Skip to main content

Structure Analysis of Bombyx mori Silk Fibroin Using NMR

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Silks from silkworms and spiders continue to attract attention of researchers in many fields, biochemistry, biophysics, analytical chemistry, polymer chemistry, polymer and textile technologies, and biomaterials. Advances in the most famous silk, Bombyx mori silk fibroin (SF) research, provide many new insights into the structure and dynamics of SF. Here, recent NMR analyses about the structures and dynamics of SF were reviewed. The solution structure of SF stored in the middle silk gland of Bombyx mori silkworm was determined using solution NMR in atomic level. This was type II β-turn structure which was close to random coil but existed in the aggregated states. On the other hand, a new structure of the crystalline regions of the SF fiber after spinning (Silk II) was proposed using several solid- state NMR techniques, and well-known Marsh-Pauling structural model for Silk II was denied partially. The conformational change from SF stored in the middle silk gland to SF fiber was monitored by the change in the fraction of several different conformations determined using 13C CP/MAS NMR and discussed in detail on the basis of the primary structure of SF. The hydrations of SF and microscopic interaction with water molecules were also studied by solid state NMR and 2H solution relaxation measurements. Thus, these NMR analyses gave new details relating to the structure and dynamics of SF, which are relevant in light of current interest in the design of man-made new SF and novel SF-based biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Asakura T. In: Miller T, editor. Biotechnology of Silk. Springer; Dordrecht, 2014.

    Google Scholar 

  2. Vepari C, Kaplan DL. Prog Polym Sci. 2007;32:991–1007.

    Article  Google Scholar 

  3. Fu C, Shao Z, Vollrath F. Chem Commun. 2009;43:6515–29.

    Article  Google Scholar 

  4. Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Acta Biomater. 2012;8:289–301.

    Article  Google Scholar 

  5. Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC. Prog Polym Sci. 2014;39:251–67.

    Article  Google Scholar 

  6. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Proteins. 2001;44:119–22.

    Article  Google Scholar 

  7. Asakura T, Okushita K, Williamson MP. Macromolecules. 2015;48:2345–57.

    Article  Google Scholar 

  8. Asakura T, Ashida J, Yamane T, Kameda T, Nakazawa Y, Ohgo K, Komatsu KJ. Mol Biol. 2001;306:291–305.

    Article  Google Scholar 

  9. Asakura T, Ohgo K, Komatsu K, Kanenari M, Okuyama K. Macromolecules. 2005;38:7397–403.

    Article  Google Scholar 

  10. Asakura T, Suzuki Y, Yazawa K, Aoki A, Nishiyama Y, Nishimura K, Suzuki F, Kaji H. Macromolecules. 2013;46:8046–50.

    Article  Google Scholar 

  11. Asakura T, Sato Y, Aoki A. Macromolecules. 2015;48:5761–9.

    Article  Google Scholar 

  12. Asakura T, Endo M, Hirayama M, Arai H, Aoki A, Tasei Y. Int J Mol Sci. 2016;17:1517–32.

    Article  Google Scholar 

  13. Suzuki Y, Yamazaki T, Aoki A, Shindo H, Asakura T. Biomacromolecules. 2014;15:104–12.

    Article  Google Scholar 

  14. Marsh RE, Corey RB, Pauling L. Biochim Biophys Acta. 1955;16:1–34.

    Article  Google Scholar 

  15. Takahashi Y, Gehoh M, Yuzuriha K. Int J Biol Macromol. 1999;24:127–38.

    Article  Google Scholar 

  16. Asakura T, Suzuki Y, Nakazawa Y, Yazawa K, Holland GP, Yarger JL. Prog Nucl Magn Reson Spectrosc. 2013;69:23–68.

    Article  Google Scholar 

  17. Mo C, Wu P, Chen X, Shao Z. Vib Spectrosc. 2009;51:105–9.

    Article  Google Scholar 

  18. Percot A, Colomban P, Paris C, Dinh HM, Wojcieszak M, Mauchamp B. Vib Spectrosc. 2014;73:79–89.

    Article  Google Scholar 

  19. Paquet-Mercier F, Lefèvre T, Auger M, Pézolet M. Soft Matter. 2013;9:208–15.

    Article  Google Scholar 

  20. Yazawa K, Ishida K, Masunaga H, Hikima T, Numata K. Biomacromolecules. 2016;17:1057–66. and references therein.

    Article  Google Scholar 

  21. Asakura T, Demura M, Watanabe Y, Sato K. J Polm Sci Part-B. 1992;30:3–699.

    Google Scholar 

  22. Yang Z, Liivak O, Seidel A, LaVerde G, Zax DB, Jelinski LWJ. Am Chem Soc. 2000;122:9019–25.

    Article  Google Scholar 

  23. Rodin VV, Knight DP. Biofizika. 2004;49:800–8.

    Google Scholar 

  24. Holland GP, Lewis RV, Yarger JL. J Am Chem Soc. 2004;126:5867–72.

    Article  Google Scholar 

  25. Holland GP, Jenkins JE, Creager MS, Lewis RV, Yarger JL. Biomacromolecules. 2008;9:651–7.

    Article  Google Scholar 

  26. Sun C, Boutis GS. New J Phys. 2011;13:025026.

    Article  Google Scholar 

  27. Asakura T, Suzuki Y, Nakazawa Y, Holland GP, Yarger JL. Soft Matt. 2013;9:11440–50.

    Article  Google Scholar 

  28. Ukpebor OT, Shah A, Bazov E, Boutis GS. Soft Matt. 2014;10:773–85.

    Article  Google Scholar 

  29. Asakura T, Isobe K, Aoki A, Kametani S. Macromolecules. 2015;48:8062–9.

    Article  Google Scholar 

  30. Asakura T, Isobe K, Kametani S, Ukpebor OT, Silverstein MC, Boutis GS. Acta Biomaterialia. 2017; in press.

    Google Scholar 

  31. Shen Y, Bax AJ. Biomol NMR. 2012;52:211–32.

    Article  Google Scholar 

  32. Shen Y, Bax AJ. Biomol. NMR. 2013;56:227–41.

    Article  Google Scholar 

  33. Asakura T, Suzuki H, Watanabe Y. Macromolecules. 1983;16:1024–6.

    Article  Google Scholar 

  34. Asakura T, Watanabe Y, Uchida A, Minagawa H. Macromolecules. 1984;17:1075–81.

    Article  Google Scholar 

  35. Asakura T. Makromol. Chem. Rapid Commun. 1986;12:755–9.

    Article  Google Scholar 

  36. Yamane T, Umemura K, Asakura T. Macromolecules. 2002;35:8831–8.

    Article  Google Scholar 

  37. Fraser B, MacRae TP. Conformations of fibrous proteins and related synthetic polypeptides. New York: Academic Press; 1973.

    Google Scholar 

  38. Lotz B, Cesari FC. Biochimie. 1979;61:205–14.

    Article  Google Scholar 

  39. Fossey SA, Nemethy G, Gibson KD, Scheraga HA. Biopolymers. 1991;31:1529–41.

    Article  Google Scholar 

  40. Schnell I, Brown SP, Low HY, Ishida H, Spiess HWJ. Am Chem Soc. 1998;120:11784–95.

    Article  Google Scholar 

  41. Brown SP. Solid State Nucl Magn Reson. 2012;41:1–27.

    Article  Google Scholar 

  42. Yamauchi K, Yamasaki S, Takahashi R, Asakura T. Solid State Nucl Magn Reson. 2010;38:27–30.

    Article  Google Scholar 

  43. Asakura T, Yao J, Yamane T, Umemura K, Ulrich ASJ. Am Chem Soc. 2002;124:8794–5.

    Article  Google Scholar 

  44. Asakura T, Yao J. Protein Sci. 2002;11:2706–13.

    Article  Google Scholar 

  45. Asakura T, Ohta T, Kametani S, Okushita K, Yazawa K, Nishiyama Y, Nishimura K, Aoki A, Suzuyki F, Kaji H, Ulrich AS, Williamson MP. Macromolecules. 2015;48:28–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Asakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kametani, S., Asakura, T. (2017). Structure Analysis of Bombyx mori Silk Fibroin Using NMR. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics