Skip to main content

G Protein-Coupled Receptors

  • Living reference work entry
  • First Online:
Principles of Endocrinology and Hormone Action

Part of the book series: Endocrinology ((ENDOCR))

  • 275 Accesses

Abstract

G protein-coupled receptors (GPCRs) include one of the largest gene families in the mammalian genome. The diversity of receptor binding sites and coupling mechanisms provides the signaling specificity necessary to maintain homeostasis. Various G protein-coupled receptors are critical for the functioning of every endocrine system in health and disease, and these proteins are the predominant targets of therapeutic drugs. GPCRs are grouped by primary sequence into different families that all have a canonical seven alpha helical transmembrane domain structure. In recent years, solving the crystal structure for an increasing number of these receptors has helped to resolve the molecular mechanisms of ligand interaction and activation. Despite their name, they couple to cellular signaling via both heterotrimeric G proteins and G protein-independent mechanisms. Receptor and signaling regulatory mechanisms contribute to controlling the level of the cellular responses elicited. A variety of endocrine and systemic diseases are caused by specific receptor mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry. 2011;50(18):3749–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altier C. GPCR and voltage-gated calcium channels (VGCC) signaling complexes. Subcell Biochem. 2012;63:241–62.

    Article  CAS  PubMed  Google Scholar 

  • Ballou LM, Lin HY, Fan G, Jiang YP, Lin RZ. Activated G alpha q inhibits p110 alpha phosphatidylinositol 3-kinase and Akt. J Biol Chem. 2003;278(26):23472–9.

    Article  CAS  PubMed  Google Scholar 

  • Berman DM, Kozasa T, Gilman AG. The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J Biol Chem. 1996;271(44):27209–12.

    Article  CAS  PubMed  Google Scholar 

  • Biddlecome GH, Berstein G, Ross EM. Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J Biol Chem. 1996;271(14):7999–8007.

    Article  CAS  PubMed  Google Scholar 

  • Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol. 2014;85(3):388–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bodmann EL, Wolters V, Bunemann M. Dynamics of G protein effector interactions and their impact on timing and sensitivity of G protein-mediated signal transduction. Eur J Cell Biol. 2015;94(7–9):415–9.

    Article  CAS  PubMed  Google Scholar 

  • Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. Interactions of the alpha-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol. 2013;182(3):209–18.

    Google Scholar 

  • Brady AE, Limbird LE. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal. 2002;14(4):297–309.

    Article  CAS  PubMed  Google Scholar 

  • Brzostowski JA, Kimmel AR. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem Sci. 2001;26(5):291–7.

    Article  CAS  PubMed  Google Scholar 

  • Carman CV, Parent JL, Day PW, Pronin AN, Sternweis PM, Wedegaertner PB, et al. Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem. 1999;274(48):34483–92.

    Article  CAS  PubMed  Google Scholar 

  • Charest PG, Bouvier M. Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances beta-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. J Biol Chem. 2003;278(42):41541–51.

    Article  CAS  PubMed  Google Scholar 

  • Cooke RM, Brown AJ, Marshall FH, Mason JS. Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today. 2015;20(11):1355–64.

    Article  CAS  PubMed  Google Scholar 

  • Cvejic S, Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997;272(43):26959–64.

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev. 2013;65(3):967–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeGraff JL, Gurevich VV, Benovic JL. The third intracellular loop of alpha 2-adrenergic receptors determines subtype specificity of arrestin interaction. J Biol Chem. 2002;277(45):43247–52.

    Article  CAS  PubMed  Google Scholar 

  • Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG. Identification of a gialpha binding site on type V adenylyl cyclase. J Biol Chem. 1998;273(40):25831–9.

    Article  CAS  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Beta-arrestins and cell signaling. Annu Rev Physiol. 2007;69:483–510.

    Article  CAS  PubMed  Google Scholar 

  • Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol. 2016;77(Pt B):226–39.

    Article  CAS  PubMed  Google Scholar 

  • Dore AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014;511(7511):557–62.

    Article  CAS  PubMed  Google Scholar 

  • Duc NM, Kim HR, Chung KY. Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol. 2015;763(Pt B):214–22.

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Pediani JD, Canals M, Milasta S, Milligan G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem. 2006;281(50):38812–24.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53(1):1–24.

    CAS  PubMed  Google Scholar 

  • Garcia-Hoz C, Sanchez-Fernandez G, Diaz-Meco MT, Moscat J, Mayor F, Ribas C. G alpha(q) acts as an adaptor protein in protein kinase C zeta (PKCzeta)-mediated ERK5 activation by G protein-coupled receptors (GPCR). J Biol Chem. 2010;285(18):13480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gingell J, Simms J, Barwell J, Poyner DR, Watkins HA, Pioszak AA, et al. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discov. 2016;2:16012.

    Article  CAS  Google Scholar 

  • Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KD, Devi LA. G protein-coupled receptor heteromers. Annu Rev Pharmacol Toxicol. 2016;56:403–25.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Maeso J, Rodriguez-Puertas R, Meana JJ. Quantitative stoichiometry of G-proteins activated by mu-opioid receptors in postmortem human brain. Eur J Pharmacol. 2002;452(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53(3):439–52.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452(7183):93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman Jr OB, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996;383(6599):447–50.

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV. Arrestins: critical players in trafficking of many GPCRs. Prog Mol Biol Transl Sci. 2015;132:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Hama T, Park F. Heterotrimeric G protein signaling in polycystic kidney disease. Physiol Genomics. 2016;48(7):429–45.

    Article  PubMed  Google Scholar 

  • Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther. 2003;99(1):25–44.

    Article  CAS  PubMed  Google Scholar 

  • Hollenstein K, de Graaf C, Bortolato A, Wang MW, Marshall FH, Stevens RC. Insights into the structure of class B GPCRs. Trends Pharmacol Sci. 2014;35(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh C, Brown S, Derleth C, Mackie K. Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem. 1999;73(2):493–501.

    Article  CAS  PubMed  Google Scholar 

  • Hur EM, Kim KT. G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal. 2002;14(5):397–405.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Kumagai H, Skach A, Sato M, Yanagisawa M. Modulation of circadian glucocorticoid oscillation via adrenal opioid-CXCR7 signaling alters emotional behavior. Cell. 2013;155(6):1323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insel PA, Head BP, Ostrom RS, Patel HH, Swaney JS, Tang CM, et al. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci. 2005;1047:166–72.

    Article  CAS  PubMed  Google Scholar 

  • Jordan JD, Landau EM, Iyengar R. Signaling networks: the origins of cellular multitasking. Cell. 2000;103(2):193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ. Beta-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A. 2001;98(4):1601–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolakowski LF Jr. GCRDb: a G-protein-coupled receptor database. Receptors Channels. 1994;2(1):1–7

    Google Scholar 

  • Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV. Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem. 2013;288(52):37332–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasel C, Bunemann M, Lorenz K, Lohse MJ. Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J Biol Chem. 2005;280(10):9528–35.

    Article  CAS  PubMed  Google Scholar 

  • Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289–319.

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Booe JM, Pioszak AA. Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. Eur J Pharmacol. 2015;763(Pt B):196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Appleton KM, Strungs EG, Kwon JY, Morinelli TA, Peterson YK, et al. The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature. 2016;531(7596):665–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by beta-arrestins. Science. 2005;308(5721):512–7.

    Article  CAS  PubMed  Google Scholar 

  • Liggett SB, Ostrowski J, Chesnut LC, Kurose H, Raymond JR, Caron MG, et al. Sites in the third intracellular loop of the alpha 2A-adrenergic receptor confer short term agonist-promoted desensitization. Evidence for a receptor kinase-mediated mechanism. J Biol Chem. 1992;267(7):4740–6.

    CAS  PubMed  Google Scholar 

  • Litosch I. Decoding Galphaq signaling. Life Sci. 2016;152:99–106.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gimenez JF, Vilaro MT, Milligan G. Morphine desensitization, internalization, and down-regulation of the mu opioid receptor is facilitated by serotonin 5-hydroxytryptamine2A receptor coactivation. Mol Pharmacol. 2008;74(5):1278–91.

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM. Transmembrane signaling by G protein-coupled receptors. Methods Mol Biol. 2006;332:3–49.

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002;115(Pt 3):455–65.

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 1999;283(5402):655–61.

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A. 2001;98(5):2449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature. 2016;537(7619):185–90.

    Article  CAS  PubMed  Google Scholar 

  • Manning DR, Gilman AG. The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J Biol Chem. 1983;258(11):7059–63.

    CAS  PubMed  Google Scholar 

  • Marchese A, Benovic JL. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem. 2001;276(49):45509–12.

    Article  CAS  PubMed  Google Scholar 

  • Marchese A, Chen C, Kim YM, Benovic JL. The ins and outs of G protein-coupled receptor trafficking. Trends Biochem Sci. 2003;28(7):369–76.

    Article  CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron. 2000;27(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  • Marion S, Oakley RH, Kim KM, Caron MG, Barak LS. A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. J Biol Chem. 2006;281(5):2932–8.

    Article  CAS  PubMed  Google Scholar 

  • Marty C, Browning DD, Ye RD. Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Mol Cell Biol. 2003;23(11):3847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice P, Guillaume JL, Benleulmi-Chaachoua A, Daulat AM, Kamal M, Jockers R. GPCR-interacting proteins, major players of GPCR function. Adv Pharmacol. 2011;62:349–80.

    Article  CAS  PubMed  Google Scholar 

  • McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, et al. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem. 2001;276(17):14092–9.

    CAS  PubMed  Google Scholar 

  • Milligan G. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol. 2009;158(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan G, Kostenis E. Heterotrimeric G-proteins: a short history. Br J Pharmacol. 2006;147 Suppl 1:S46–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan G, Feng GJ, Ward RJ, Sartania N, Ramsay D, McLean AJ, et al. G protein-coupled receptor fusion proteins in drug discovery. Curr Pharm Des. 2004;10(17):1989–2001.

    Article  CAS  PubMed  Google Scholar 

  • Mnpotra JS, Qiao Z, Cai J, Lynch DL, Grossfield A, Leioatts N, et al. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. J Biol Chem. 2014;289(29):20259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay S, Ross EM. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc Natl Acad Sci U S A. 1999;96(17):9539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, et al. An amino-acid taste receptor. Nature. 2002;416(6877):199–202.

    Article  CAS  PubMed  Google Scholar 

  • Neubig RR, Siderovski DP. Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov. 2002;1(3):187–97.

    Article  CAS  PubMed  Google Scholar 

  • Neves SR, Ram PT, Iyengar R. G protein pathways. Science. 2002;296(5573):1636–9.

    Article  CAS  PubMed  Google Scholar 

  • Ng GY, O’Dowd BF, Lee SP, Chung HT, Brann MR, Seeman P, et al. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Commun. 1996;227(1):200–4.

    Article  CAS  PubMed  Google Scholar 

  • O’Neil RT, Emeson RB. Quantitative analysis of 5HT(2C) receptor RNA editing patterns in psychiatric disorders. Neurobiol Dis. 2012;45(1):8–13.

    Article  PubMed  CAS  Google Scholar 

  • Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9(1):60–71.

    Article  CAS  PubMed  Google Scholar 

  • Ostrom RS. New determinants of receptor-effector coupling: trafficking and compartmentation in membrane microdomains. Mol Pharmacol. 2002;61(3):473–6.

    Article  CAS  PubMed  Google Scholar 

  • Ostrom RS, Post SR, Insel PA. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J Pharmacol Exp Ther. 2000;294(2):407–12.

    CAS  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289(5480):739–45.

    Article  CAS  PubMed  Google Scholar 

  • Pals-Rylaarsdam R, Hosey MM. Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor. J Biol Chem. 1997;272(22):14152–8.

    Article  CAS  PubMed  Google Scholar 

  • Pals-Rylaarsdam R, Gurevich VV, Lee KB, Ptasienski JA, Benovic JL, Hosey MM. Internalization of the m2 muscarinic acetylcholine receptor. Arrestin-independent and -dependent pathways. J Biol Chem. 1997;272(38):23682–9.

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Gurevich EV, Gurevich VV. The nature of the arrestin x receptor complex determines the ultimate fate of the internalized receptor. J Biol Chem. 2003;278(13):11623–32.

    Article  CAS  PubMed  Google Scholar 

  • Parenty G, Appelbe S, Milligan G. CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2-DOP receptor heterodimer. Biochem J. 2008;412(2):245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park F. Activators of G protein signaling in the kidney. J Pharmacol Exp Ther. 2015;353(2):235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Scheerer P, Hofmann KP, Choe H-W, Ernst OP. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature. 2008;454(7201):183–7.

    Article  CAS  PubMed  Google Scholar 

  • Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab. 2012;23(5):216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penela P. Chapter three – ubiquitination and protein turnover of G-protein-coupled receptor kinases in GPCR signaling and cellular regulation. Prog Mol Biol Transl Sci. 2016;141:85–140.

    Article  CAS  PubMed  Google Scholar 

  • Ponimaskin E, Dumuis A, Gaven F, Barthet G, Heine M, Glebov K, et al. Palmitoylation of the 5-hydroxytryptamine4a receptor regulates receptor phosphorylation, desensitization, and beta-arrestin-mediated endocytosis. Mol Pharmacol. 2005;67(5):1434–43.

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran S, Lippens G, Steen H, Gunawardena J. Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med. 2012;4(6):565–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premont RT, Gainetdinov RR. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol. 2007;69:511–34.

    Article  CAS  PubMed  Google Scholar 

  • Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther. 2003;97(1):1–33.

    Article  CAS  PubMed  Google Scholar 

  • Rapacciuolo A, Suvarna S, Barki-Harrington L, Luttrell LM, Cong M, Lefkowitz RJ, et al. Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates beta-1 adrenergic receptor endocytosis through different pathways. J Biol Chem. 2003;278(37):35403–11.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature. 2007;450(7168):383–7.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 2011;477(7366):549–55.

    Google Scholar 

  • Remmers AE, Clark MJ, Alt A, Medzihradsky F, Woods JH, Traynor JR. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration. Eur J Pharmacol. 2000;396(2–3):67–75.

    Article  CAS  PubMed  Google Scholar 

  • Ricks TK, Trejo J. Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J Biol Chem. 2009;284(49):34444–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronacher K, Matsiliza N, Nkwanyana N, Pawson AJ, Adam T, Flanagan CA, et al. Serine residues 338 and 339 in the carboxyl-terminal tail of the type II gonadotropin-releasing hormone receptor are critical for beta-arrestin-independent internalization. Endocrinology. 2004;145(10):4480–8.

    Article  CAS  PubMed  Google Scholar 

  • Salahpour A, Angers S, Mercier JF, Lagace M, Marullo S, Bouvier M. Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem. 2004;279(32):33390–7.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Fernandez G, Cabezudo S, Garcia-Hoz C, Beninca C, Aragay AM, Mayor Jr F, et al. Galphaq signalling: the new and the old. Cell Signal. 2014;26(5):833–48.

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Makita N, Iiri T. Inverse agonism: the classic concept of GPCRs revisited [review]. Endocr J. 2016;63(6):507–14.

    Article  CAS  PubMed  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauß N, Choe H-W, et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature. 2008;455(7212):497–502.

    Article  CAS  PubMed  Google Scholar 

  • Schmid CL, Bohn LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ß-arrestin2/Src/Akt signaling complex in vivo. J Neurosci Off J Soc Neurosci. 2010;30(40):13513–24.

    Article  CAS  Google Scholar 

  • Seifert R, Lushington GH, Mou TC, Gille A, Sprang SR. Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci. 2012;33(2):64–78.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem. 2003;278(16):14498–506.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001;294(5545):1307–13.

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Rajagopal S. The beta-arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem. 2016;291(17):8969–77.

    Article  CAS  PubMed  Google Scholar 

  • Smrcka AV, Sternweis PC. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem. 1993;268(13):9667–74.

    CAS  PubMed  Google Scholar 

  • Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 1996;379(6563):369–74.

    Article  CAS  PubMed  Google Scholar 

  • Spiegel AM. Albright’s hereditary osteodystrophy and defective G proteins. N Engl J Med. 1990;322(20):1461–2.

    Article  CAS  PubMed  Google Scholar 

  • Stewart A, Fisher RA. Introduction: G protein-coupled receptors and RGS proteins. Prog Mol Biol Transl Sci. 2015;133:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Suh BC, Kim JS, Namgung U, Han S, Kim KT. Selective inhibition of beta(2)-adrenergic receptor-mediated cAMP generation by activation of the P2Y(2) receptor in mouse pineal gland tumor cells. J Neurochem. 2001;77(6):1475–85.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng Z, Ma L, Pei G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem. 2002;277(51):49212–9.

    Article  CAS  PubMed  Google Scholar 

  • Sunahara RK, Dessauer CW, Whisnant RE, Kleuss C, Gilman AG. Interaction of Gsalpha with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem. 1997;272(35):22265–71.

    Article  CAS  PubMed  Google Scholar 

  • Tesmer JJ, Berman DM, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4 – activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell. 1997;89(2):251–61.

    Article  CAS  PubMed  Google Scholar 

  • Thompson MD, Cole DE, Jose PA. Pharmacogenomics of G protein-coupled receptor signaling: insights from health and disease. Methods Mol Biol. 2008a;448:77–107.

    Article  CAS  PubMed  Google Scholar 

  • Thompson MD, Percy ME, McIntyre Burnham W, Cole DE. G protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol. 2008b;448:109–37.

    Article  CAS  PubMed  Google Scholar 

  • Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, et al. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem. 2003;278(8):6258–67.

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Bastepe M. GNAS spectrum of disorders. Curr Osteoporos Rep. 2015;13(3):146–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallar L, Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature. 1987;330(6148):566–8.

    Article  CAS  PubMed  Google Scholar 

  • van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A. Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther. 2015;353(2):246–60.

    Article  PubMed  CAS  Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. Molecular signatures of G-protein-coupled receptors. Nature. 2013;494(7436):185–94.

    Article  CAS  PubMed  Google Scholar 

  • Venkatakrishnan AJ, Flock T, Prado DE, Oates ME, Gough J, Madan BM. Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol. 2014;27:129–37.

    Article  CAS  PubMed  Google Scholar 

  • Vines CM. Phospholipase C. Adv Exp Med Biol. 2012;740:235–54.

    Article  CAS  PubMed  Google Scholar 

  • Violin JD, Crombie AL, Soergel DG, Lark MW. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci. 2014;35(7):308–16.

    Article  CAS  PubMed  Google Scholar 

  • Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, et al. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci U S A. 2005;102(25):9050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther C, Ferguson SS. Arrestins: role in the desensitization, sequestration, and vesicular trafficking of G protein-coupled receptors. Prog Mol Biol Transl Sci. 2013;118:93–113.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature. 2013;497(7449):338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheatley M, Hawtin SR. Glycosylation of G-protein-coupled receptors for hormones central to normal reproductive functioning: its occurrence and role. Hum Reprod Update. 1999;5(4):356–64.

    Article  CAS  PubMed  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, et al. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature. 1998;396(6712):679–82.

    Article  CAS  PubMed  Google Scholar 

  • Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A. 2007;104(18):7682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whorton MR, Jastrzebska B, Park PS, Fotiadis D, Engel A, Palczewski K, et al. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem. 2008;283(7):4387–94.

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330(6007):1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Chi PP, Bourne HR. RGS4 inhibits Gq-mediated activation of mitogen-activated protein kinase and phosphoinositide synthesis. J Biol Chem. 1997;272(18):11924–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zhao Q, Wu B. Structural studies of G protein-coupled receptors. Mol Cells. 2015;38(10):836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart C. Sealfon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Pincas, H., González-Maeso, J., Ruf-Zamojski, F., Sealfon, S.C. (2016). G Protein-Coupled Receptors. In: Belfiore, A., LeRoith, D. (eds) Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-27318-1_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27318-1_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-27318-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics