Skip to main content

Part of the book series: Interdisciplinary Contributions to Archaeology ((IDCA))

Abstract

Simulations in archaeological research make use of a wide range of techniques and methods. As a general rule, they tend toward early adoption of new computational approaches (such as agent-based modeling and multi-agent simulation), evaluative statistical tools (such as sensitivity or uncertainty analyses), and borrow heavily from similar applications in other disciplines; particularly ones that emphasize the dynamic (or dynamical) group behavior of biological organisms. As these approaches become more sophisticated our theoretical bases for testing, and ultimately refuting or validating their implications are falling behind. Largely this is due to the nature of the assumptions we make about the testing of archaeological hypotheses in general, and our expectations about causality, not merely the oversimplification of past human decision-making by the simulations themselves. We have very sophisticated computational devices for simulating the past in many unique and interesting ways, but there are some basic underlying issues that clearly indicate the problems with archaeological simulation are primarily theoretical and not mathematical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnew, V. (2005). Introduction: What is reenactment? Criticism, 46(3), 327–339.

    Article  Google Scholar 

  • Agnew, V. (2007). History’s affective turn: Historical reenactment and its work in the present. Rethinking History, 11(3), 299–312.

    Article  Google Scholar 

  • Alexandri, A., Buchli, V., Carman, J., Hodder, I., Last, J., Lucas, G., et al. (Eds.). (2013). Interpreting archaeology: Finding meaning in the past. London: Routledge.

    Google Scholar 

  • Allison, J. (2008). History educators and the challenge of immersive pasts: A critical review of virtual reality ‘tools’ and history pedagogy. Learning, Media and Technology, 33(4), 343–352.

    Article  Google Scholar 

  • Altschul, J. H., Sebastian, L., & Heidelberg, K. (2004). Predictive modeling in the military. Similar goals, divergent paths. Rio Rancho, NM: SRI Foundation.

    Google Scholar 

  • Axelrod, R. (2006). Advancing the art of simulation in the social sciences. In J. P. Rennard (Ed.), Handbook of research on nature inspired computing for economy and management. Hersey, PA: Idea.

    Google Scholar 

  • Axtell, R. L., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund, A. C., Harbuger, J., et al. (2006). Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. In J. M. Epstein (Ed.), Generative social science (pp. 117–129). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Barber, K. S. (2007). Multi-scale behavioral modeling and analysis promoting a fundamental understanding of agent-based system design and operation. University of Texas at Austin, for the Defense Advanced Research Projects Agency. Final Technical Report: AFRL-IF-RS-TR-2007-58.

    Google Scholar 

  • Barceló, J. A. (2012). Computer simulation in archaeology: Art, science or nightmare? Virtual Archaeology Review, 3(5), 8–12.

    Article  Google Scholar 

  • Barceló, J. A., Forte, M., & Sanders, D. H. (Eds.). (2000). Virtual reality in archaeology (British archaeological reports, International series, Vol. 843). Oxford, England: ArcheoPress.

    Google Scholar 

  • Barton, C. M., Ullah, I., & Mitasova, H. (2010). Computational modeling and Neolithic sociological dynamics: A case study from Southwest Asia. American Antiquity, 75(2), 364–386.

    Article  Google Scholar 

  • Bartumeus, F. (2009). Behavioral intermittence, lévy patterns, and randomness in animal movement. Oikos, 118, 488–494.

    Article  Google Scholar 

  • Bender, B., Hamilton, S., & Tilley, C. (2007). Stone worlds: Narrative and reflexivity in landscape archaeology. Walnut Creek, CA: Left Coast Press.

    Google Scholar 

  • Binford, L. (1965). Archaeological systematics and the study of culture process. American Antiquity, 31(2), 203–210.

    Article  Google Scholar 

  • Binford, L. (1972). An archaeological perspective. New York: Seminar Press.

    Google Scholar 

  • Binford, L. (Ed.). (1977). For theory building in archaeology. Orlando, FL: Academic Press.

