Skip to main content

Chemistry During the Gas-Rich Stage of Planet Formation

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

In this chapter we outline some of the basic understanding of the chemistry that accompanies planet formation. We discuss the basic physical environment which dictates the dominant chemical kinetic pathways for molecule formation. We focus on three zones from both observational and theoretical perspectives: (1) the planet-forming midplane and ice/vapor transition zones (snow lines); (2) the warm disk surface that is shielded from radiation, which can be readily accessed by todays observational facilities; and (3) the surface photodissociation layers where stellar radiation dominates. We end with a discussion of how chemistry influences planet formation along with how to probe the link between formation and ultimate atmospheric composition for gas giants and terrestrial worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ádámkovics M, Glassgold AE, Najita JR (2014) Shielding by water and OH in FUV and X-Ray irradiated protoplanetary disks. ApJ 786:135

    Article  ADS  Google Scholar 

  • Aikawa Y, van Zadelhoff GJ, van Dishoeck EF, Herbst E (2002) Warm molecular layers in protoplanetary disks. A&A 386:622–632

    Article  ADS  Google Scholar 

  • Aikawa Y, Furuya K, Nomura H, Qi C (2015) Analytical formulae of molecular ion abundances and the N2H+ ring in protoplanetary disks. ApJ 807:120

    Article  ADS  Google Scholar 

  • Alonso-Martínez M, Riviere-Marichalar P, Meeus G et al. (2017) Herschel GASPS spectral observations of T Tauri stars in Taurus. Unraveling far-infrared line emission from jets and discs. A&A 603:A138

    Google Scholar 

  • Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(27):1261952

    Article  Google Scholar 

  • Anderson DE, Bergin EA, Maret S, Wakelam V (2013) New constraints on the sulfur reservoir in the dense interstellar medium provided by Spitzer observations of S I in shocked gas. ApJ 779:141

    Article  ADS  Google Scholar 

  • Andrews SM, Wilner DJ, Espaillat C et al (2011) Resolved images of large cavities in protoplanetary transition disks. ApJ 732:42

    Article  ADS  Google Scholar 

  • Ardia P, Hirschmann MM, Withers AC, Stanley BD (2013) Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere-magma ocean-core partitioning of volatiles. Geochim Cosmochim Acta 114:52–71

    Google Scholar 

  • Bai XN, Ye J, Goodman J, Yuan F (2016) Magneto-thermal disk winds from protoplanetary disks. ApJ 818:152

    Article  ADS  Google Scholar 

  • Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II – nonlinear evolution. ApJ 376:214–233

    Article  ADS  Google Scholar 

  • Bergin EA Williams JP (2017) The determination of protoplanetary disk masses. Formation, Evolution, and Dynamics of Young Solar Systems, Cham, p 445

    Google Scholar 

  • Bergin EA, Alves J, Huard T Lada CJ (2002) N2H+ and C18O Depletion in a cold dark cloud. ApJ 570:L101–L104

    Google Scholar 

  • Bergin E, Calvet N, Sitko ML et al (2004) A new probe of the planet-forming region in T Tauri disks. ApJ 614:L133–L136

    Article  ADS  Google Scholar 

  • Bergin EA, Aikawa Y, Blake GA van Dishoeck EF (2007) The chemical evolution of protoplanetary disks. In: Protostars and planets V. University of Arizona Press, Tucson, p 751

    Google Scholar 

  • Bergin EA, Cleeves LI, Crockett N Blake GA (2014) Exploring the origins of carbon in terrestrial worlds[dagger]. Faraday discuss 168:61–79. https://doi.org/10.1039/C4FD00003J

  • Bergin EA, Blake GA, Ciesla F, Hirschmann MM Li J (2015) Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proc Natl Acad Sci 112: 8965–8970

    Article  ADS  Google Scholar 

  • Bergin EA, Du F, Cleeves LI et al. (2016) Hydrocarbon emission rings in protoplanetary disks induced by dust evolution. ApJ 831:101

    Article  ADS  Google Scholar 

  • Bethell T, Bergin E (2009) Formation and survival of water vapor in the terrestrial planet-forming region. Science 326:1675–1677

    Article  ADS  Google Scholar 

  • Bethell TJ, Bergin EA (2011a) Photoelectric cross-sections of gas and dust in protoplanetary disks. ApJ 740:7

    Article  ADS  Google Scholar 

  • Bethell TJ, Bergin EA (2011b) The propagation of Lyα in evolving protoplanetary disks. ApJ 739:78

    Article  ADS  Google Scholar 

  • Béthune W, Lesur G, Ferreira J (2017) Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case. A&A 600:A75

    Article  ADS  Google Scholar 

  • Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199:883–903

    Article  ADS  MATH  Google Scholar 

  • Blevins SM, Pontoppidan KM, Banzatti A et al (2016, In press) Measurements of water surface snow lines in classical protoplanetary disks. ApJ 818:22

    Article  ADS  Google Scholar 

  • Calvet N, Patino A, Magris GC, D’Alessio P (1991) Irradiation of accretion disks around young objects. I – near-infrared CO bands. ApJ 380:617–630

    Article  ADS  Google Scholar 

  • Cazaux S, Tielens AGGM (2002) Molecular hydrogen formation in the interstellar medium. ApJ 575:L29–L32

    Article  ADS  Google Scholar 

  • Cazaux S, Tielens AGGM (2004) H2 formation on grain surfaces. ApJ 604:222–237

    Article  ADS  Google Scholar 

  • Cazaux S, Caselli P, Tielens AGGM, LeBourlot J, Walmsley M (2005) Molecular hydrogen formation on grain surfaces. In: Saija R, Cecchi-Pestellini C (eds) Journal of physics conference series, vol 6, pp 155–160. https://doi.org/10.1088/1742-6596/6/1/016

    ADS  Google Scholar 

  • Charnley SB, (1997) Chemical models of interstellar gas-grain processes. III – molecular depletion in NGC 2024. MNRAS 291:455

    Article  ADS  Google Scholar 

  • Charnley SB, Rodgers SD (2002) The end of interstellar chemistry as the origin of nitrogen in comets and meteorites. ApJ 569:L133–L137

    Article  ADS  Google Scholar 

  • Chiang EI, Goldreich P (1997) Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ 490:368

    Article  ADS  Google Scholar 

  • Clayton RN (1993) Oxygen isotopes in meteorites. Ann Rev Earth Planetary Sci 21:115–149

    Article  ADS  Google Scholar 

  • Clayton RN (2002) Solar system: self-shielding in the solar nebula. Nature 415:860–861

    Article  ADS  Google Scholar 

  • Clayton RN, Grossman L, Mayeda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488

    Article  ADS  Google Scholar 

  • Cleeves LI (2016) Multiple carbon monoxide snow lines in disks sculpted by radial drift. ApJ 816:L21

    Article  ADS  Google Scholar 

  • Cleeves LI, Adams FC, Bergin EA (2013) Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. ApJ 772:5

    Article  ADS  Google Scholar 

  • Cleeves LI, Bergin EA, Alexander CMO et al (2014) The ancient heritage of water ice in the solar system. Science 345:1590–1593

    Article  ADS  Google Scholar 

  • Cleeves LI, Bergin EA, Qi C, Adams FC Öberg KI (2015) Constraining the X-ray and cosmic-ray ionization chemistry of the TW Hya protoplanetary disk: evidence for a sub-interstellar cosmic-ray rate. ApJ 799:204

    Article  ADS  Google Scholar 

  • Cridland AJ, Pudritz RE, Birnstiel T (2016) Radial drift of dust in protoplanetary disks: the evolution of ice lines and dead zones. MNRAS 469(4):3910–3927

    Article  ADS  Google Scholar 

  • D’Alessio P, Calvet N, Hartmann L, Lizano S, Cantó J (1999) Accretion disks around young objects. II. Tests of well-mixed models with ISM dust. ApJ 527:893–909

    Article  ADS  Google Scholar 

  • D’Alessio P, Calvet N, Hartmann L (2001) Accretion disks around young objects. III. Grain growth. ApJ 553:321–334

    Article  ADS  Google Scholar 

  • D’Alessio P, Calvet N, Woolum DS (2005) Thermal structure of protoplanetary disks. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk. Astronomical society of the pacific conference series, vol 341, pp 353–+

    Google Scholar 

  • D’Alessio P, Calvet N, Hartmann L, Franco-Hernández R, Servín H (2006) Effects of dust growth and settling in T Tauri disks. ApJ 638:314–335

    Article  ADS  Google Scholar 

  • Dalgarno A (2006) Interstellar chemistry special feature: the galactic cosmic ray ionization rate. Proc Natl Acad Sci 103:12,269–12,273

    Article  ADS  Google Scholar 

  • Debes JH, Jang-Condell H, Weinberger AJ, Roberge A, Schneider G (2013) The 0.5–2.22 μm scattered light spectrum of the disk around TW Hya: detection of a partially filled disk gap at 80 AU. ApJ 771:45

    Article  ADS  Google Scholar 

  • Dominik C, Ceccarelli C, Hollenbach D, Kaufman M (2005) Gas-phase water in the surface layer of protoplanetary disks. ApJ 635:L85–L88

    Article  ADS  Google Scholar 

  • Druard C, Wakelam V (2012) Polysulphanes on interstellar grains as a possible reservoir of interstellar sulphur. MNRAS 426:354–359

    Article  ADS  Google Scholar 

  • Du F, Bergin EA (2014) Water vapor distribution in protoplanetary disks. ApJ 792:2

    Article  ADS  Google Scholar 

  • Du F, Bergin EA, Hogerheijde MR (2015) Volatile depletion in the TW Hydrae disk atmosphere. ApJ 807:L32

    Article  ADS  Google Scholar 

  • Du F, Bergin EA, Hogerheijde M et al (2017) Survey of cold water lines in protoplanetary disks: indications of systematic volatile depletion. ApJ 842:98

    Article  ADS  Google Scholar 

  • Dullemond CP, Dominik C (2004) The effect of dust settling on the appearance of protoplanetary disks. A&A 421:1075–1086

    Article  ADS  Google Scholar 

  • Dutrey A, Semenov D, Chapillon E et al (2014) Physical and chemical structure of planet-forming disks probed by millimeter observations and modeling. Protostars and planets VI. University of Arizona Press, Tucson, pp 317–338

    Google Scholar 

  • Dutrey A, Guilloteau S, Piétu V et al (2017) The flying saucer: tomography of the thermal and density gas structure of an edge-on protoplanetary disk. ArXiv e-prints

    Google Scholar 

  • Facchini S, Birnstiel T, Bruderer S, van Dishoeck EF (2017) Different dust and gas radial extents in protoplanetary disks: consistent models of grain growth and CO emission. A&A 605:A16

    Article  ADS  Google Scholar 

  • Fayolle EC, Balfe J, Loomis R et al (2016) N2 and CO desorption energies from water ice. ApJ 816:L28

    Article  ADS  Google Scholar 

  • Flaherty KM, Hughes AM, Rosenfeld KA et al (2015) Weak turbulence in the HD 163296 protoplanetary disk revealed by ALMA CO observations. ApJ 813:99

    Article  ADS  Google Scholar 

  • Flasar FM, Achterberg RK, Conrath BJ et al (2005) Titan’s atmospheric temperatures, winds, and composition. Science 308:975–978

    Article  ADS  Google Scholar 

  • Flower DR, Pineau des Forêts G, Walmsley CM (2004) Multiply-deuterated species in prestellar cores. A&A 427:887–893

    Article  ADS  Google Scholar 

  • Fogel JKJ, Bethell TJ, Bergin EA, Calvet N, Semenov D (2011) Chemistry of a protoplanetary disk with grain settling and Lyα radiation. ApJ 726:29

    Article  ADS  Google Scholar 

  • France K, Schindhelm E, Herczeg GJ et al (2012) A hubble space telescope survey of H2 emission in the circumstellar environments of young stars. ApJ 756:171

    Article  ADS  Google Scholar 

  • France K, Herczeg GJ, McJunkin M, Penton SV (2014) CO/H2 abundance ratio ∼10−4 in a protoplanetary disk. ApJ 794:160

    Article  ADS  Google Scholar 

  • Fraser HJ, Collings MP, McCoustra MRS, Williams DA (2001) Thermal desorption of water ice in the interstellar medium. MNRAS 27:1165–1172

    Article  ADS  Google Scholar 

  • Furlan E et al (2005) Colors of classical T Tauri stars in taurus derived from spitzer infrared spectrograph spectra: indication of dust settling. ApJ 628:L65–L68

    Article  ADS  Google Scholar 

  • Furuya K, Aikawa Y (2014) Reprocessing of ices in turbulent protoplanetary disks: carbon and nitrogen chemistry. ApJ 790:97

    Article  ADS  Google Scholar 

  • Gautier D, Hersant F, Mousis O, Lunine JI (2001) Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. ApJ 550:L227–L230

    Google Scholar 

  • Geiss J, Gloeckler G (2003) Isotopic composition of H, HE and NE in the protosolar cloud. Space Sci Rev 106:3–18

    Google Scholar 

  • Gorti U, Hollenbach D (2004) Models of chemistry, thermal balance, and infrared spectra from intermediate-aged disks around G and K stars. ApJ 613:424–447

    Article  ADS  Google Scholar 

  • Grasset O, Castillo-Rogez J, Guillot T, Fletcher LN, Tosi F (2017) Water and volatiles in the outer solar system. Space Sci Rev 212(1–2):835–875

    Article  ADS  Google Scholar 

  • Güdel M (2004) X-ray astronomy of stellar coronae. A&A Rev 12:71–237

    Google Scholar 

  • Guillot T, Hueso R (2006) The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. MNRAS 367:L47–L51

    Article  ADS  Google Scholar 

  • Gullbring E, Calvet N, Muzerolle J, Hartmann L (2000) The structure and emission of the accretion shock in T Tauri stars. II. The ultraviolet-continuum emission. ApJ 544:927–932

    Article  ADS  Google Scholar 

  • Habing HJ (1968) The interstellar radiation density between 912 A and 2400 A. Bull Astron Inst Netherlands 19:421–+

    Google Scholar 

  • Hartmann L, Calvet N, Gullbring E, D’Alessio P (1998) Accretion and the evolution of T Tauri Disks. ApJ 495:385–400

    Article  ADS  Google Scholar 

  • Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass-period relation. ApJ 760:117

    Article  ADS  Google Scholar 

  • Hayashi C (1981) Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog Theor Phys Suppl 70:35–53

    Article  ADS  Google Scholar 

  • Heays AN, Visser R, Gredel R et al (2014) Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays. A&A 562:A61

    Google Scholar 

  • Helled R, Guillot T (2017) Internal structure of giant and icy planets: importance of heavy elements and mixing. ArXiv e-prints

    Google Scholar 

  • Helled R, Lunine J (2014) Measuring Jupiter’s water abundance by Juno: the link between interior and formation models. MNRAS 441:2273–2279

    Article  ADS  Google Scholar 

  • Herrero VJ, Gálvez Ó, Maté B, Escribano R (2010) Interaction of CH4 and H2O in ice mixtures. Phys Chem Chem Phys (Inc Faraday Trans) 12:3164

    Google Scholar 

  • Henke BL, Gullikson EM, Davis JC (1993) X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At Data Nucl Data Tables 54:181–342

    Article  ADS  Google Scholar 

  • Henning T, Semenov D (2013) Chemistry in protoplanetary disks. ArXiv e-prints

    Article  ADS  Google Scholar 

  • Herbst E, Klemperer W (1973) The formation and depletion of molecules in dense interstellar clouds. ApJ 185:505–534

    Article  ADS  Google Scholar 

  • Herczeg GJ, Linsky JL, Valenti JA, Johns-Krull CM, Wood BE (2002) The far-ultraviolet spectrum of TW Hydrae. I. Observations of H2 fluorescence. ApJ 572:310–325

    Article  ADS  Google Scholar 

  • Hogerheijde MR, Bergin EA, Brinch C et al (2011) Detection of the water reservoir in a forming planetary system. Science 334:338–340

    Article  ADS  Google Scholar 

  • Hollenbach D, Kaufman MJ, Bergin EA, Melnick GJ (2009) Water, O2, and ice in molecular clouds. ApJ 690:1497–1521

    Article  ADS  Google Scholar 

  • Hollenbach DJ, Tielens AGGM (1999) Photodissociation regions in the interstellar medium of galaxies. Rev Modern Phys 71:173–230

    Article  ADS  Google Scholar 

  • Howard CD, Sandell G, Vacca WD et al (2013) Herschel/PACS survey of protoplanetary disks in Taurus/Auriga observations of [O I] and [C II], and far-infrared continuum. ApJ 776:21

    Article  ADS  Google Scholar 

  • Hughes AM, Wilner DJ, Andrews SM, Qi C, Hogerheijde MR (2011) Empirical constraints on turbulence in protoplanetary accretion disks. ApJ 727:85

    Article  ADS  Google Scholar 

  • Igea J, Glassgold AE (1999) X-Ray ionization of the disks of young stellar objects. ApJ 518: 848–858

    Article  ADS  Google Scholar 

  • Ilgner M, Nelson RP (2006) On the ionisation fraction in protoplanetary disks. II. The effect of turbulent mixing on gas-phase chemistry. A&A 445:223–232

    Article  ADS  Google Scholar 

  • Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36:389–397

    Article  ADS  Google Scholar 

  • Isella A, Carpenter JM, Sargent AI (2009) Structure and evolution of pre-main-sequence circumstellar disks. ApJ 701:260–282

    Article  ADS  Google Scholar 

  • Kama M, Bruderer S, van Dishoeck EF et al (2016, In press) Volatile carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546. A&A 592:16 p

    Article  ADS  Google Scholar 

  • Kamp I, Dullemond CP (2004) The gas temperature in the surface layers of protoplanetary disks. ApJ 615:991–999

    Article  ADS  Google Scholar 

  • Kamp I, Thi WF, Meeus G et al (2013) Uncertainties in water chemistry in disks: An application to TW Hydrae. A&A 559:A24

    Article  Google Scholar 

  • Kastner JH, Qi C, Gorti U et al (2015) A ring of C2H in the molecular disk orbiting TW Hya. ApJ 806:75

    Article  ADS  Google Scholar 

  • Kaufman MJ, Neufeld DA (1996) Water maser emission from magnetohydrodynamic shock waves. ApJ 456:250–+

    Article  ADS  Google Scholar 

  • Kenyon SJ, Hartmann L (1995) Pre-main-sequence evolution in the Taurus-Auriga molecular cloud. ApJS 101:117–+

    Article  ADS  Google Scholar 

  • Konigl A, Pudritz RE (2000) Disk winds and the accretion-outflow connection. Protostars and planets IV. University of Arizona Press, Tucson, p 759

    Google Scholar 

  • Krijt S, Ciesla FJ, Bergin EA (2016, In press) Tracing water vapor and ice during dust growth. ApJ 833(2):14 p

    Article  ADS  Google Scholar 

  • Langer WD, Graedel TE (1989) Ion-molecule chemistry of dense interstellar clouds – nitrogen-, oxygen-, and carbon-bearing molecule abundances and isotopic ratios. ApJS 69:241–269

    Article  ADS  Google Scholar 

  • Lavie B, Mendonça JM, Mordasini C et al (2017) HELIOS-Retrieval: an open-source, nested sampling atmospheric retrieval code; Application to the HR 8799 exoplanets and inferred constraints for planet formation. AJ 154:91

    Article  ADS  Google Scholar 

  • Lécluse C, Robert F (1994) Hydrogen isotope exchange reaction rates: origin of water in the inner solar system. Geochim Cosmochim Acta 58:2927–2939

    Article  ADS  Google Scholar 

  • Lee JE, Bergin EA, Lyons JR (2008) Oxygen isotope anomalies of the Sun and the original environment of the solar system. Meteoritics Planet Sci 43:1351–1362

    Article  ADS  Google Scholar 

  • Loomis RA, Cleeves LI, Öberg KI, Guzman VV, Andrews SM (2015) The distribution and chemistry of H2CO in the DM Tau protoplanetary disk. ApJ 809:L25

    Article  ADS  Google Scholar 

  • Lopez ED, Fortney JJ (2014) Understanding the mass-radius relation for sub-neptunes: radius as a proxy for composition. ApJ 792:1

    Article  ADS  Google Scholar 

  • Lyons JR, Young ED (2005) CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435:317–320

    Article  ADS  Google Scholar 

  • MacDonald RJ, Madhusudhan N (2017) HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water. MNRAS 469:1979–1996

    Article  ADS  Google Scholar 

  • Maret S, Bergin EA (2007) The ionization fraction of barnard 68: implications for star and planet formation. ApJ 664:956

    Article  ADS  Google Scholar 

  • Martín-Doménech R, Muñoz Caro GM, Bueno J, Goesmann F (2014) Thermal desorption of circumstellar and cometary ice analogs. A&A 564:A8

    Article  ADS  Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313:56–66

    Article  ADS  Google Scholar 

  • Marty B, Altwegg K, Balsiger H et al (2017) Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356:1069–1072

    Article  ADS  Google Scholar 

  • Millar TJ, Bennett A, Herbst E (1989) Deuterium fractionation in dense interstellar clouds. ApJ 340:906–920

    Article  ADS  Google Scholar 

  • Morrison R, McCammon D (1983) Interstellar photoelectric absorption cross sections, 0.03–10 keV. ApJ 270:119–122

    Article  ADS  Google Scholar 

  • Moses JI (2014) Chemical kinetics on extrasolar planets. Philos Trans R Soc Lond Ser A 372:20130,073–20130,073

    Article  ADS  Google Scholar 

  • Mottl M, Glazer B, Kaiser R, Meech K (2007) Water and astrobiology. Chemie der Erde/Geochemistry 67:253–282

    Article  ADS  Google Scholar 

  • Musiolik G, Teiser J, Jankowski T, Wurm G (2016a) Collisions of CO2 ice grains in planet formation. ApJ 818:16

    Article  ADS  Google Scholar 

  • Musiolik G, Teiser J, Jankowski T, Wurm G (2016b) Ice grain collisions in comparison: CO2, H2O, and their mixtures. ApJ 827:63

    Article  ADS  Google Scholar 

  • Najita JR, Ádámkovics M, Glassgold AE (2011) Formation of organic molecules and water in warm disk atmospheres. ApJ 743:147

    Article  ADS  Google Scholar 

  • Nomura H, Millar TJ (2005) Molecular Hydrogen emission from protoplanetary disks. A&A 438:923–938

    Article  ADS  Google Scholar 

  • Öberg KI, Bergin EA (2016) Excess C/O and C/H in outer protoplanetary disk gas. ApJ 831:L19

    Article  ADS  Google Scholar 

  • Öberg KI, van Dishoeck EF, Linnartz H (2009) Photodesorption of ices I: CO, N2, and CO2. A&A 496:281–293

    Google Scholar 

  • Öberg KI, Murray-Clay R, Bergin EA (2011) The effects of snowlines on C/O in planetary atmospheres. ApJ 743:L16

    Article  ADS  Google Scholar 

  • Öberg KI, Furuya K, Loomis R et al (2015) Double DCO+ rings reveal CO ice desorption in the outer disk around IM Lup. ApJ 810:112

    Article  ADS  Google Scholar 

  • Padovani M, Galli D, Glassgold AE (2009) Cosmic-ray ionization of molecular clouds. A&A 501:619–631

    Article  ADS  Google Scholar 

  • Perez-Becker D, Chiang E (2011) Surface layer accretion in conventional and transitional disks driven by far-ultraviolet ionization. ApJ 735:8

    Article  ADS  Google Scholar 

  • Pinhas A, Madhusudhan N, Clarke C (2016) Efficiency of planetesimal ablation in giant planetary envelopes. MNRAS 463:4516–4532

    Article  ADS  Google Scholar 

  • Pinte C, Dent WRF, Ménard F et al (2016) Dust and gas in the disk of HL Tauri: surface density, dust settling, and dust-to-gas ratio. ApJ 816:25

    Article  ADS  Google Scholar 

  • Piso AMA, Pegues J, Öberg KI (2016) The role of ice compositions for snowlines and the C/N/O ratios in active disks. ApJ 833:203

    Article  ADS  Google Scholar 

  • Pontoppidan KM, Blake GA, Smette A (2011) The structure and dynamics of molecular gas in planet-forming zones: a CRIRES spectro-astrometric survey. ApJ 733:84

    Article  ADS  Google Scholar 

  • Preibisch T, Kim YC, Favata F et al (2005) The origin of T Tauri X-ray emission: new insights from the chandra orion ultradeep project. ApJS 160:401–422

    Article  ADS  Google Scholar 

  • Qi C, Oberg KI, Wilner DJ et al (2013) Imaging of the CO snow line in a solar nebula analog. Science 341:630–632

    Article  ADS  Google Scholar 

  • Qi C, Öberg KI, Andrews SM et al (2015) Chemical imaging of the CO snow line in the HD 163296 disk. ApJ 813:128

    Article  ADS  Google Scholar 

  • Reboussin L, Wakelam V, Guilloteau S, Hersant F, Dutrey A (2015) Chemistry in protoplanetary disks: the gas-phase CO/H2 ratio and the carbon reservoir. A&A 579:A82

    Article  ADS  Google Scholar 

  • Salmeron R, Königl A, Wardle M (2007) Angular momentum transport in protostellar discs. MNRAS 375:177–183

    Article  ADS  Google Scholar 

  • Salyk C, Pontoppidan KM, Blake GA et al (2008) H2O and OH gas in the terrestrial planet-forming zones of protoplanetary disks. ApJ 676:L49–L52

    Article  ADS  Google Scholar 

  • Salyk C, Pontoppidan KM, Blake GA, Najita JR, Carr JS (2011) A spitzer survey of mid-infrared molecular emission from protoplanetary disks. II. Correlations and local thermal equilibrium models. ApJ 731:130

    Article  ADS  Google Scholar 

  • Schindhelm E, France K, Herczeg GJ et al (2012) Lyα dominance of the classical T Tauri far-ultraviolet radiation field. ApJ 756:L23

    Article  ADS  Google Scholar 

  • Schwarz KR, Bergin EA, Cleeves LI et al (2016) The radial distribution of H2 and CO in TW Hya as revealed by resolved ALMA observations of CO isotopologues. ApJ 823:91

    Article  ADS  Google Scholar 

  • Shakura NI, Syunyaev RA (1973) Black holes in binary systems. Observational appearance. A&A 24:337–355

    Google Scholar 

  • Simon JB, Hughes AM, Flaherty KM, Bai XN, Armitage PJ (2015) Signatures of MRI-driven turbulence in protoplanetary disks: predictions for ALMA observations. ApJ 808:180

    Article  ADS  Google Scholar 

  • Simon JB, Bai XN, Flaherty KM, Hughes AM (2017) A new model for weak turbulence in protoplanetary disks. ArXiv e-prints

    Google Scholar 

  • Sofia UJ, Cardelli JA, Savage BD (1994) The abundant elements in interstellar dust. ApJ 430:650–666

    Article  ADS  Google Scholar 

  • Stammler SM, Birnstiel T, Panić O, Dullemond CP, Dominik C (2017) Redistribution of CO at the location of the CO ice line in evolving gas and dust disks. A&A 600:A140

    Article  ADS  Google Scholar 

  • Stevenson DJ, Lunine JI (1988) Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75:146–155

    Article  ADS  Google Scholar 

  • Suzuki TK, Inutsuka Si (2009) Disk winds driven by magnetorotational instability and dispersal of protoplanetary disks. ApJ 691:L49–L54

    Article  ADS  Google Scholar 

  • Teague R, Guilloteau S, Semenov D et al (2016) Measuring turbulence in TW Hydrae with ALMA: methods and limitations. A&A 592:A49

    Article  ADS  Google Scholar 

  • Tennyson J (2011) Astronomical spectroscopy: an introduction to the atomic and molecular physics of astronomical spectra (2nd edn). World Scientific, New Jersey. https://doi.org/10.1142/7574

  • Thi WF, Mathews G, Ménard F et al (2010) Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass. A&A 518:L125

    Article  ADS  Google Scholar 

  • Thiemens MH (2006) History and applications of mass-independent isotope effects. Ann Rev Earth Planet Sci 34:217–262

    Article  ADS  Google Scholar 

  • Tsukagoshi T, Momose M, Saito M et al (2015) First detection of [C I] 3P1-3P0 emission from a protoplanetary disk. ApJ 802:L7

    Article  ADS  Google Scholar 

  • Umebayashi T, Nakano T (1981) Fluxes of energetic particles and the ionization rate in very dense interstellar clouds. PASJ 33:617

    ADS  Google Scholar 

  • van Dishoeck EF, Herbst E, Neufeld DA (2013a) Interstellar water chemistry: from laboratory to observations. Chem Rev 113:9043–9085

    Article  Google Scholar 

  • van Dishoeck EF, Herbst E, Neufeld DA (2013b) Interstellar water chemistry: from laboratory to observations. Chem Rev 113:9043–9085

    Article  Google Scholar 

  • van Zadelhoff GJ, van Dishoeck EF, Thi WF, Blake GA (2001) Submillimeter lines from circumstellar disks around pre-main sequence stars. A&A 377:566–580

    Article  ADS  Google Scholar 

  • van’t Hoff MLR, Walsh C, Kama M, Facchini S, van Dishoeck EF (2017) Robustness of N2H+ as tracer of the CO snowline. A&A 599:A101

    Article  ADS  Google Scholar 

  • Visser R, van Dishoeck EF, Black JH (2009) The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. A&A 503:323–343

    Article  ADS  Google Scholar 

  • Wagner AF, Graff MM (1987) Oxygen chemistry of shocked interstellar clouds. I – Rate constants for thermal and nonthermal internal energy distributions. ApJ 317:423–431

    Google Scholar 

  • Wang H, Bell RC, Iedema MJ, Tsekouras AA, Cowin JP (2005) Sticky ice grains aid planet formation: unusual properties of cryogenic water ice. ApJ 620:1027–1032

    Article  ADS  Google Scholar 

  • Webber WR (1998) A new estimate of the local interstellar energy density and ionization rate of galactic cosmic cosmic rays. ApJ 506:329–334

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (1977) The distribution of mass in the planetary system and solar nebula. Ap&SS 51:153–158

    Article  ADS  Google Scholar 

  • Weidenschilling SJ, Cuzzi JN (1993) Formation of planetesimals in the solar nebula. In: Levy EH Lunine JI (eds) Protostars and planets III, pp 1031–1060

    Google Scholar 

  • Whipple FL (1973) Radial pressure in the solar nebula as affecting the motions of planetesimals. NASA Spec Publ 319:355

    ADS  Google Scholar 

  • Woitke P, Kamp I, Thi WF (2009) Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim. A&A 501:383–406

    Google Scholar 

  • Wong MH, Lunine JI, Atreya S et al (2008) Conference two. In: McPherson G et al (eds) Reviews in mineralogy and geochemistry: oxygen in the earliest solar system, vol 68. Mineralogical Society of America, Chantilly, p 219

    Google Scholar 

  • Yang H, Herczeg GJ, Linsky JL et al (2012) A far-ultraviolet atlas of low-resolution hubble space telescope spectra of T Tauri stars. ApJ 744:121

    Article  ADS  Google Scholar 

  • Yoshino K, Esmond JR, Parkinson WH, Ito K Matsui T (1996) Absorption cross section measurements of water vapor in the wavelength region 120 nm to 188 nm. Chem Phys 211: 387–+

    Article  ADS  Google Scholar 

  • Zhang K, Pontoppidan KM, Salyk C, Blake GA (2013) Evidence for a snow line beyond the transitional radius in the TW Hya protoplanetary disk. ApJ 766:82

    Article  ADS  Google Scholar 

  • Zhang K, Bergin EA, Blake GA, Cleeves L, Schwarz K (2017, Submitted) Unvieling the mass inventory of the giant-planet formation zone in a solar nebula analog. Nat Astron 1:0130

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin A. Bergin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bergin, E.A., Cleeves, L.I. (2018). Chemistry During the Gas-Rich Stage of Planet Formation. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_137-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_137-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics