Skip to main content

Measurement of Molecular Transport After Electropermeabilization

Handbook of Electroporation

Abstract

Measurements of molecular transport after electropermeabilization of biological membranes have been reported since the early days of electroporation research. Monitoring molecular transport not only can help reveal underlying mechanisms but also is critical for applications that aim to deliver molecules into cells via electric field exposures. However, questions remain open in part because of the size of the multi-dimensional experimental parameter spectrum that spans a wide range of electrical and biological factors. Quantitative measurements that address these questions are essential in guiding development of more accurate and predictive electropermeabilization models and in optimizing parameter sets for specific applications. This chapter introduces the main experimental considerations for quantitative measurements of molecular transport after electropermeabilization. A brief discussion of the basic theoretical equations governing molecular transport is followed by discussions of electrical exposure systems, measurement methods, calibration of fluorescence measurements to absolute quantities, and some examples. The chapter provides perspective on the wide range of experimental design decisions to be made and emphasizes the need for careful, quantitative, molecular transport measurements in order to test, improve, and guide models, experiments, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bartoletti DC, Harrison GI, Weaver JC (1989) The number of molecules taken up by electroporated cells: quantitative determination. FEBS Lett 256:4–10. doi:10.1016/0014-5793(89)81707-7

    Article  Google Scholar 

  • Bowman A, Nesin O, Pakhomova O, Pakhomov A (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl+ uptake. J Membr Biol 236:15–26. doi:10.1007/s00232-010-9269-y

    Article  Google Scholar 

  • Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J 80:755–764

    Article  Google Scholar 

  • Gift EA, Weaver JC (1995) Observation of extremely heterogeneous electroporative molecular uptake by Saccharomyces cerevisiae which changes with electric field pulse amplitude. Biochim Biophys Acta (BBA)-Biomembr 1234:52–62

    Article  Google Scholar 

  • Golzio M, Teissié J, Rols M-P (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci 99:1292–1297

    Article  Google Scholar 

  • Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349:643–653. doi:10.1016/j.bbrc.2006.08.097

    Article  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Kennedy SM, Ji Z, Hedstrom JC, Booske JH, Hagness SC (2008) Quantification of electroporative uptake kinetics and electric field heterogeneity effects in cells. Biophys J 94:5018–5027. doi:10.1529/biophysj.106.103218

    Article  Google Scholar 

  • Kinosita K, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471.

    Google Scholar 

  • Mir LM, Banoun H, Paoletti C (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res 175:15–25

    Article  Google Scholar 

  • Moreau D, Lefort C, Burke R, Leveque P, O’Connor RP (2015) Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields. Biomed Opt Express 6:4105–4117. doi:10.1364/BOE.6.004105

    Article  Google Scholar 

  • Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON (2015) Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. Biochim Biophys Acta 1848:958–966. doi:10.1016/j.bbamem.2014.12.026

    Article  Google Scholar 

  • Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond Pulsed Electric Field (nsPEF). Bioelectromagnetics 28:655–663. doi:10.1002/bem.20354

    Article  Google Scholar 

  • Prausnitz MR, Lau BS, Milano CD, Conner S, Langer R, Weaver JC (1993) A quantitative study of electroporation showing a plateau in net molecular transport. Biophys J 65:414

    Article  Google Scholar 

  • Prausnitz MR, Milano CD, Gimm JA, Langer R, Weaver JC (1994) Quantitative study of molecular transport due to electroporation: Uptake of bovine serum albumin by erythrocyte ghosts. Biophys J 66:1522

    Article  Google Scholar 

  • Pucihar G, Kotnik T, Miklavčič D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848

    Article  Google Scholar 

  • Rols M-P, Teissie J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089

    Article  Google Scholar 

  • Romeo S, Wu Y-H, Levine ZA, Gundersen MA, Vernier PT (2013) Water influx and cell swelling after nanosecond electropermeabilization. Biochim Biophys Acta 1828:1715–1722. doi:10.1016/j.bbamem.2013.03.007

    Article  Google Scholar 

  • Saulis G (2005) The loading of human erythrocytes with small molecules by electroporation. Cell Mol Biol Lett 10:23–35

    Google Scholar 

  • Saulis G, Praneviciute R (2007) Determination of cell electroporation in small-volume samples. Biomed Sci Instrum 43:306–311

    Google Scholar 

  • Semenov I, Zemlin C, Pakhomova ON, Xiao S, Pakhomov AG (2015) Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses. Biochim Biophys Acta (BBA)-Biomembr 1848:2118–2125

    Article  Google Scholar 

  • Smith KC, Weaver JC (2011) Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses. Biochem Biophys Res Commun 412:8–12. doi:10.1016/j.bbrc.2011.06.171

    Article  Google Scholar 

  • Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC (2014) Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membr Biol 247:1209–1228. doi:10.1007/s00232-014-9699-z

    Article  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37. doi:10.1186/1471-2121-7-37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esin B. Sözer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Sözer, E.B., Vernier, P.T. (2017). Measurement of Molecular Transport After Electropermeabilization. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-26779-1_115-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26779-1_115-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26779-1

  • Online ISBN: 978-3-319-26779-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Measurement of Molecular Transport After Electropermeabilization
    Published:
    13 May 2017

    DOI: https://doi.org/10.1007/978-3-319-26779-1_115-2

  2. Original

    Measurement of Molecular Transport After Electropermeabilization
    Published:
    02 January 2017

    DOI: https://doi.org/10.1007/978-3-319-26779-1_115-1