    Google Scholar 

  • Binford, L. (1982a). Objectivity-explanation-archaeology 1981. In C. Renfrew, M. Rowlands, & B. Seagraves (Eds.), Theory and explanation in archaeology (pp. 125–138). New York: Academic Press.

    Google Scholar 

  • Binford, L. (1982b). Meaning, inference and the material record. In C. Renfrew & S. Shennan (Eds.), Ranking, resource and exchange (pp. 160–163). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Boero, R., & Squazzoni, F. (2005). Does empirical embeddedness matter? Methodological issues on agent-based models for analytical social science. Journal of Artificial Societies and Social Simulation, 8(4), 6.

    Google Scholar 

  • Bonatti, C., Díaz, L. J., & Viana, M. (2005). Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective. New York: Springer.

    Google Scholar 

  • Bordes, F. (1950). Principes d'une méthode d'étude des techniques de débitage et de la typologie du Paléolithique ancien et moyen, L'Anthropologie t. 54.

    Google Scholar 

  • Callahan, E. (1994). Primitive technology: practical guidelines for making stone tools, pottery, basketry, etc. the aboriginal way; selected from rare and widely scattered publications. Lynchburg, VA: Piltdown Productions.

    Google Scholar 

  • Campillo, X. R., Cela, J. M., & Cardona, F. X. H. (2012). Simulating archaeologists? Using agent-based modeling to improve battlefield excavations. Journal of Archaeological Science, 39, 347–356.

    Article  Google Scholar 

  • Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: An overview from a database perspective. IEEE Transactions on knowledge and Data Engineering, 8(6), 866–883.

    Article  Google Scholar 

  • Clemons, L. (2008). Branding Texas: performing culture in the Lone Star State. Austin, TX: University of Texas Press.

    Google Scholar 

  • Clemons, L. (2011). Present enacting past: The functions of battle reenacting in historical representation. In S. Magelsson & R. Justice-Malloy (Eds.), Enacting history (pp. 10–21). Tuscaloosa, AL: University of Alabama Press.

    Google Scholar 

  • Cox, D. R. (1992). Causality: Some statistical aspects. Journal of the Royal Statistical Society, Series A, 155, 291–301.

    Article  Google Scholar 

  • Crabtree, D. (1972). An introduction to flintworking. Occasional Papers of the Idaho State University Museum, No. 28.

    Google Scholar 

  • Crabtree, D., & Butler, B. R. (1964). Notes on experiments in flintknapping: 1. Heat-treatment of silica materials. Tebiwa, 7(1), 1–6.

    Google Scholar 

  • Dalla Bona, L. (1994). Ontario Ministry of Natural Resources archaeological predictive modeling project. Thunder Bay, ON, Canada: Center for Archaeological Resource Prediction, Lakehead University.

    Google Scholar 

  • Dean, J. S., Gumerman, G. J., Epstein, J. M., Axtell, R. L., Swedlund, A. C., Parker, M. T., et al. (2006). Understanding Anasazi culture change through agent-based modeling. In J. M. Epstein (Ed.), Generative social science (pp. 90–116). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Deeben, J., Hallewas, D., Kolen, J., & Wiemer, R. (1997). Beyond the crystal ball: Predictive modeling as a tool in archaeological heritage management and occupation history. In W. Willems, H. Kars, & D. Hallewas (Eds.), Archaeological heritage management in the Netherlands. Fifty years state service for archaeological investigations (pp. 76–118). Amersfoort, The Netherlands: Rijksdienst voor het Oudheidkundig Bodemonderzoek.

    Google Scholar 

  • Deeben, J., Hallewas, D. P., & Maarleveld, T. J. (2002). Predictive modeling in archaeological heritage management of the Netherlands: The indicative map of archaeological values (2nd generation). Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek, 45, 9–56.

    Google Scholar 

  • Ejstrud, B. (2003). Indicative models in landscape management: Testing the methods. In J. Kunow & J. Müller (Eds.), Symposium on the archaeology of landscapes and geographic information systems. Predictive maps, settlement dynamics and space and territory in prehistory (pp. 119–134). Wünsdorf, Germany: Brandenburgisches Landesamt für Denkmalpflege und Archäologisches Landesmuseum.

    Google Scholar 

  • Favro, D. (2006). In the eyes of the beholder: Virtual reality re-creations and academia. Journal of Roman Archaeology Supplementary Series, 61, 321–334.

    Google Scholar 

  • Favro, D. (2012). Se non èvero, èben trovato (if not true, it is well conceived): Digital immersive reconstructions of historical environments. Journal of the Society of Architectural Historians, 71(3), 273–277.

    Article  Google Scholar 

  • Flannery, K. (1968). Archeological systems theory and early Mesoamerica. In B. J. Meggers (Ed.), Anthropological archeology in the Americas (pp. 67–87). Washington, DC: Anthropological Society of Washington.

    Google Scholar 

  • Flores, J. C., Bologna, M., & Urzagasti, D. (2011). A mathematical model for the Andean Tiwanaku civilization collapse: Climate variations. Journal of Theoretical Biology, 291, 29–32.

    Article  Google Scholar 

  • Frischer, B. D. (Ed.). (2008). Beyond illustration: 2d and 3d digital technologies as tools for discovery in archaeology. Oxford, England: British Archaeological Reports.

    Google Scholar 

  • George, A. L., & Bennett, A. (2005). Case studies and theory development in the social sciences. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gill, A. (2009). Digitizing the past: charting new courses in the modeling of virtual landscapes. In Flaten, A. and Gill, A (Eds.), Digital crossroads: new directions in 3D architectural modeling in the humanities, Special Issue, Visual Resources: An International Journal of Documentation 25, no. 4, pp. 313–32.

    Google Scholar 

  • Gillings, M. (2009). Visual affordance, landscape and the megaliths of Alderney. Oxford Journal of Archaeology, 28(4), 335–356.

    Article  Google Scholar 

  • Gillings, M. (2012). Landscape phenomenology, GIS and the role of affordance. Journal of Archaeological Method Theory, 19(4), 601–611.

    Article  Google Scholar 

  • Gillings, M., Mattingly, D., & van Dalen, J. (1999). Geographical information systems and landscape archaeology. Oxford, England: Oxbow.

    Google Scholar 

  • Gillings, M., Pollard, J., Wheatley, D., & Peterson, R. (2008). Landscape of the megaliths. Oxford, England: Oxbow Books.

    Google Scholar 

  • Gómez, A. (2013). Archaeology and scientific explanation: Naturalism, interpretivism and ‘A Third Way’. In H. Andersen, D. Dieks, W. J. Gonzalez, T. Uebel, & G. Wheeler (Eds.), New challenges to philosophy of science: The philosophy of science in a European perspective (Vol. 4, pp. 239–251). New York: Springer.

    Chapter  Google Scholar 

  • Goodrick, G., & Gillings, M. (2000). Constructs, simulations and hyperreal worlds: The role of virtual reality (VR) in archaeological research. In On the theory and practice of archaeological computing (pp. 41–58). Oxford, England: Oxbow.

    Google Scholar 

  • Griffith, C. S., Long, B. L., & Sept, J. M. (2010). HOMINIDS: An agent-based spatial simulation model to evaluate behavioral patterns of early Pleistocene hominids. Ecological Modeling, 221, 738–760.

    Article  Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.

    Article  Google Scholar 

  • Guo, Y., & Grossman, R. (Eds.). (1999). High performance data mining: Scaling algorithms, applications and systems. New York: Kluwer Academic.

    Google Scholar 

  • Hájek, P. (1998). Metamathematics of fuzzy logic. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Hall, D. (1994). Civil War reenactors and the postmodern sense of history. Journal of American Culture, 17(3), 7–11.

    Article  Google Scholar 

  • Halpern, J. Y. (2003). Reasoning about uncertainty. Cambridge, MA: MIT Press.

    Google Scholar 

  • Handler, R., & Gable, E. (1997). The new history in an old museum: Creating the past at Colonial Williamsburg. Durham, NC: Duke University Press.

    Google Scholar 

  • Handler, R., & Saxton, W. (1988). Dyssimulation: Reflexivity, narrative, and the quest for authenticity in ‘living history’. Cultural Anthropology, 3(3), 242–260.

    Article  Google Scholar 

  • Harris, T. M. (2006). Scale as artifact: GIS, ecological fallacy, and archaeological analysis. In G. Lock & B. L. Molyneaux (Eds.), Confronting scale in archaeology. Issues of theory and practice (pp. 39–53). New York: Springer.

    Google Scholar 

  • Hart, R. (1981). Children’s representation of the landscape: Lessons and questions from a field study. In L. S. Liben, A. H. Patterson, & N. Newcombe (Eds.), Spatial representation and behavior across the life span. New York: Academic Press.

    Google Scholar 

  • Hartman, S. (1996). The world as a process. In R. Hegselmann, U. Müller, & K. Troitzsch (Eds.), Modeling and simulation in the social sciences from the philosophy of science point of view (pp. 77–100). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.

    Book  Google Scholar 

  • Hempel, C. G. (1965). Aspects of scientific explanation. New York: Free Press.

    Google Scholar 

  • Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175.

    Article  Google Scholar 

  • Hill, J. N. (1977). Systems theory and the explanation of change. In J. N. Hill (Ed.), Explanation of prehistoric change (pp. 433–450). Albuquerque, NM: University of New Mexico Press.

    Google Scholar 

  • Hodder, I. (Ed.). (1989). The meanings of things: material culture and symbolic expression. London: Routledge.

    Google Scholar 

  • Hodder, I. (2012). Entangled: An archaeology of the relationships between humans and things. New York: Wiley.

    Book  Google Scholar 

  • Holton, J. R. (2004). An introduction to dynamic meteorology, Volume 1. New York: Academic Press.

    Google Scholar 

  • Hudak, G. J., Hobbs, E., Brooks, A., Sersland, C., & Phillips, C. (Eds.). (2002). Mn/Model final report 2002: A predictive model of precontact archaeological site location for the state of Minnesota. Minneapolis, MN: Minnesota Department of Transportation.

    Google Scholar 

  • Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. Oxford, England: Oxford University Press.

    Book  Google Scholar 

  • Ingold, T. (2007). Materials against materiality. Archaeological Dialogues, 14(1), 1–16.

    Article  Google Scholar 

  • Janssen, M. A., & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society, 11(2), 37.

    Google Scholar 

  • Jones, G.L. (2007). Gut history: Civil War reenacting and the making of an American past. PhD dissertation, Emory University, Atlanta, GA.

    Google Scholar 

  • Judge, J. W., & Sebastian, L. (Eds.). (1988). Quantifying the present and predicting the past: Theory, method and application of archaeological predictive modeling. Denver, CO: U.S. Department of the Interior, Bureau of Land Management.

    Google Scholar 

  • Kamermans, H., van Leusen, M., & Verhagen, P. (Eds.). (2009). Archaeological prediction and risk management. Leiden, South Holland: Leiden University Press.

    Google Scholar 

  • Kitchin, R., & Blades, M. (2002). The cognition of geographic space. London: I.B. Taurus.

    Google Scholar 

  • Kohler, T. A. (2012). Complex systems and archaeology. In I. Hodder (Ed.), Archaeological theory today (pp. 93–123). Cambridge, MA: Polity Press.

    Google Scholar 

  • Kohler, T. A., Bocinsky, R. K., Cockburn, D., Crabtree, S. A., Varien, M. D., Kolm, K. E., et al. (2012). Modeling prehispanic Pueblo societies in their ecosystems. Ecological Modeling, 241, 30–41.

    Article  Google Scholar 

  • Kohler, T. A., & Parker, S. C. (1986). Predictive models for archaeological resource location. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 9, pp. 397–452). New York: Academic Press.

    Google Scholar 

  • Kohler, T. A., & van der Leeuw, S. (Eds.). (2007). Model-based archaeology of socionatural systems. Santa Fe, NM: School of Advanced Research.

    Google Scholar 

  • Kosso, P. (1991). Method in archaeology: Middle-range theory as hermeneutics. American Antiquity, 56(4), 621–627.

    Article  Google Scholar 

  • Krieger, W. H. (2012). Theory, locality, & methodology in archaeology: Just add water? HOPOS: The Journal of the International Society for the History of Philosophy of Science, 2(2), 243–257.

    Google Scholar 

  • Kumar, K., & Prabhakar, T. V. (2010). Pattern-oriented knowledge model for architecture design. In Proceedings of the 17th Conference on Pattern Languages of Programs (pp. 23–32). New York: Association for Computing Machinery.

    Google Scholar 

  • Kvamme, K. L. (1983). A manual for predictive site location models: Examples from the Grand Junction District, Colorado. Grand Junction District, CO: Bureau of Land Management.

    Google Scholar 

  • Kvamme, K. L. (1984). Models of prehistoric site location near Pinyon Canyon, Colorado. In C. J. Condie (Ed.), Papers of the Philmont Conference on the archaeology of Northeastern New Mexico (pp. 349–370). Albuquerque, NM: New Mexico Archaeological Council.

    Google Scholar 

  • Kvamme, K. L. (1985). Determining empirical relationships between the natural environment and prehistoric site locations: A hunter–gatherer example. In C. Carr (Ed.), For concordance in archaeological analysis: Bridging data structure, quantitative technique, and theory (pp. 208–238). Prospect Heights, CO: Waveland Press.

    Google Scholar 

  • Llobera, M. (1996). Exploring the topography of mind: GIS, social space and archaeology. Antiquity, 70, 612–622.

    Article  Google Scholar 

  • Llobera, M. (2001). Building past landscape perception with GIS: Understanding topographic prominence. Journal of Archaeological Science, 28, 1005–1014.

    Article  Google Scholar 

  • Llobera, M. (2012). Life on a pixel: Challenges in the development of digital methods within an ‘Interpretive’ landscape archaeology framework. Journal of Archaeological Method and Theory, 19(4), 495–509.

    Article  Google Scholar 

  • Luhmann, N. (1975). Systemtheorie, Evolutionstheorie und Kommunikationstheorie. Soziologische Gids, 22(3), 154–168.

    Google Scholar 

  • Maver, T. (2001). Virtual heritage: Reconstructing the past, reconfiguring the future. Proceedings of the seventh international conference on virtual systems and multimedia (VSMM’01) (pp. 168–176). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • McEwan, D. G., & Millican, K. (2012). In search of the middle ground: Quantitative spatial techniques and experiential theory in archaeology. Journal of Archaeological Method and Theory, 19(4), 491–494.

    Article  Google Scholar 

  • Molteni, F., Buizza, R., Palmer, T. N., & Petroliagis, T. (1999). The ECMWF ensemble prediction system: Methodology and validation. Quarterly Journal of the Royal Meteorological Society, 122(529), 73–119.

    Article  Google Scholar 

  • Murphy, J. T. (2012). Exploring complexity with the Hohokam water management simulation: A middle way for archaeological modeling. Ecological Modeling, 241, 15–29.

    Article  Google Scholar 

  • Niazi, M., & Hussain, A. (2011). Agent-based computing from multi-agent systems to agent-based models: A visual survey. Scientometrics, 89(2), 479–499.

    Article  Google Scholar 

  • Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis & data mining applications. New York: Academic Press/Elsevier.

    Google Scholar 

  • Pandey, V., Mourelatos, Z.P., & Castanier, M.P. (2013). Decision topology assessment in engineering design under uncertainty. Proceedings of IDETC/CIE 2014 ASME 2014 international design engineering technical conferences & computers and information in engineering conference, Buffalo, NY.

    Google Scholar 

  • Parker, S. C. (1985). Predictive modeling of site settlement systems using multivariate logistics. In C. Carr (Ed.), For concordance in archaeological analysis: Bridging data structure, quantitative technique, and theory (pp. 173–207). Prospect Heights, CO: Waveland Press.

    Google Scholar 

  • Parsons, T. (1978). Action theory and the human condition. New York: Free Press.

    Google Scholar 

  • Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Perony, N., Tessone, C. J., König, B., & Schweitzer, F. (2012). How random is social behavior? Disentangling social complexity through the study of a wild house mouse population. PLoS Computational Biology, 8(11), e1002786. doi:10.1371/journal.pcbi.1002786.

    Article  Google Scholar 

  • Phan, D., & Varenne, F. (2010). Agent-based models and simulations in economics and social sciences: From conceptual exploration to distinct ways of experimenting. Journal of Artificial Societies and Social Simulation, 13(1), 5.

    Article  Google Scholar 

  • Pillatt, T. (2012). Experiencing climate: Finding weather in eighteenth century Cumbria. Journal of Archaeological Method Theory, 19, 564–581.

    Article  Google Scholar 

  • Raab, L. M., & Goodyear, A. C. (1984). Middle-range theory in archaeology: A critical review of origins and applications. American Antiquity, 49(2), 255–268.

    Article  Google Scholar 

  • Salmon, W. (1971). Statistical explanation and statistical relevance. Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  • Salmon, M. H. (1982). Philosophy and archaeology. New York: Academic Press.

    Google Scholar 

  • Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Salmon, W. (1990). Four decades of scientific explanation. Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  • Salmon, W. (1998). Causality and explanation. Oxford, England: Oxford University Press.

    Book  Google Scholar 

  • Schiffer, M. B. (2013). Science: A behavioral perspective. In M. B. Schiffer (Ed.), The archaeology of science: Manuals in archaeological method, theory and technique (Vol. 9, pp. 13–24). New York: Springer.

    Chapter  Google Scholar 

  • Schweitzer, F. (2003). Brownian agents and active particles: Collective dynamics in the natural and social sciences. Berlin, Germany: Springer.

    Google Scholar 

  • Shanks, M. (1992). Experiencing the past. London: Routledge.

    Google Scholar 

  • Shanks, M., & Tilley, C. Y. (1987). Re-constructing archaeology: Theory and practice. London: Routledge.

    Google Scholar 

  • Sklar, L. (2000). Explanation, law and cause. New York: Taylor & Francis.

    Google Scholar 

  • Slator, B.M., Clark, J.T., Landrum, J., Bergstrom, A., Hawley, J., Johnston, E., et al. (2001). Teaching with immersive virtual archaeology. Proceedings of the seventh international conference on virtual systems and multimedia (VSMM’01) (pp. 253–262). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Stensrud, D. J. (2007). Parameterization schemes: Keys to understanding numerical weather prediction models. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Strogatz, S. H. (2001). Nonlinear dynamics and chaos: With applications to physics, biology and chemistry. New York: Perseus.

    Google Scholar 

  • Tesfatsion, L., & Judd, K. L. (Eds.). (2006). Handbook of computational economics (Agent based computational economics, Vol. 2). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Tilley, C. (Ed.). (1990). Reading material culture. Oxford, England: Blackwell.

    Google Scholar 

  • Tilley, C. (1991). Material culture and text: The art of ambiguity. London: Routledge.

    Google Scholar 

  • Tilley, C. (1994). A phenomenology of landscape. London: Routledge.

    Google Scholar 

  • Tschauner, H. (1996). Middle-range theory, behavioral archaeology, and postempiricist philosophy of science in archaeology. Journal of Archaeological Method and Theory, 3(1), 1–30.

    Article  Google Scholar 

  • van Leusen, M., & Kamermans, H. (Eds.). (2005). Predictive modeling for archaeological heritage management: A research agenda. Amersfoort, The Netherlands: Rijksdienst voor het Oudheidkundig Bodemonderzoek.

    Google Scholar 

  • Verhagen, P. (2005). Prospection strategies and archaeological predictive modeling. In M. van Leusen & H. Kamermans (Eds.), Predictive modeling for archaeological heritage management: A research agenda (pp. 109–121). Amersfoort, The Netherlands: Rijksdienst voor het Oudheidkundig Bodemonderzoek.

    Google Scholar 

  • Verhagen, P. (2007). Predictive models put to the test. In P. Verhagen (Ed.), Case studies in archaeological predictive modeling (pp. 115–168). Leiden, The Netherlands: Leiden University Press.

    Chapter  Google Scholar 

  • Verhagen, P., & Whitley, T. G. (2012). Integrating archaeological theory and predictive modeling: A live report from the scene. Journal of Archaeological Method and Theory, 19(1), 49–100.

    Article  Google Scholar 

  • von Bertalanffy, K. L. (1970). ‘… aber vom Menschen wissen wir nichts.’ Flechtner, H. J. (translator). Düsseldorf: Econ Verlag GmbH.

    Google Scholar 

  • Warren, K., Franklin, C., & Streeter, C. L. (1998). New directions in systems theory: Chaos and complexity. Social Work, 43(4), 357–372.

    Article  Google Scholar 

  • Watson, P. J., LeBlanc, S. A., & Redman, C. L. (1971). Archaeological explanation. New York: Columbia University Press.

    Google Scholar 

  • Wescott, D. (2011). Primitive technology: A book of earth skills. Rexburg, ID: Society for Primitive Technology.

    Google Scholar 

  • Whitley, T. G. (2004a). Causality and cross-purposes in archaeological predictive modeling. In Fischer Ausserer, A., Börner, W., Goriany, M., & Karlhuber-Vöckl, L. (Eds.) [Enter the past]: the e-way into the four dimensions of cultural heritage: CAA 2003: Computer applications and quantitative methods in archaeology: Proceedings of the 31th Conference, Vienna, Austria, April 2003 (pp. 236–239). Oxford, England: Archaeopress.

    Google Scholar 

  • Whitley, T. G. (2004b). Risk, choice, and perception: Elements of an immersive GIS. Paper prepared for the 69th Annual Meeting of the Society for American Archaeology, Montreal, Quebec, March 31–April 4, 2004.

    Google Scholar 

  • Whitley, T. G. (2005). A brief outline of causality-based cognitive archaeological probabilistic modeling. In M. van Leusen & H. Kamermans (Eds.), Predictive modeling for archaeological heritage management: A research agenda (pp. 123–138). Amersfoort, The Netherlands: Rijksdienst voor het Oudheidkundig Bodemonderzoek.

    Google Scholar 

  • Winsberg, E. (2009). A tale of two methods. Synthese, 169(3), 575–592.

    Article  Google Scholar 

  • Yager, R. R., & Filev, D. P. (1994). Essentials of fuzzy modeling and control. New York: Wiley.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zwieflhofer, W., & Kreitz, N. (Eds.). (2001). Developments in teracomputing: Proceedings of the ninth ECMWF Workshop on the use of high performance computing in meteorology. London/Singapore: European Centre for Medium Range Weather Forecasts/World Scientific Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Whitley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Whitley, T.G. (2016). Archaeological Simulation and the Testing Paradigm. In: Brouwer Burg, M., Peeters, H., Lovis, W. (eds) Uncertainty and Sensitivity Analysis in Archaeological Computational Modeling. Interdisciplinary Contributions to Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-27833-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27833-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27831-5

  • Online ISBN: 978-3-319-27833-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics