Skip to main content

Tenuous Atmospheres in the Solar System

  • Living reference work entry
  • First Online:
Handbook of Exoplanets
  • 331 Accesses

Abstract

Current knowledge of tenuous Solar System atmospheres is reviewed, with emphasis at the collisionally thick atmospheres of Pluto, Triton, and Io. A common sharing of atmospheres is that they are dominantly supported by seasonally varying sublimation/condensation exchanges with the surface. Io’s atmosphere is still fundamentally different from Pluto and Triton in that it presents large horizontal variability. Pluto’s atmosphere, and to a lesser extent Triton’s, are reduced (∼10 μbar class) and colder versions of Titan’s, including in particular a coupled nitrogen-methane chemistry that leads to the production of hydrocarbons, nitriles, and haze. Albeit similar in terms of surface pressure and temperature, Pluto’s and Triton’s atmospheres show marked differences in terms of thermal structure and detailed composition – that are amenable to differences in the ∼20 times smaller atmospheric methane mixing ratio on Triton versus Pluto – itself related to a smaller abundance in the ice phase. Io’s dominantly SO2, nanobar-class atmosphere has immediate support mostly from sublimating surface frost, with a contribution from volcanic plumes. The latter are also important in feeding the atmosphere with nonvolatile gases including SO, S2, NaCl, and KCl. The gas temperature, vertical structure, and dynamics of Io’s atmosphere remain poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    (Evidence for “pure” methane in addition to methane diluted in N2 is found in Pluto’s spectra. Given the phase diagram of CH4-N2 mixtures, pure CH4 ice is not thermodynamically possible in the presence of an N2 atmosphere, so that “pure CH4” actually refers to a CH4-dominated CH4-N2 mixture (Trafton 2015).)

References

  • Alday J, Roth L, Ivchenko N, Becker T, Retherford KD (2017) Detection of a hydrogen corona at Callisto in HST/STIS Lyman-alpha images. In: LPSC Conf. #48.1861A

    Google Scholar 

  • Austin JV, Goldstein DB (2000) Rarefied gas model of Io’s sublimation-driven atmosphere. Icarus 148:370

    Article  ADS  Google Scholar 

  • Bertrand T, Forget F (2016) Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540:86–89

    Article  ADS  Google Scholar 

  • Bertrand T, Forget F (2017) 3D modelling of organic haze in Pluto’s atmosphere. Icarus 287:72–86

    Article  ADS  Google Scholar 

  • Cheng AF, Summers ME, Gladstone GR et al (2017) Haze in Pluto’s atmosphere. Icarus 290:112

    Article  ADS  Google Scholar 

  • De Pater I, Roe H, Graham JR, Strobel DF, Bernath, P (2002) Detection of the forbidden SO a1Δ ➔X3Σ- rovibronic transition on Io at 1.7 μm. Icarus 156:296

    Google Scholar 

  • Elliot JL, Person MJ, McDonald SW et al (2000) The prediction and observation of the 1997 July 18 stellar occultation by Triton: more evidence for distortion and increasing pressure in triton’s atmosphere. Icarus 148:347

    Article  ADS  Google Scholar 

  • Feaga LM, McGrath M, Feldman PD (2009) Io’s dayside SO2 atmosphere. Icarus 201:570

    Article  ADS  Google Scholar 

  • Forget F, Bertrand T, Vangvichith M et al (2017) A post-new horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus 287:54

    Article  ADS  Google Scholar 

  • Gao P, Fan S, Wong ML et al (2017) Constraints on the microphysics of Pluto’s photochemical haze from New Horizons observations. Icarus 287:116

    Article  ADS  Google Scholar 

  • Gladstone GR, Stern SA, Ennico K et al (2016) The atmosphere of Pluto as observed by New Horizons. Science 351:8866

    Article  ADS  Google Scholar 

  • Grundy WM, Cruikshank DP, Gladstone GR et al (2016) The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature 539:65

    Article  ADS  Google Scholar 

  • Gurrola EM (1995) Interpretation of radar data from the icy Galilean satellites and Triton. Ph.D. thesis. Stanford University

    Google Scholar 

  • Hansen CJ, Shemansky DE, Esposito LW et al (2011) The composition and structure of the Enceladus plume. Geo Res Lett 38. CiteID L11202

    Google Scholar 

  • Hartkorn O, Saur J, Strobel DF (2017) Structure and density of Callisto’s atmosphere from a fluid-kinetic model of its ionosphere: comparison with Hubble Space Telescope and Galileo observations. Icarus 282:237

    Article  ADS  Google Scholar 

  • Hinson DP, Linscott IR, Young LA et al (2017) Radio occultation measurements of Pluto’s neutral atmosphere with New Horizons. Icarus 290:96

    Article  ADS  Google Scholar 

  • Herbert F, Sandel BR (1991) CH4 and haze in Triton’s lower atmosphere. JGR 96:19241–19252

    Article  ADS  Google Scholar 

  • Horanyi M, Poppe A, Sternovsky Z (2015) Dust ablation in Pluto’s atmosphere. AGU Abstract, fall meeting, San Francisco

    Google Scholar 

  • Ingersoll AP (1990) Dynamics of Triton’s atmosphere. Nature 344:315

    Article  ADS  Google Scholar 

  • Jessup KL, Spencer JR, Ballester GE et al (2004) The atmospheric signature of Io’s prometheus plume and anti-jovian hemisphere: evidence for a sublimation atmosphere. Icarus 169:197

    Article  ADS  Google Scholar 

  • Jessup KL, Spencer JR (2015) Spatially resolved HST/STIS observations of Io’s dayside equatorial atmosphere. Icarus 248:165

    Article  ADS  Google Scholar 

  • Krasnopolsky VA, Cruikshank DP (1995) Photochemistry of Triton’s atmosphere and ionosphere. J Geophys Res 100:21271–21286

    Article  ADS  Google Scholar 

  • Leblanc F, Oza AV, Leclercq L et al (2017) On the orbital variability of Ganymede’s atmosphere. Icarus 293:185

    Article  ADS  Google Scholar 

  • Lellouch E, Belton M, de Pater I et al (1992) The structure, stability, and global distribution of Io’s atmosphere. Icarus 98:271

    Article  ADS  Google Scholar 

  • Lellouch E (1996) Urey prize lecture. Io’s atmosphere: not yet understood. Icarus 124:1

    Article  ADS  Google Scholar 

  • Lellouch E, Strobel DF, Belton MJS et al (1996) Detection of sulfur monoxide in Io’s atmosphere. ApJ 459:107

    Article  ADS  Google Scholar 

  • Lellouch E, Paubert G, Moses JI, Schneider NM, Strobel DF (2003) Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421:45–47

    Article  ADS  Google Scholar 

  • Lellouch E, Sicardy B, Bergh d et al (2009) Pluto’s lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations. A&A 495:L17

    Article  ADS  Google Scholar 

  • Lellouch E, de Bergh C, Sicardy B et al (2010) Detection of CO in Triton’s atmosphere and the nature of surface-atmosphere interactions. A&A 512:L8

    Article  ADS  Google Scholar 

  • Lellouch E, Ali-Dib M, Jessup KL et al (2015a) Detection and characterization of Io’s atmosphere from high-resolution 4-μm spectroscopy. Icarus 253:99

    Article  ADS  Google Scholar 

  • Lellouch E, de Bergh C, Sicardy B et al (2015b) Exploring the spatial, temporal, and vertical distribution of methane in Pluto’s atmosphere. Icarus 246:268

    Article  ADS  Google Scholar 

  • Lellouch E, Gurwell M, Butler B et al (2017) Detection of CO and HCN in Pluto’s atmosphere with ALMA. Icarus 286:289

    Article  ADS  Google Scholar 

  • McDoniel WJ, Goldstein DB, Varghese P, Trafton LM (2017) The interaction of Io’s plumes and sublimation atmosphere. Icarus 294:81

    Article  ADS  Google Scholar 

  • McGrath MA, Lellouch E, Strobel DF, Feldman P, Johnson RE (2004) Satellite atmospheres. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter. The planet, satellites and magnetospheres. Cambridge planetary science, vol 1. Cambridge University Press, Cambridge, UK, pp 457–484. ISBN:0-521-81808-7

    Google Scholar 

  • Moses JI, Zolotov MYu, Fegley B (2002) Alkali and chlorine photochemistry in a volcanically driven atmosphere on Io. Icarus 156:137–105

    Google Scholar 

  • Moullet A, Gurwell MA, Lellouch E, Moreno R (2010) Simultaneous mapping of SO2, SO, NaCl in Io’s atmosphere with the submillimeter array. Icarus 208:353–365

    Google Scholar 

  • Moullet A, Lellouch E, Moreno R, Gurwell MA, Moore C (2008) First disk-resolved millimeter observations of Io’s surface and SO2 atmosphere. A&A 482:279

    Article  ADS  Google Scholar 

  • Moullet A, Lellouch E, Moreno R et al (2013) Exploring Io’s atmospheric composition with APEX: first measurement of 34SO2 and tentative Detection of KCl. ApJ 776:32

    Article  ADS  Google Scholar 

  • Moullet A, Lellouch E, Gurwell M et al (2015) Distribution of alkali gases in Io’s atmosphere. American Astronomical Society, DPS meeting #47, id.311.31

    Google Scholar 

  • Olkin CB, Elliot JL, Hammel HB et al (1997) The thermal structure of Triton’s atmosphere: results from the 1993 and 1995 occultations. Icarus 129:178

    Article  ADS  Google Scholar 

  • Olkin CB, Young LA, Borncamp D et al (2015) Evidence that Pluto’s atmosphere does not collapse from occultations including the 2013 May 04 event. Icarus 246:220–225

    Google Scholar 

  • Pearl J, Hanel R, Kunde V et al (1979) Identification of gaseous SO2 and new upper limits for other gases on Io. Nature 280:755

    Article  ADS  Google Scholar 

  • Rages K, Pollack JB (1992) Voyager imaging of Triton’s clouds and hazes. Icarus 99:289–301

    Article  ADS  Google Scholar 

  • Roth L, Saur J, Retherford KD et al (2014) Transient water vapor at Europa’s South Pole. Science 343:171

    Article  ADS  Google Scholar 

  • Sicardy B, Talbot J, Meza E et al (2016) Pluto’s atmosphere from the 2015 June 29 ground-based stellar occultation at the time of the new horizons flyby. Astrophys J Lett 819:L38

    Article  ADS  Google Scholar 

  • Saur J, Neubauer FM, Strobel DF, Summers ME (2002) Interpretation of Galileo’s Io plasma and field observations: I0, I24, and I27 flybys and close polar passes. J Geophys Res 107(A12):SMP 5-1

    Article  Google Scholar 

  • Spencer JR, Jessup KL, McGrath MA, Ballester GE, Yelle R (2000) Discovery of Gaseous S2 in Io’s Pele Plume. Science 288:1208

    Article  ADS  Google Scholar 

  • Spencer JR, Lellouch E, Richter MJ et al (2005) Mid-infrared detection of large longitudinal asymmetries in Io’s SO2 atmosphere. Icarus 176:283

    Article  ADS  Google Scholar 

  • Spencer JR, Stansberry JA, Trafton LM et al (1997) Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto. In: Stern SA, Tholen DJ (eds) Pluto and Charon. University of Arizona Press, Tucson, p 435

    Google Scholar 

  • Stansberry JA, Spencer JR, Schmitt B et al (1996) A model for the overabundance of methane in the atmospheres of Pluto and Triton. Planet Space Sci 44:1051–1063

    Article  ADS  Google Scholar 

  • Stern SA, Kammer JA, Barth EL et al (2017) Evidence for possible clouds in Pluto’s present-day atmosphere. Astronom J 154:43

    Article  ADS  Google Scholar 

  • Strobel DF, Zhu X, Summers ME (1994) On the vertical structure of Io’s atmosphere. Icarus 111:18

    Article  ADS  Google Scholar 

  • Strobel DF, Summers ME (1995) Triton’s upper atmosphere and ionosphere. In: Cruikshank DP (ed) Neptune and Triton. The University of Arizona Press, Tucson Arizona, pp 1107–1150

    Google Scholar 

  • Strobel DF, Zhu X, Summers ME, Stevens MH (1996) On the vertical thermal structure of Pluto’s atmosphere. Icarus 120:266

    Article  ADS  Google Scholar 

  • Strobel DF, Zhu X (2017) Comparative planetary nitrogen atmospheres: density and thermal structures of Pluto and Triton. Icarus 291:55

    Article  ADS  Google Scholar 

  • Summers ME, Strobel DF (1996) Photochemistry and vertical transport in Io’s atmosphere and ionosphere. Icarus 120:290

    Article  ADS  Google Scholar 

  • Teolis BD, Waite JH (2016) Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS. Icarus 222:277

    Article  ADS  Google Scholar 

  • Toigo AD, Gierasch PJ, Sicardy B, Lellouch E (2010) Thermal tides on Pluto. Icarus 208:402

    Article  ADS  Google Scholar 

  • Toigo AD, French RG, Gierasch PJ et al (2015) General circulation models of the dynamics of Pluto’s volatile transport on the eve of the New Horizons encounter. Icarus 254:306

    Article  ADS  Google Scholar 

  • Trafton LM, Hunten DM, Zahnle KJ, McNutt RL Jr (1997) Escape processes at Pluto and Charon. In: Stern SA, Tholen DJ (eds) Pluto and Charon. University of Arizona Press, Tucson, pp 475–522

    Google Scholar 

  • Trafton LM (2015) On the state of methane and nitrogen ice on Pluto and Triton: implications of the binary phase diagram. Icarus 246:197

    Article  ADS  Google Scholar 

  • Tsang CCC, Spencer JR, Lellouch E et al (2012) Io’s atmosphere: constraints on sublimation support from density variations on seasonal timescales using NASA IRTF/TEXES observations from 2001 to 2010. Icarus 212:277

    Article  ADS  Google Scholar 

  • Tsang CCC, Spencer JR, Lellouch E et al (2013) Io’s contracting atmosphere post 2011 perihelion: further evidence for partial sublimation support on the anti-Jupiter hemisphere. Icarus 226:1177

    Article  ADS  Google Scholar 

  • Tsang CCC, Spencer JR, Jessup KL (2015) Non-detection of post-eclipse changes in Io’s Jupiter-facing atmosphere: evidence for volcanic support? Icarus 248:243

    Article  ADS  Google Scholar 

  • Tsang CCC, Spencer JR, Lellouch E, Lopez-Valverde MA, Richter MJ (2016) The collapse of Io’s primary atmosphere in Jupiter eclipse. J Geophys Res Planet 121:1400–1410

    Article  ADS  Google Scholar 

  • Walker AC, Gratiy SL, Goldstein DB et al (2010) A comprehensive numerical simulation of Io’s sublimation-driven atmosphere. Icarus 207:409

    Article  ADS  Google Scholar 

  • Wong MC, Smyth WH (2000) Model calculations for Io’s atmosphere at eastern and western elongations. Icarus 146:60–74

    Article  ADS  Google Scholar 

  • Wong ML, Fan S, Gao P et al (2017) The photochemistry of Pluto’s atmosphere illuminated by New Horizons. Icarus 287:110

    Article  ADS  Google Scholar 

  • Yelle R, Lunine JI (1989) Evidence for a molecule heavier than methane in the atmosphere of Pluto. Nature 339:288

    Article  ADS  Google Scholar 

  • Young LA (2012) Volatile transport on inhomogeneous surfaces: I – analytic expressions, with application to Pluto’s day. Icarus 221:80

    Article  ADS  Google Scholar 

  • Young LA (2013) Pluto’s seasons: new predictions for new horizons. ApJ 766: id. L22, 6 pp

    Google Scholar 

  • Young LA, Kammer JA, Steffl AJ, et al. (2018) Structure and composition of Pluto’s atmosphere from the new horizons solar ultraviolet occultation. Icarus 300:174–199

    Google Scholar 

  • Zhang J, Goldstein DB, Varghese PL et al (2003) Simulation of gas dynamics and radiation in volcanic plumes of Io. Icarus 163:182

    Article  ADS  Google Scholar 

  • Zolotov MY, Fegley B (1998) Volcanic production of sulfur monoxide (SO) on Io. Icarus 132:431

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Lellouch .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Lellouch, E. (2018). Tenuous Atmospheres in the Solar System. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics