Skip to main content

Solid-State 17O NMR Spectroscopy of Organic and Biological Molecules

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

This chapter describes the latest advances in the field of solid-state 17O NMR spectroscopy of organic and biological molecules. Selected examples in the following areas are highlighted: (1) new oxygen-containing functional groups, (2) low-barrier hydrogen bonds, (3) acyl-enzyme intermediates, (4) probing molecular motion in organic solids, and (5) paramagnetic coordination compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu J, Ye E, Terskikh V, Wu G. Solid-state 17O NMR spectroscopy of large protein-ligand complexes. Angew Chem Int Ed. 2010;49:8399–402.

    Article  Google Scholar 

  2. Wu G. Recent developments in solid state NMR of quadrupolar nuclei and applications to biological systems. Biochem Cell Biol. 1998;76:429–42.

    Article  Google Scholar 

  3. Lemaitre V, Smith ME, Watts A. A review of oxygen-17 solid-state NMR of organic materials-towards biological applications. Solid State Nucl Magn Reson. 2004;26:215–35.

    Article  Google Scholar 

  4. Wu G. Solid-state 17O NMR studies of organic and biological molecules. Prog Nucl Magn Reson Spectrosc. 2008;52:118–69.

    Article  Google Scholar 

  5. Yamada K. Recent applications of solid-state 17O NMR. Annu Rep NMR Spectrosc. 2010;70:115–58.

    Article  Google Scholar 

  6. Wong A, Poli F. Solid-state 17O NMR studies of biomolecules. Annu Rep NMR Spectrosc. 2014;83:145–220.

    Article  Google Scholar 

  7. Wu G. Solid-state 17O NMR studies of organic and biological molecules: recent advances and future directions. Solid State Nucl Magn Reson. 2016;73:1–14.

    Article  Google Scholar 

  8. Theodorou V, Skobridis K, Alivertis D, Gerothanassis IP. Synthetic methodologies in organic chemistry involving incorporation of [17O] and [18O] isotopes. J Label Compd Radiopharm. 2014;57:481–508.

    Article  Google Scholar 

  9. Kong K, Tang A, Wang R, Ye E, Terskikh V, Wu G. Are the amide bonds in N-acyl imidazoles twisted? A combined solid-state 17O NMR, crystallographic, and computational study. Can J Chem. 2015;93:451–8.

    Article  Google Scholar 

  10. Lu J, Kong X, Terskikh V, Wu G. Solid-state 17O NMR of oxygen-nitrogen singly bonded compounds: hydroxylammonium chloride and sodium trioxodinitrite (Angeli’s salt). J Chem Phys A. 2015;119:8133–8.

    Article  Google Scholar 

  11. Gao Y, Toubaei A, Kong X, Wu G. Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution. Angew Chem Int Ed. 2014;53:11547–51.

    Article  Google Scholar 

  12. Wu G, Zhu JF, Mo X, Wang RY, Terskikh V. Solid-state 17O NMR and computational studies of C-nitrosoarene compounds. J Am Chem Soc. 2010;132:5143–55.

    Article  Google Scholar 

  13. Harris RK. Applications of solid-state NMR to pharmaceutical polymorphism and related matters. J Pharm Pharmacol. 2007;59:225–39.

    Article  Google Scholar 

  14. Kong X, Shan M, Terskikh V, Hung I, Gan Z, Wu G. Solid-state 17O NMR of pharmaceutical compounds: Salicylic acid and aspirin. J Phys Chem B. 2013;117:9643–54.

    Article  Google Scholar 

  15. Vogt FG, Yin H, Forcino RG, Wu L. 17O solid-state NMR as a sensitive probe of hydrogen bonding in crystalline and amorphous solid forms of diflunisal. Mol Pharm. 2013;10:3433–46.

    Article  Google Scholar 

  16. Kong X, Terskikh V, Toubaei A, Wu G. A solid-state 17O NMR study of platinum-carboxylate complexes: carboplatin and oxaliplatin. Can J Chem. 2015;93:945–53.

    Article  Google Scholar 

  17. Lucier BEG, Reidel AR, Schurko RW. Multinuclear solid-state NMR of square-planar platinum complexes-cisplatin and related systems. Can J Chem. 2011;89:919–37.

    Article  Google Scholar 

  18. Michaelis VK, Keeler EG, Ong TC, Craigen KN, Penzel S, Wren JEC, Kroeker S, Griffin RG. Structural insights into bound water in crystalline amino acids: experimental and theoretical 17O NMR. J Phys Chem B. 2015;119:8024–36.

    Article  Google Scholar 

  19. Zhang QW, Zhang HM, Usha MG, Wittebort RJ. 17O NMR and crystalline hydrates. Solid State Nucl Magn Reson. 1996;7:147–54.

    Article  Google Scholar 

  20. Wu G, Rovnyak D, Huang PC, Griffin RG. High-resolution oxygen-17 NMR spectroscopy of solids by multiple-quantum magic-angle spinning. Chem Phys Lett. 1997;277:79–83.

    Article  Google Scholar 

  21. Keeler EG, Michaelis VK, Griffin RG. 17O NMR investigation of water structure and dynamics. J Phys Chem B. 2016;120:7851–8.

    Article  Google Scholar 

  22. Nour S, Widdifield CM, Kobera L, Burgess KMN, Errulat D, Terskikh VV, Bryce DL. Oxygen-17 NMR spectroscopy of water molecules in solid hydrates. Solid State Nucl Magn Reson. 2016;94:189–97.

    Google Scholar 

  23. Kong X, Brinkman A, Terskikh V, Wasylishen RE, Bernard GM, Duan Z, Wu Q, Wu G. Proton probability distribution in the O···H···O low-barrier hydrogen bond: a combined solid-state NMR and quantum chemical computational study of dibenzoylmethane and curcumin. J Phys Chem B. 2016;120:11692–704.

    Article  Google Scholar 

  24. Thomas LH, Florence AJ, Wilson CC. Hydrogen atom behaviour imaged in a short intramolecular hydrogen bond using the combined approach of X-ray and neutron diffraction. New J Chem. 2009;33:2486–90.

    Article  Google Scholar 

  25. Parimita SP, Ramshankar YV, Suresh S, Row TNG. Redetermination of curcumin: (1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one. Acta Crystallogr E. 2007;63:o860–2.

    Article  Google Scholar 

  26. Tang AW, Kong X, Terskikh V, Wu G. Solid-state 17O NMR of unstable acyl-enzyme intermediates: a direct probe of hydrogen bonding interactions in the oxyanion hole of serine proteases. J Phys Chem B. 2016;120:11142–50.

    Article  Google Scholar 

  27. Hedstrom L. Serine protease mechanism and specificity. Chem Rev. 2002;102:4501–24.

    Article  Google Scholar 

  28. Ba Y, Ripmeester JA, Ratcliffe CI. Water molecular reorientation in ice and tetrahydrofuran clathrate hydrate from line shape analysis of 17O spin-echo NMR spectra. Can J Chem. 2010;89:1055–64.

    Article  Google Scholar 

  29. Kong X, O’Dell LA, Terskikh V, Ye E, Wang R, Wu G. Variable temperature 17O NMR studies allow quantitative evaluation of molecular dynamics in organic solids. J Am Chem Soc. 2012;134:14609–17.

    Article  Google Scholar 

  30. Wang WD, Lucier BEG, Terskikh VV, Wang W, Huang Y. Wobbling and hopping: Studying dynamics of CO2 adsorbed in metal-organic frameworks via 17O solid-state NMR. J Phys Chem Lett. 2014;5:3360–5.

    Article  Google Scholar 

  31. Adjei-Acheamfour M, Böhmer R. Second-order quadrupole interaction based detection of ultra-slow motions: tensor operator framework for central-transition spectroscopy and the dynamics in hexagonal ice as an experimental example. J Magn Reson. 2014;249:141–9.

    Article  Google Scholar 

  32. Adjei-Acheamfour M, Storek M, Beerwerth J, Böhmer R. Two-dimensional second-order quadrupolar exchange powder spectra for nuclei with half-integer spins. Calculations and an experimental example using oxygen NMR. Solid State Nucl Magn Reson. 2015;71:96–107.

    Article  Google Scholar 

  33. Nava M, Lopez N, Müller P, Wu G, Nocera DG, Cummins CC. Anion-receptor mediated oxidation of carbon monoxide to carbonate by peroxide dianion. J Am Chem Soc. 2015;137:14562–5.

    Article  Google Scholar 

  34. Otting G. Protein NMR using paramagnetic ions. Annu Rev Biophys. 2010;39:387–405.

    Article  Google Scholar 

  35. Jaroniec CP. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes. Solid State Nucl Magn Reson. 2012;43/44:1–13.

    Article  Google Scholar 

  36. Kong X, Terskikh VV, Khade RL, Yang L, Rorick A, Zhang Y, He P, Huang Y, Wu G. Solid-state 17O NMR of paramagnetic coordination compounds. Angew Chem Int Ed. 2015;54:4753–7.

    Article  Google Scholar 

  37. Wong A, Smith ME, Terskikh V, Wu G. Obtaining accurate chemical shifts for all magnetic nuclei (1H, 13C, 17O and 27Al) in tris(2,4-pentanedionato-O,O′)aluminium(III): A solid-state NMR case study. Can J Chem. 2011;89:1087–94.

    Article  Google Scholar 

  38. Deligiannakis Y, Louloudi M, Hadjiliadis N. Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord Chem Rev. 2001;204:1–112.

    Article  Google Scholar 

  39. Rapatskiy L, Cox N, Savitsky A, Ames WM, Sander J, Nowaczyk MM, Rögner M, Boussac A, Neese F, Messinger J, Lubitz W. Detection of the water-binding sites of the oxygen-evolving complex of photosystem II using W-band 17O electron–electron double resonance-detected NMR spectroscopy. J Am Chem Soc. 2012;134:16619–34.

    Article  Google Scholar 

  40. Cox N, Lubitz W, Savitsky A. W-band ELDOR-detected NMR (EDNMR) spectroscopy as a versatile technique for the characterisation of transition metal-ligand interactions. Mol Phys. 2013;111:2788–808.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Wu, G. (2017). Solid-State 17O NMR Spectroscopy of Organic and Biological Molecules. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics