP (1984) Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg 61(4):700–706

    Article  CAS  PubMed  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531(3):443–447

    Article  CAS  PubMed  Google Scholar 

  • Oppelt WW, Patlak CS, Rall DP (1964) Effect of certain drugs on cerebrospinal fluid production in the dog. Am J Physiol 206:247–250

    CAS  Google Scholar 

  • Oshio K, Song Y, Verkman a S, Manley GT (2003) Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl 86:525–528

    CAS  PubMed  Google Scholar 

  • Poca MA, Sahuquillo J (2005) Short-term medical management of hydrocephalus. Expert Opin Pharmacother 6(9):1525–1538

    Article  CAS  PubMed  Google Scholar 

  • Rekate H, Olivero W (1990) Current concepts of CSF production and absorption. In: Scott RM (ed) Hydrocephalus, vol 3. Williams & Wilkins, Baltimore, pp 11–22

    Google Scholar 

  • Shawkat H, Westwood MM, Mortimer A (2012) Mannitol: a review of its clinical uses. Contin Educ Anaesth Crit Care Pain 2:82–85

    Article  Google Scholar 

  • Tada T, Zhan H, Tanaka Y, Hongo K, Matsumoto K, Nakamura T (2006) Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1. Neurobiol Dis 21(3):576–586

    Article  CAS  PubMed  Google Scholar 

  • Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Tanaka M, Ohwada T, Tomonaga F (1993) Pharmacokinetic analysis of mannitol in relation to the decrease of ICP. In: CJJ A, van Eijndhoven JHM et al (eds) Intracranial pressure VIII. Springer, Berlin, pp 596–600

    Chapter  Google Scholar 

  • Tan G, Zhou J, Yuan D, Sun S (2008) Formula for use of mannitol in patients with intracerebral haemorrhage and high intracranial pressure. Clin Drug Investig 28(2):81–87

    Article  CAS  PubMed  Google Scholar 

  • Torack RM (1982) Historical aspects of normal and abnormal brain fluids. II. Hydrocephalus. Arch Neurol 39(5):276–279

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS (2009) Aquaporins: translating bench research to human disease. J Exp Biol 212(Pt 11):1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieten H (1952) Möglichkeiten und Gefahren der Röntgenbestrahlung des Hydrocephalus. der Röntgenbestrahlung des Hydroceph. Strahlentherapie 88:377–382

    CAS  PubMed  Google Scholar 

  • Warden C, Burgess JL (1995) Poison information monograph (PIM) on acetazolamide. World Health Organization IPCS/INTOX program

    Google Scholar 

  • Whitelaw A (2001) Repeated lumbar or ventricular punctures in newborns with intraventricular hemorrhage. Cochrane Database Syst Rev 1:CD000216

    Google Scholar 

  • Whitelaw A, Christie S, Pople I (1999) Transforming growth factor-beta1: a possible signal molecule for posthemorrhagic hydrocephalus? Pediatr Res 46(5):576–580

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw A, Pople I, Cherian S, Evans D, Thoresen M (2003) Phase I Trial of Prevention of Hydrocephalus After Intraventricular Hemorrhage in Newborn Infants by Drainage, Irrigation, and Fibrinolytic Therapy. Pediatrics 111(4):759–766

    Article  PubMed  Google Scholar 

  • Whitelaw A, Jary S, Kmita G et al (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125(4):852–858

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tamburrini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Goker, B., Tamburrini, G. (2018). Medical Treatment of Hydrocephalus. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31512-6_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31512-6

  • Online ISBN: 978-3-319-31512-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics