Skip to main content

Planetary Interior-Atmosphere Interaction and Habitability

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The Earth’s crust is strongly depleted in the biological elements CNPS as well as water relative to primitive meteorites. These elements did not condense within the Earth’s accretion zone; they were volatilized to space during planetary collisions, and/or they sunk into the Earth’s iron core. The Earth’s inventories arrived within minor outer solar system objects. We can extrapolate that life does well with meagre supplies of biological elements and that the distal regions of stellar systems do provide these elements. Life strongly modulates the subsequent rock, ocean, and atmosphere cycles of these elements. These contingencies limit what details can be exported to earthlike exoplanets. With regard to C-rich exoplanets, a graphite rind develops during accretion. A rind of frozen metallic silicon develops on Si-rich planets. Even in these cases, the outer stellar system supplies the locally rare elements CHONPS. Life evolves to prosper in the conditions it actually faces. For example, the rinds are strongly reducing. Life will probably evolve ways to gather, create, store, and utilize oxidants that are far from equilibrium with the general environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen MB, Elliot T, Freymuth H, Sims KWW, Niu Y, Kelley KA (2015) The terrestrial uranium isotope cycle. Nature 517:356–359. https://doi.org/10.1038/nature14062

    Article  ADS  Google Scholar 

  • Bassez M-P (2017) Anoxic and Oxic oxidation of rocks containing Fe(II)mg-silicates and Fe(II)-Monosulfides as source of Fe(III)-minerals and hydrogen. Geobiotropy Orig Life Evol Biosph 47:453–480

    Article  ADS  Google Scholar 

  • Batygin K, Laughlin G (2015) Jupiter’s decisive role in the inner solar System’s early evolution. Proc Natl Acad Sci U S A 112:4214–4217

    Article  ADS  Google Scholar 

  • Beck P, Quirico E, Garenne A, Yin Q-Z, Bonal L, Schmitt B, Montes-Hernandez G, Montagnac G, Chiriac R, Toche F (2014) The secondary history of Sutter’s mill CM carbonaceous chondrite based on water abundance and the structure of its organic matter from two clasts. Meteoritics Planet Sci 49(11):2064–2073. https://doi.org/10.1111/maps.12273

    Article  ADS  Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112(47):14518–14521

    Article  ADS  Google Scholar 

  • Bergin EA, Blake GA, Ciesla F, Hirschmann MM, Li J (2015) Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proc Natl Acad Sci U S A 112:8965–8970

    Article  ADS  Google Scholar 

  • Berthebaud D, Tougait O, Gonçalves AP, Noël H (2008) Phase relations and stabilities at 900°C in the U-Fe-Si ternary system. Intermetallics 373–377

    Article  Google Scholar 

  • Bond JC, Lauretta DS, O’Brien DP (2010a) Making the earth: combining dynamics and chemistry in the solar system. Icarus 205:321–337

    Article  ADS  Google Scholar 

  • Bond JC, O’Brien DP, Lauretta DS (2010b) The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. Astrophys J 715:1050–1070

    Article  ADS  Google Scholar 

  • Boyd SR (2001) Ammonium as a biomarker in Precambrian metasediments. Precambrian Res 108:159–173

    Article  ADS  Google Scholar 

  • Brewer JM, Fischer DA (2016) C/O and mg/Si ratios of stars in the solar neighborhood. Astrophys J 831:20. https://doi.org/10.3847/0004-637X/831/1/20

    Article  ADS  Google Scholar 

  • Canup RM (2004) Simulations of a late lunar-forming impact. Icarus 168:433–456. https://doi.org/10.1016/j.icarus.2003.09.028

    Article  ADS  Google Scholar 

  • Canup RM (2008) Accretion of the earth. Phil Trans R Soc A 366:4061–4075

    Article  ADS  Google Scholar 

  • Canup RM (2012) Forming a moon with an earth-like composition via a giant impact. Science 338:1052–1055

    Article  ADS  Google Scholar 

  • Canup RM (2014) Lunar-forming impacts: processes and alternatives. Phil Trans R Soc A 372:20130175. https://doi.org/10.1098/rsta.2013.0175

    Article  ADS  Google Scholar 

  • Carter-Bond JC, O’Brien DP, Celgado Meno E, Israelian, G, Santos NC, González Hernández JI (2012) Low Mg/Si planetary host stars and their Mg-depleted terrestrial planets. Astrophys J Lett 747:L2.

    Article  ADS  Google Scholar 

  • Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science 293:839–843

    Article  ADS  Google Scholar 

  • Corradetti S, Manzolaro M, Andrighetto A, Zanonato P, Tusseau-Nenez S (2015) Thermal conductivity and emissivity measurements of uranium carbides. Nucl Instr Meth Phys Res B 360:46–53

    Article  Google Scholar 

  • De Coninick R, Van Lierde W, Gijs A (1975) Uranium carbide: Thermal diffusivity, thermal conductivity and spectral emissivity at high temperatures. J Nucl Mater 57:69–76

    Google Scholar 

  • Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229

    Article  Google Scholar 

  • Dauphas N, Burkhardt C, Warren PH, Teng F-Z (2014) Geochemical arguments for an earth-like moon-forming impactor. Phil Trans Roy Soc A 372:20130244

    Article  ADS  Google Scholar 

  • Day JMD, Pearson DG, Taylor LA (2007) Highly siderophile element constraints on accretion and differentiation of the earth–moon system. Science 315:217–219

    Article  ADS  Google Scholar 

  • Dixon JE, Bindeman IN, Kingsley RH, Simons KK, Le Roux PJ, Hajewski TR, Swart P, Langmuir CH, Ryan JG, Walowski KJ, Wada I, Wallace PJ (2017) Light stable isotopic compositions of enriched mantle sources: resolving the dehydration paradox. Geochem Geophys Geosyst 18. https://doi.org/10.1002/2016GC006743

  • Dorn C, Khan A, Heng K, Connally JAD, Alibert Y, Benz W, Tackley P (2015) Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astronomy Astrophys 577:A83

    Article  ADS  Google Scholar 

  • Eggers S, Keller HU, Kroupa P, Markiewicz WJ (1997) Origin and dynamucs of comets and star formation. Planet Space Sci 45:1099–1104

    Article  ADS  Google Scholar 

  • Ferry JG, House CH (2006) The stepwise evolution of early life driven by energy conservation. Mol Biol Evol 23:1286–1292

    Article  Google Scholar 

  • Gaidos E (2015) What are little worlds made of? Stellar abundances and the building blocks of planets. Astrophys J 804:40

    Article  ADS  Google Scholar 

  • Genda H, Abe Y (2005) Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433:842–844

    Article  ADS  Google Scholar 

  • Genda H, Brasser R, Mojzsis SJ (2017) The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet Sci Lett 480:25–32

    Article  ADS  Google Scholar 

  • Goldblatt C, Claire MW, Lenton TM, Matthews AJ, Watson AJ, Zahnle KJ (2009) Nitrogen-enhanced greenhouse warming on early earth. Nat Geosci 2:891–896

    Article  ADS  Google Scholar 

  • Hall A (1999) Ammonium in granites and its petrogenetic significance. Earth-Sci Rev 45:145–165

    Article  ADS  Google Scholar 

  • Hazen RM (2013) Paleomineralogy of the Hadean eon: a preliminary species list. Am J Sci 313. https://doi.org/10.2475/09.2013.00

  • Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM et al (2008) Mineral evolution. Am Mineral 93:1693–1720

    Article  ADS  Google Scholar 

  • Herd DKC, Blinova A, Simkus ND, Huang Y, Tarozo R, MO’DC A, Gyngard F, Nittler RL, Cody DG, Fogel LM, Kebukawa Y, ALD K, Hilts WR, Slater FG, Glavin PD, Dworkin PJ, Callahan PM, Elsila EJ, De Gregorio TB, Stroud MR (2011) Origin and evolution of organic matter as inferred from the Tagish Lake meteorite. Science 332:1304

    Article  ADS  Google Scholar 

  • Hernland JW (2016) Chemistry of core-mantle boundary, Chapter 16. In: Terasaki H, Fischer RA (eds) Deep earth: physics and chemistry of the lower mantle and core, geophysical monograph series. American Geophysical Union, Washington, DC, pp 201–208

    Chapter  Google Scholar 

  • Hilts RW, Herd CDK, Simkus DN, Slater GF (2014) Soluble organic compounds in the Tagish Lake meteorite. Meteorit Planet Sci 49:526–549

    Article  ADS  Google Scholar 

  • Hirschmann MM, Dasgupta R (2009) The H/C ratios of Earth’s near surface and deep reservoirs, and the consequences for deep earth volatile cycles. Chem Geol 262:4–16

    Article  ADS  Google Scholar 

  • Hirshmann MM (2016) Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am Minerol 101:540–553

    Article  ADS  Google Scholar 

  • Holser WT, Schidlowski M, Mackenzie FT, Maynard JB (1988) Geochemical cycles of carbon and sulfur. In: Gregor CB, Garrels RM, Mackenzie FT, Maynard JB (eds) Chemical cycles in the evolution of the earth. Wiley, New York, pp 105–173

    Google Scholar 

  • Holzheid A, Sylvester P, O’Neill HSC, Rubie DC, Palme H (2000) Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature 406:396–399

    Article  ADS  Google Scholar 

  • Jacob DT (2016) There is no silicon-based life in the solar system. SILICON 8:175–176

    Article  Google Scholar 

  • Kamber BS (2010) Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry. Chem Geol 274:19–28

    Article  ADS  Google Scholar 

  • Kidiokoro Y, Umemoto K, Hirose K, Ohishi Y (2017) Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets. Am Minerol 102:2230–2234

    Article  ADS  Google Scholar 

  • King AJ, Schofield PF, Howard KT, Russell SS (2015) Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochim Cosmochim Acta 165:148–160

    Article  ADS  Google Scholar 

  • Knight TW, Anghaie (2002) Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering. J Nucl Mater 306:54–60

    Article  ADS  Google Scholar 

  • Krissansen-Totten J, Buick R, Catling D (2015) A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am J Sci 315:275–316

    Article  ADS  Google Scholar 

  • Kruijer TS, Kleine T, Fischer-Gödde M, Sprung P (2015) Lunar tungsten isotopic evidence for the late veneer. Nature 520:534–537

    Article  ADS  Google Scholar 

  • Kuramoto K, Matsui T (1996) Partitioning of H and C between the mantle and core during the core formation in the Earth: Its implications for the atmospheric evolution and redox state of early mantle. J Geophys Res-Planets 101:14909–14932

    Article  Google Scholar 

  • Lecuyer C, Ricard Y (1999) Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth Planet Sci Lett 165:197–211

    Article  ADS  Google Scholar 

  • Levison HF, Duncan MJ, Brasser R, Kaufman DE (2010) Capture of the Sun’s Oort cloud from stars in its birth cluster. Science 329:187–190

    Article  ADS  Google Scholar 

  • Liu Y-I, Zhang B, Li C-I, Hu F, Vlede B (2008) Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil. Soil Sci Soc Am J 72:1580–1590

    Article  Google Scholar 

  • Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planet throughout the habitable zones of M dwarfs. Astrobiology 15:119–143

    Article  ADS  Google Scholar 

  • Mann U, Frost DJ, Rubie DC, Becker H, Audétat A (2012) Partitioning of Ru, Rh, Pd, re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures – implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim Cosmochim Acta 84:593–613

    Article  ADS  Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on earth. Earth Planet Sci Lett 313–314:56–66

    Article  ADS  Google Scholar 

  • Marty B, Dauphas N (2003) The nitrogen record of crust-mantle interaction and mantle convection from Archean to present. Earth Planet Sci Lett 206:397–410

    Article  ADS  Google Scholar 

  • Marty B, Dauphas N (2004) “A large secular variation in the nitrogen isotopic composition of the atmosphere since the Archaean?”: response to a comment on “the nitrogen record of crust–mantle interaction and mantle convection from Archaean to present” by R. Kerrich and Y. Jia. Earth Planet Sci Lett 225:441–450

    Article  ADS  Google Scholar 

  • Marty B, Avice G, Sano Y, Altwegg K, Balsiger H, Hässig M Morbidelli A, Mousis O. Rubin M (2016) Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet Sci Lett 441:91–102

    Article  ADS  Google Scholar 

  • McDonough WF, Sun S-S (1994) The composition of the Earth. Chem Geol 120:223–253

    Article  ADS  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:233–253

    Article  ADS  Google Scholar 

  • Médard E, Schmidt MW, Wälle M, Keller NS, Günther D (2015) Platinum partitioning between metal and silicate melts: core formation, late veneer and the nanonuggets issue. Geochim Cosmochim Acta 162:183–201

    Article  ADS  Google Scholar 

  • Newsom HE, Taylor SR (1989) Geochemical implications of formation of the moon by a single giant impact. Nature 338:29–34

    Article  ADS  Google Scholar 

  • Newsom HE (1990) Accretion and core formation in the Earth: evidence from siderophile elements. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, New York, pp 273–288

    Google Scholar 

  • Nisbet EG, Mattey DP, Lowry D (1994) Can diamonds be dead bacteria? Nature 367:694–694

    Article  ADS  Google Scholar 

  • Nisbet E, Zahnle K, Gerasimov MV, Helbert J, Jaumann R et al (2007) Creating habitable zones, at all scales, from planets to mud micro-habitats, on earth and on Mars. Space Sci Rev 129:79–121

