Skip to main content

Syzygium cumini (L.) Skeels: Cardiometabolic Properties and Potential Tissue Culture-Based Improvement of Secondary Metabolites Production

Transgenesis and Secondary Metabolism

Abstract

Syzygium cumini (L.) Skeels (family Myrtaceae), commonly known as jambolão, jambolan, or jamun, has been suggested as a potential source of bioactive molecules against diabetes and associated cardiometabolic diseases. A wide variety of secondary compounds, mainly, terpenes, and phenolic compounds, such as phenolic acids, flavonoids, and tannins, are present in different parts of this plant species. This chapter describes about the various pharmacological properties of S. cumini, including antihyperglycemic, antihyperlipidemic, anti-inflammatory, and antioxidant activities, which make it a very interesting species for multitarget therapeutic purposes. Geographical distribution, botanical description, as well as potential of this plant species for in vitro culture have been discussed. Review of literature shows that despite the recalcitrant nature of this plant species, attempts have been made to standardize the protocol for its micropropagation. Although cells and tissues of S. cumini have capacity for in vitro production of bioactive compounds, but basic studies for their mechanisms of production as well as full understanding of biosynthesis pathways are required to be known to exploit the potential of this plant species. Further research towards employing novel elicitors, two-phase culture system, and metabolic engineering may also help in improving the performance of S. cumini under in vitro culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Govaerts R, Sobral M, Ashton P, Barrie F (2008) World checklist of Myrtaceae. Royal Botanic Gardens, Richmond

    Google Scholar 

  2. Sobral MPC, Souza M, Mazine F, Lucas E (2016) Myrtaceae. In: List of species of the Brazilian Flora Available from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB86017

  3. Chagas VT, França LM, Malik S, Paes AMA (2015) Syzygium cumini (L.) skeels: a prominent source of bioactive molecules against cardiometabolic diseases. Front Pharmacol 6:1–8

    Article  Google Scholar 

  4. Ayyanar MP, Subash-Babu IS (2013) Syzygium cumini (L.) Skeels., a novel therapeutic agent for diabetes: folk medicinal and pharmacological evidences. Complement Ther Med 21(3):232–243

    Article  Google Scholar 

  5. Baliga MS, Fernandes S, Thilakchand KR, D’souza P, Rao S (2013) Scientific validation of the antidiabetic effects of Syzygium jambolanum DC (black plum), a traditional medicinal plant of India. J Altern Complement Med 19(3):191–197

    Article  Google Scholar 

  6. Helmstadter A (2008) Syzygium cumini (L.) SKEELS (Myrtaceae) against diabetes – 125 years of research. Pharmazie 63(2):91–101

    CAS  Google Scholar 

  7. Lorenzi H (2003) Árvores exóticas no Brasil: madeireiras, ornamentais e aromáticas. Instituto Plantarum de Estudos da Flora, Nova Odessa

    Google Scholar 

  8. Corrêa MP, Penna LA, Florestal IBD (1984) Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Ministério da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal, Rio de Janeiro

    Google Scholar 

  9. Ayyanar M, Subash-Babu P (2012) Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed 2(3):240–246

    Article  Google Scholar 

  10. Malik S, Kumar R, Vats SK, Bhushan S, Sharma M, Ahuja PS (2009) Regeneration in Rheum emodi Wall.: a step towards conservation of an endangered medicinal plant species. Eng Life Sci 2:130–134

    Article  Google Scholar 

  11. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46(1):23–34

    Article  CAS  Google Scholar 

  12. Malik S, Mirjalili MH, Fett-Neto AG, Mazzafera P, Bonfill M (2013) Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33(1):1–22

    Article  CAS  Google Scholar 

  13. Malik S, Biba O, Gruz J, Arroo RRJ, Strnad M (2014) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913

    Article  CAS  Google Scholar 

  14. Malik S, Bhushan S, Sharma M, Ahuja PS (2014) Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol 16:1–14

    Google Scholar 

  15. Ngoc TM, Hung TM, Thuong PT, Kim JC, Choi JS, Bae K, Hattori M, Choi CS, Lee JS, Min BS (2008) Antioxidative activities of galloyl glucopyranosides from the stem-bark of Juglans mandshurica. Biosci Biotechnol Biochem 72(8):2158–2163

    Article  CAS  Google Scholar 

  16. Ramya SK, Neethirajan, Jayakumararaj R (2012) Profile of bioactive compounds in Syzygium cumini-a review. J Pharm Res 5(8):4548–4553.

    Google Scholar 

  17. Mahmoud II, Marzouk MS, Moharram FA, El-Gindi MR, Hassan AM (2001) Acylated flavonol glycosides from Eugenia jambolana leaves. Phytochemistry 58(8):1239–1244

    Article  CAS  Google Scholar 

  18. Sanches JR, França LM, Chagas VT, Gaspar RS, Dos Santos KA, Gonçalves LM, Sloboda DM, Holloway AC, Dutra RP, Carneiro EM, Cappelli AP, Paes AM (2016) Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium l-glutamate-induced obese rats. Front Pharmacol 7:48

    Article  Google Scholar 

  19. Ruan ZP, Zhang LL, Lin YM (2008) Evaluation of the antioxidant activity of Syzygium cumini leaves. Molecules 13(10):2545–2556

    Article  CAS  Google Scholar 

  20. Timbola AK, Szpoganicz B, Branco A, Monache FD, Pizzolatti MG (2002) A new flavonol from leaves of Eugenia jambolana. Fitoterapia 73(2):174–176

    Article  CAS  Google Scholar 

  21. Shafi PM, Rosamma MK, Jamil K, Reddy PS (2002) Antibacterial activity of Syzygium cumini and Syzygium travancoricum leaf essential oils. Fitoterapia 73(5):414–416

    Article  CAS  Google Scholar 

  22. Mohamed AA, Ali SI, El-Baz FK (2013) Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves. PLoS one 8(4):e60269

    Article  CAS  Google Scholar 

  23. Bhatia I, Bajaj K (1975) Chemical constituents of the seeds and bark of Syzygium cumini. Planta Med 28(08):346–352

    Article  CAS  Google Scholar 

  24. Karthic K, Kirthiram KS, Sadasivam S, Thayumanavan B (2008) Identification of alpha amylase inhibitors from Syzygium cumini Linn seeds. Indian J Exp Biol 46(9):677–680

    CAS  Google Scholar 

  25. Williamson EM (2002) Major herbs of ayurveda. Churchill Livingstone, New York

    Google Scholar 

  26. Gordon A, Jungfer E, da Silva BA, Maia JG, Marx F (2011) Phenolic constituents and antioxidant capacity of four underutilized fruits from the Amazon region. J Agric Food Chem 59(14):7688–7699

    Article  CAS  Google Scholar 

  27. Reynertson KA, Yang H, Jiang B, Basile MJ, Kennelly EJ (2008) Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem 109(4):883–890

    Article  CAS  Google Scholar 

  28. Vernin G, Metzger J, Mondon JP, Pieribattesti JC (1991) Volatile constituents of the Jamrosa aroma Syzygium jambos L. Aston from Reunion Island. J Essent Oil Res 3(2):83–97

    Article  CAS  Google Scholar 

  29. Veigas JM, Narayan MS, Laxman PM, Neelwarne B (2007) Chemical nature, stability and bioefficacies of anthocyanins from fruit peel of Syzygium cumini Skeels. Food Chem 105(2):619–627

    Article  CAS  Google Scholar 

  30. Subramanian SS, Nair AGR (1972) Flavonoids of the flowers of Eugenia jambolana. Curr Sci 41(19):2

    Google Scholar 

  31. Baliga MS, Bhat HP, Baliga BRV, Wilson R, Palatty PL (2011) Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): a review. Food Res Int 44(7):1776–1789

    Article  CAS  Google Scholar 

  32. Ravi K, Rajasekaran S, Subramanian S (2003) Hypoglycemic effect of Eugenia jambolana seed kernels on streptozotocin-induced diabetes in rats. Pharm Biol 41(8):598–603

    Article  Google Scholar 

  33. Sharma BC, Balomajumder RP (2008) Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol 46(7):2376–2383

    Article  CAS  Google Scholar 

  34. Sharma AK, Bharti S, Kumar R, Krishnamurthy B, Bhatia J, Kumari S, Arya DS (2012) Syzygium cumini ameliorates insulin resistance and beta-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-alpha in type 2 diabetic rats. J Pharmacol Sci 119(3):205–213

    Article  CAS  Google Scholar 

  35. Fang XK, Gao J, Zhu DN (2008) Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82(11–12):615–622

    Article  CAS  Google Scholar 

  36. Schossler DRC, Mazzanti CM, Luz SCA, Filappi A, Prestes D, Silveira AF, Cecim M (2004) Syzygium cumini and the regeneration of insulin positive cells from the pancreatic duct. Braz J Vet Res Anim Sci 41(4):236–239

    Article  Google Scholar 

  37. Esmaeili MA, Zohari F, Sadeghi H (2009) Antioxidant and protective effects of major flavonoids from Teucrium polium on beta-cell destruction in a model of streptozotocin-induced diabetes. Planta Med 75(13):1418–1420

    Article  CAS  Google Scholar 

  38. Bardy G, Virsolvy A, Quignard JF, Ravier MA, Bertrand G, Dalle S, Cros G, Magous R, Richard S, Oiry C (2013) Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. Br J Pharmacol 169(5):1102–1113

    Article  CAS  Google Scholar 

  39. Tzeng TF, Liou SS, Liu IM (2011) Myricetin ameliorates defective post-receptor insulin signaling via beta-endorphin signaling in the skeletal muscles of fructose-fed rats. Evid Based Complement Alternat Med: 150752

    Google Scholar 

  40. Wang Q, Wang ST, Yang X, You PP, Zhang W (2015) Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutr Res 35(4):317–327

    Article  CAS  Google Scholar 

  41. Ding Y, Zhang ZF, Dai XQ, Li Y (2012) Myricetin protects against cytokine-induced cell death in RIN-m5f beta cells. J Med Food 15(8):733–740

    Article  CAS  Google Scholar 

  42. Anandharajan R, Jaiganesh S, Shankernarayanan NP, Viswakarma RA, Balakrishnan A (2006) In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPAR in L6 myotubes. Phytomedicine 13(6):434–441

    Article  CAS  Google Scholar 

  43. Wang H, Liu T, Song L, Huang D (2012) Profiles and alpha-amylase inhibition activity of proanthocyanidins in unripe Manilkara zapota (chiku). J Agric Food Chem 60(12):3098–3104

    Article  CAS  Google Scholar 

  44. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96(2–3):67–202

    Article  CAS  Google Scholar 

  45. Tanwar RS, Sharma SB, Singh UR, Prabhu KM (2011) Antiatherosclerotic potential of active principle isolated from Eugenia jambolana in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med: 127641

    Google Scholar 

  46. Ravi KS, Rajasekaran SS (2005) Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats. Food Chem Toxicol 43(9):1433–1439

    Article  CAS  Google Scholar 

  47. Jain A, Sharma S, Goyal M, Dubey S, Jain S, Sahu J, Sharma A, Kaushik A (2011) Anti-inflammatory activity of Syzygium cumini leaves. Int J Phytomed 2(2):124

    Google Scholar 

  48. Muruganandan S, Srinivasan K, Chandra S, Tandan SK, Lal J, Raviprakash V (2002) Inhibitory role of Syzygium cumini on autacoid-induced inflammation in rats. Indian J Physiol Pharmacol 46(4):482–486

    CAS  Google Scholar 

  49. Kumar E, Mastan S, Reddy KR, Reddy GA, Raghunandan N, Chaitanya G (2008) Anti-arthritic property of the methanolic extract of Syzygium cumini seeds. Int J Integr Biol 4:55–61

    Google Scholar 

  50. Brito FA, Lima LA, Ramos MF, Nakamura MJ, Cavalher-Machado SC, Siani AC, Henriques MG, Sampaio AL (2007) Pharmacological study of anti-allergic activity of Syzygium cumini (L.) Skeels. Braz J Med Biol Res 40(1):105–115

    Article  CAS  Google Scholar 

  51. Maciel MCG, Farias JC, Maluf MJ (2008) Syzygium jambolanum treatment improves survival in lethal sepsis induced in mice. BMC Complement Altern Med 8:57

    Article  Google Scholar 

  52. Chandrasekaran M, Venkatesalu V (2004) Antibacterial and antifungal activity of Syzygium jambolanum seeds. J Ethnopharmacol 91(1):105–108

    Article  CAS  Google Scholar 

  53. Oliveira GF, Furtado NAJC, Filho AAS, Martins CHG, Bastos JK, Cunha WR, Silva MLA (2007) Antimicrobial activity of Syzygium cumini (Myrtaceae) leaves extract. Braz J Microbiol 38(2):381–384

    Article  Google Scholar 

  54. Eshwarappa RS, Iyer RS, Subbaramaiah SR, Richard SA, Dhananjaya BL (2014) Antioxidant activity of Syzygium cumini leaf gall extracts. Bioimpacts 4(2):101–107

    Google Scholar 

  55. Aqil F, Gupta A, Munagala R, Jeyabalan J, Kausar H, Sharma RJ, Singh IP, Gupta RC (2012) Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr Cancer 64(3):428–438

    Article  CAS  Google Scholar 

  56. Floegel A, Kim DO, Chung SJ, Koo SI, Chun O (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24(7):1043–1048

    Article  CAS  Google Scholar 

  57. Arun R, Prakash MV, Abraham SK, Premkumar K (2011) Role of Syzygium cumini seed extract in the chemoprevention of in vivo genomic damage and oxidative stress. J Ethnopharmacol 134(2):329–333

    Article  Google Scholar 

  58. Tripathi P, Tripathi R, Patel RK, Pancholi SS (2013) Investigation of antimutagenic potential of Foeniculum vulgare essential oil on cyclophosphamide induced genotoxicity and oxidative stress in mice. Drug Chem Toxicol 36(1):35–41

    Article  CAS  Google Scholar 

  59. Goyal PK, Verma P, Sharma P, Parmar J, Agarwal A (2010) Evaluation of anti-cancer and anti-oxidative potential of Syzygium cumini against benzo[a]pyrene (BaP) induced gastric carcinogenesis in mice. Asian Pac J Cancer Prev 11(3):753–758

    CAS  Google Scholar 

  60. Farnum P, Timmis R, Kulp JL (1983) Biotechnology of forest yield. Science 219:694–702

    Article  CAS  Google Scholar 

  61. Bajaj YPS (1986) Biotechnology in agriculture and forestry, vol 1, Trees. Springer, New York

    Google Scholar 

  62. Bonga JM (1981) Vegetative propagation of mature trees by tissue culture. In: Rao AN (ed) Proceedings of COSTED symposium on tissue culture economically important plants, Singapore. pp 191–196

    Google Scholar 

  63. Zimmerman RH (1986) Regeneration in woody ornamentals and fruit trees. In: Vasil IK (ed) Cell culture and somatic cell genetics vol. 3: plant regeneration and genetic variability. Academic, New York, pp 243–258

    Chapter  Google Scholar 

  64. Yadav U, Lal M, Jaiswal VS (1990) In vitro micropropagation of tropical fruit tree Syzygium cuminii L. Plant Cell Tissue Org Cult 21:87–92

    Article  Google Scholar 

  65. Jain N, Babbar SB (2000) Recurrent production of plants of black plum, Syzygium cuminii (L.) Skeels, a myrtaceous fruit tree, from in vitro cultured seedling explants. Plant Cell Rep 19:519–524

    Article  CAS  Google Scholar 

  66. Roy PK, Rahman MM, Roy SK (1996) In vitro propagation of Syzygium cuminii L. from selected elite trees. Acta Hortic 429:489–495

    Article  Google Scholar 

  67. Jain N, Babbar SB (2003) Regeneration of ‘juvenile’ plants of black plum, Syzygium cuminii Skeels, from nodal exp of mature trees. Plant Cell Tiss Org Cult 73:257–263

    Article  CAS  Google Scholar 

  68. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  69. Randriamampionona D, Rafamantanana M, Rabemanantsoa C et al (2008) Ex situ conservation and clonal propagation of the Malagasy Syzygium cuminii, an antidiabetic plant. Belg J Bot 141(1):14–20

    Google Scholar 

  70. Yadav U, Bisht S, Siddique SS, Babu R (2014) Micropropagation of Syzygium cuminii L. Using in vitro technique. Int J Sci Eng Res 5(10):1517–1528

    Google Scholar 

  71. Iyer RI, Gpoinath PM (2000) Responses of zygotic embryos of Syzygium cuminii L. in culture and induction of somatic embryogenesis from pigmented callus. Indian J Plant Physiol 5(4):387–388

    Google Scholar 

  72. Babbar SB, Jain N (1998) ‘Isubgol’ as an alternative gelling agent in plant tissue culture media. Plant Cell Rep 17:318–322

    Article  CAS  Google Scholar 

  73. Knop W (1865) Quantitative Untersuchung über die Ernährungsprozesse der Pflanzen. Landwirtsch Vers Stn 30:292–294

    Google Scholar 

  74. Prakash MG, Gurumurthi K (2009) Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. In Vitro Cell Dev Biol-Plant 45:429–434

    Article  CAS  Google Scholar 

  75. Aggarwal D, Kumar A, Reddy MS (2011) Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiol Plant 33:1603–1611

    Article  CAS  Google Scholar 

  76. Mishra M, Jalil SU, Sharma N, Hudedamani U (2014) An Agrobacterium mediated transformation system of guava (Psidium guajava L.) with endochitinase gene. Crop Breed Appl Biotechnol 14:232–237

    Article  Google Scholar 

  77. Stummer BE, Smith SE, Langridge P (1995) Genetic transformation of Verticordia grandis (Myrtaceae) using wild-type Agrobacterium rhizogenes and binary Agrobacterium vectors. Plant Sci 111:51–62

    Article  CAS  Google Scholar 

  78. Mendonça EG, Stein VC, Balieiro FP, Lima CDF, Santos BR, Paiva LV (2013) Genetic transformation of Eucalyptus camaldulensis by agrobalistic method. Revista Árvore, Viçosa-MG 37(3):419–429

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Foundation for the Support of Research, Scientific, and Technological Development of the State of Maranhão (FAPEMA), which has importantly funded the research on pharmacological properties of S. cumini through the grants #APP01128/10 and #APP00280/12.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonia Malik , Eduardo Bezerra Almeida Jr. or Antonio Marcus de Andrade Paes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Malik, S., Almeida, E.B., de Andrade Paes, A.M. (2016). Syzygium cumini (L.) Skeels: Cardiometabolic Properties and Potential Tissue Culture-Based Improvement of Secondary Metabolites Production. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27490-4_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27490-4_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-27490-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    (L.) Skeels: Cardiometabolic Properties and Potential Tissue Culture-Based Improvement of Secondary Metabolites Production
    Published:
    23 November 2016

    DOI: https://doi.org/10.1007/978-3-319-27490-4_9-2

  2. Original

    (L.) Skeels: Cardiometabolic Properties and Potential Tissue Culture-Based Improvement of Secondary Metabolites Production
    Published:
    28 July 2016

    DOI: https://doi.org/10.1007/978-3-319-27490-4_9-1