    Article  ADS  Google Scholar 

  • Nisr C, Meng Y, MacDowell AA, Yan J, Prakapenka V, Shim S-H (2017) Thermal expansion of SiC at high pressure-temperature and implications for thermal convection in the deep interiors of carbide exoplanets. J Geophys Res Planets 122:124–133. https://doi.org/10.1002/2016JE005158

    Article  ADS  Google Scholar 

  • Nittler LR et al (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333(6051):1847–1850

    Article  ADS  Google Scholar 

  • Olesinski RW, Kanani N, Abbasian GJ (1985) The P-Si (phosphorus-silicon) system. Bull Alloy Phase Diagr 6(2):130–133

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Karhu JA, Marty B (2005) Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks. Chem Geol 216:37–58

    Article  ADS  Google Scholar 

  • Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107:563–576

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  ADS  Google Scholar 

  • Pope EC, Bird DK, Rosing MT (2012) Isotope composition and volume of Earth’s early oceans. Proc Natl Acad Sci 109:4371–4376

    Article  ADS  Google Scholar 

  • Ridgway A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the earth system. Earth Planet Sci Lett 234:299–315

    Article  ADS  Google Scholar 

  • Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci 101:16929–16934

    Article  ADS  Google Scholar 

  • Sakuma K, Hidaka H, Yoneda S (2018) Isotopic and chemical evidence for primitive aqueous alteration in the Tagish Lake meteorite. Astrophys J 853:92

    Article  ADS  Google Scholar 

  • Sano Y, Williams SN (1996) Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett 23:2749–2752

    Article  ADS  Google Scholar 

  • Santos NC, Adibekyan V, Mordasini C, Benz W, Delgado-Mena E, Dorn C, Buchhave L, Figueira P, Mortier A, Pepe F, Santerne A, Sousa SG, Udry S (2015) Constraining planet structure from stellar chemistry: the cases of CoRoT-7, Kepler-10, and Kepler-93. Astron Astrophys 580:L13

    Article  ADS  Google Scholar 

  • Santos NC, Adibekyan V, Dorn C, Mordasini C, Noack L, Barros SCC, Delgado-Mena E, Demangeon O, Faria JP, Israelian G, Sousa SG (2017) Constraining planet structure from stellar chemistry: the cases of CoRoT-7, Kepler-10, and Kepler-93. Astron Astrophys 580:L13

    Article  ADS  Google Scholar 

  • Seager S (2013) Exoplanet habitability. Science 420(577):581

    Google Scholar 

  • Sharp ZD, McCubbin FM, Shearer CK (2013) A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet Sci Lett 380:88–97

    Article  ADS  Google Scholar 

  • Sibley DF, Vogel TA (1976) Chemical mass balance of the Earth’s crust: the calcium dilemma and the role of pelagic sediments. Science 192:551–553

    Article  ADS  Google Scholar 

  • Sleep NH (2016) Asteroid bombardment and the core of Theia as possible sources for the Earth’s late veneer component. Geochem Geophys Geosyst 17. https://doi.org/10.1002/2016GC006305

  • Sleep NH, Bird DK, Pope E (2012) Paleontology of Earth’s mantle. Annu Rev Earth Planet Sci 40:277–300

    Article  ADS  Google Scholar 

  • Sleep NH, Bird DK, Rosing MT (2013) Biological effects on the source of geoneutrinos. Int J Mod Phys A 28(30):1330047

    Article  ADS  Google Scholar 

  • Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004) The first evidence of anaerobic CO oxidation couple with H2 production by a hyperthermophile archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323

    Google Scholar 

  • Sosa OA (2018) Phosphorus redox reactions as pinch hitters in microbial metabolism. Proc Natl Acad Sci 115:7–8

    Article  Google Scholar 

  • Spetsius ZV, Wiggers de Vries DF, Davies GR (2009) Combined C isotope and geochemical evidence for a recycled origin for diamondiferous eclogite xenoliths from kimberlites of Yakutia. Lithos 112S:1032–1042

    Article  ADS  Google Scholar 

  • Stone D (2010) Precambrian geology of the central Wabigoon subprovince area, northwestern Ontario. Ontario geological survey open file report 5422. Ministry of Northern Development and Mines, Sudbury

    Google Scholar 

  • Sumner DY, Grotzinger JP (1996) Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24(2):119–122

    Article  ADS  Google Scholar 

  • Thomazo C, Pinti DL, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. CR Palevol 8(2009):665–678

    Article  Google Scholar 

  • Tian F, Ida S (2015) Water contents of earth-mass planets around M dwarfs. Nat Geosci 8:177–180

    Article  ADS  Google Scholar 

  • Touboul M, Puchtel IS, Walker RJ (2015) Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520:530–533

    Article  ADS  Google Scholar 

  • Valtonen M, Nurmi P, Zheng J-Q, Cucinotta FA, Wilson JW, Horneck G, Lindegren L, Melosh J, Rickman H, Mileikowsky C (2009) Natural transfer of viable microbes in space from planets in extra-solar systems to a planet in our solar system and vice versa. Astrophys J 690:210–215

    Article  ADS  Google Scholar 

  • Vander Kaaden KE, McCubbin FM (2015) Exotic crust formation on mercury: consequences of a shallow, FeO-poor mantle. J Geophys Res Planets 120:195–209. https://doi.org/10.1002/2014JE004733

    Article  ADS  Google Scholar 

  • Velbel MA, Tonui EK, Zolensky Ml E (2015) Replacement of olivine by serpentine in the queen Alexandra range 93005 carbonaceous chondrite (CM2): reactant–product compositional relations and isovolumetric constraints on reaction stoichiometry and elemental mobility during aqueous alteration. Geochim Cosmochim Acta 148:402–442

    Article  ADS  Google Scholar 

  • Walker RJ (2009) Highly siderophile elements in the earth, moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde-Geochem 69:101–125

    Article  ADS  Google Scholar 

  • Walker RJ (2014) Siderophile element constraints on the origin of the moon. Phil Trans R Soc A 372:20130258. https://doi.org/10.1098/rsta.2013.0258

    Article  ADS  Google Scholar 

  • Walker RJ, Bermingham K, Liu J, Puchtel IS, Touboul M, Worsham EA (2015) In search of late-stage planetary building blocks. Chem Geol 411:125–142

    Article  ADS  Google Scholar 

  • Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB et al (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57

    Article  ADS  Google Scholar 

  • Wang Z, Becker H (2013) Ratios of S, se and Te in the silicate earth require a volatile-rich late veneer. Nature 499:328–332

    Article  ADS  Google Scholar 

  • Wang Y, Liu ZTY, Khare SV, Collins SA, Zhang J, Wang L, Zhao Y (2016) Thermal equation of state of silicon carbide. Appl Phys Lett 108:061906

    Article  ADS  Google Scholar 

  • Watenphul A, Wunder B, Heinrich W (2009) High-pressure ammonium-bearing silicates: implications for nitrogen and hydrogen storage in the Earth’s mantle. Am Mineral 94:283–292

    Article  ADS  Google Scholar 

  • Watenphul A, Wunder B, Wirth R, Heinrich W (2010) Ammonium-bearing clinopyroxene: a potential nitrogen reservoir in the Earth’s mantle. Chem Geol 270:240–248

    Article  ADS  Google Scholar 

  • Weitzer F, Rogl P, Noël H (2005) The ternary system: hafnium-silicon-uranium. J Alloys Compd 387:246–250

    Article  Google Scholar 

  • Wilson HF, Militzer B (2014) Interior phase transformations and mass–radius relationships of silicon–carbon planets. Astrophys J 793:34. https://doi.org/10.1088/0004-637X/793/1/34

    Article  ADS  Google Scholar 

  • Wilson DJ, Gänsicke BT, Fahihi J, Koester D (2016) Carbon to oxygen ratios in extrasolar planetesimals. Mon Not R Astron Soc 459:3282–3286

    Article  ADS  Google Scholar 

  • Witter JB, Kress VC, Newhall CG (2005) Volán Popocatépetl, Mexico. Petrology, magma mixing, and immediate sources of volatiles for the 1994–present eruption. J Petrol 46:2337–2366

    Article  ADS  Google Scholar 

  • Yang CC, Li JC, Jiang Q (2004) Temperature–pressure phase diagram of silicon determined by Clapeyron equation. Solid State Commun 129:437–441

    Article  ADS  Google Scholar 

  • Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep NH (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78. https://doi.org/10.1007/s11214-007-9225-z

    Article  ADS  Google Scholar 

  • Zahnle KJ, Lupu R, Dobrovolskis A, Sleep NH (2015) The tethered moon. Earth Planet Sci Lett 427:74–82

    Article  ADS  Google Scholar 

  • Zhuravlev K, Goncharov AF, Tkachev S, Dera P, Prakapenka V (2013) Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: implication for a primary pressure scale. J Appl Phys 113(11):113503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman H. Sleep .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sleep, N.H. (2018). Planetary Interior-Atmosphere Interaction and Habitability. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_75-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics