Skip to main content

Transepidermal Water Loss

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Agache’s Measuring the Skin

Abstract

The use of noninvasive methods for the examination of different physiological functions of the skin or for the characterization of pharmacological or pathological reactions is evolving continuously. Following the development of suitable techniques, instruments are now available for the evaluation of such different cutaneous parameters as color, elasticity, dermal blood flow, hydration of the horny layer, sebum excretion, and of course trans epidermal water loss (TEWL). This equipment adds information to the usual visual evaluation of the skin and catches information undetectable by the human eye.

Numerous advantages arise from using these techniques: independence toward investigators’ subjectivity, numerical results instead of nominal data, increased standardization of the experiments, better possibilities of interlaboratory comparisons, no requirement of highly specialized personnel, etc. Above that, the increasing automation of data acquisition allows simultaneous evaluation of several parameters allowing the development of multiple parameter kinetics in research protocols. As a consequence, these new techniques are of growing interest for dermato-cosmetic laboratories.

The aim of the present chapter is to describe the basic principles related to TEWL measurements, the development and the evolution of the different (commercial) instruments, to discuss the sources of error and variations in TEWL measurements, and to illustrate some practical examples of TEWL measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aalto-Korte K. Improvement of skin barrier function during treatment of atopic dermatitis. J Am Acad Dermatol. 1995;33:969–72.

    Article  CAS  PubMed  Google Scholar 

  • Andersen PH, Bucher AP, Saeed I, Lee PC, Davis JA, Maibach HI. Faecal enzymes: in vivo human skin irritation. Contact Dermatitis. 1994;30:152–8.

    Article  CAS  PubMed  Google Scholar 

  • Anthonissen M, Daly D, Fieuws S, Massagé P, Van Brussel M, Vranckx J, Vaden E. Measurement of elasticity and transepidermal water loss rate of burn scars with the Dermalab. Burns. 2013;39:420–8.

    Article  PubMed  Google Scholar 

  • Barel AO, Clarys P. Comparison of methods for measurement of transepidermal water loss. In: Serup J, Jemec JBE, editors. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press; 1995a. p. 179–84.

    Google Scholar 

  • Barel AO, Clarys P. Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: Evaporimeter® and Tewameter®. Skin Pharmacol. 1995b;8:186–95.

    Article  CAS  PubMed  Google Scholar 

  • Berardesca E. Tests for sensitive skin. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology. 4th ed. Boca Raton: CRC Press, Taylor & Francis Group; 2014. p. 77–9.

    Google Scholar 

  • Berardesca E, Elsner P. Dynamic measurements: the plastic occlusion stress test (POST) and the moisture accumulation test (MAT). In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994. p. 97–102.

    Google Scholar 

  • Berardesca E, Maibach HI. Transepidermal water loss and skin surface hydration in the non-invasive assessment of stratum corneum function. Dermatosen. 1990;38:50–3.

    CAS  Google Scholar 

  • Clarys P, Manou I, Barel A. Relationship between anatomical site and response to halcinonide and methylnicotinate studied by bioengineering techniques. Skin Res Technol. 1997;3:161–8.

    Article  CAS  PubMed  Google Scholar 

  • Clarys P, Clijsen R, Barel AO, Schouteden R, Van Olst B, Aerenhouts D. Estimation of sweat rates during cycling exercise by means of the closed chamber condenser technology. Skin Res Technol. 2017;23:30–5.

    Article  CAS  PubMed  Google Scholar 

  • Couturaud V. Biophysical characteristics of the skin relation to race, sex, age and site. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology. 4th ed. Boca Raton: CRC Taylor & Francis Group; 2014. p. 3–17.

    Google Scholar 

  • De Paepe K, Houben E, Adam R, Wieseman F, Rogiers V. Validation of the Vapometer, a closed unventilated chamber system to assess transepidermal water loss versus the open chamber Tewameter R. Skin Res Technol. 2005;11:61–9.

    Article  PubMed  Google Scholar 

  • Effendy I, Maibach HI. Surfactants and experimental irritant contact dermatitis. Contact Dermatitis. 1995;33:217–25.

    Article  CAS  PubMed  Google Scholar 

  • Effendy I, Kwangsukstith C, Lee JY, Maibach HI. Functional changes in human stratum corneum induced by topical glycolic acid: comparison with all-trans retinoic acid. Acta Derm Venereol. 1996a;75:455–8.

    Google Scholar 

  • Effendy I, Weltfriend S, Patil S, Maibach HI. Differential irritant skin responses to topical retinoic acid and sodium lauryl sulphate: alone and in crossover design. Br J Dermatol. 1996b;134:424–30.

    Article  CAS  PubMed  Google Scholar 

  • Effendy I, Kwangsukstith C, Chiappe M, Maibach HI. Effects of calcipotriol on stratum corneum barrier function, hydration and cell renewal in humans. Br J Dermatol. 1996c;135:545–9.

    Article  CAS  PubMed  Google Scholar 

  • Farahmand S, Tien J, Hui X, Maibach HI. Measuring transepidermal water loss: a comparative in vivo study of the condenser chamber, unventilated chamber and open chamber systems. Skin Res Technol. 2009;15:392–8.

    Article  PubMed  Google Scholar 

  • Frödin T, Molin L, Skogh M. Effects of single doses of UVA, UVB, and UVC on skin blood flow, water content, and barrier function measured by laser-Doppler flowmetry, optothermal infrared spectrometry, and evaporimetry. Photo-Dermatology. 1988;5:187–95.

    PubMed  Google Scholar 

  • Fullerton A, Serup J. Topical D-vitamins: multiparametric comparison of the irritant potential of calcipotriol, tacalcitol and calcitriol in a hairless guinea pig model. Contact Dermatitis. 1997;36:184–90.

    Article  CAS  PubMed  Google Scholar 

  • Gabard B. Appearance and regression of a local skin irritation in two different models. Dermatosen. 1991;39:111–6.

    Google Scholar 

  • Gabard B. Testing the efficacy of moisturizers. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994. p. 147–67.

    Google Scholar 

  • Gabard B, Elsner P, Treffel P. Barrier function of the skin in a repetitive irritation model and influence of 2 different treatments. Skin Res Technol. 1996;2:78–82.

    Article  CAS  PubMed  Google Scholar 

  • Ghadially R, Halkier-Sorensen L, Elias PM. Effects of petrolatum on stratum corneum structure and function. J Am Acad Dermatol. 1992;26:387–96.

    Article  CAS  PubMed  Google Scholar 

  • Grove GL, Grove MJ, Zerweck C, Pierce E. Comparative metrology of the evaporimeter and the DermaLab TEWL probe. Skin Res Technol. 1999;5:1–8.

    Article  Google Scholar 

  • Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH, Elias PM, Holleran WM. UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol. 1997;108:769–75.

    Article  CAS  PubMed  Google Scholar 

  • Imhof B, McFeat G. Evaluation of the barrier function of skin using TransEpidermal water loss. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology. 4th ed. Boca Raton: CRC Press Taylor& Francis Group; 2014. p. 131–8.

    Google Scholar 

  • Imhof RE, O’Driscoll D, Xiao P, Berg EP. New sensor for water vapour flux. In: Augusti AT, White NM, editors. Sensors and their applications. London: Taylor & Francis; 1999. p. 173–7.

    Google Scholar 

  • Imhof B, De Jesus DE, Xiao P, Ciortea LI, Berg EP. Closed – chamber transepidermal water loss measurements microclimate, calibration and performance. Int J Cosmet Sci. 2009;31:97–118.

    Article  CAS  PubMed  Google Scholar 

  • Kottner J, Lichterfeld A, Blume-Peytani J. Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis. Arch Dermatol Res. 2013;305:315–23.

    Article  PubMed  Google Scholar 

  • Lee Y, Je Y, Lee S, Jun Li Z, Choi D, Kwon Y, Sohn K, Im M, Joon Seo Y, Hoon LJ. Changes in transepidermal water loss and skin hydration according to expression of aquaporin-3 in psoriasis. Ann Dermatol. 2012;24:168–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lévêque JL. Measurement of transepidermal water loss. In: Lévêque JL, editor. Cutaneous investigation in health and disease: noninvasive methods and instrumentation. New York: Marcel Dekker; 1989. p. 134–52.

    Google Scholar 

  • Lodén M. Urea-containing moisturizers influence barrier properties of normal skin. Arch Dermatol Res. 1996;288:103–7.

    Article  PubMed  Google Scholar 

  • Lodén M. Barrier recovery and influence of irritant stimuli in skin treated with a moisturizing cream. Contact Dermatitis. 1997;36:256–60.

    Article  PubMed  Google Scholar 

  • Ludriksone L, Bartels NB, Kanti V, Blume-Peytani U, Kottner J. Skin barrier function in infant: a systematic review. Arch Dermatol Res. 2014;306:591–9.

    Article  PubMed  Google Scholar 

  • Marti-Mestres G, Passet J, Maillols H, Van Sam V, Guilhou JJ, Mestres JP, Guillot B. Evaluation expérimentale de l’hydratation et du pouvoir occlusif in vivo et in vitro d’excipients lipophiles et de leur émulsions phase huile continue. Int J Cosmet Sci. 1994;16:161–70.

    Article  CAS  PubMed  Google Scholar 

  • Morrison BM. ServoMed evaporimeter: precautions when evaluating the effect of skin care products on barrier function. J Soc Cosmet Chem. 1992;43:161–7.

    Google Scholar 

  • Nillson GE. Measurement of water exchange through the skin. Med Biol Comput. 1977;15:209–18.

    Article  Google Scholar 

  • Nuutinen J, Alanen E, Autio P, Lahtinen MR, Haruima I, Lahtinen T. A closed unventilated chamber for the measurement of transepidermal water loss. Skin Res Technol. 2003;9:85–9.

    Article  PubMed  Google Scholar 

  • Petro AJ, Komor JA. Correction to absolute values of evaporation rates measured by the ServoMed Evaporimeter. Bioeng Skin. 1987;3:271–80.

    CAS  Google Scholar 

  • Pinnagoda J. Hardware and measuring principles: evaporimeter. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994a. p. 51–8.

    Google Scholar 

  • Pinnagoda J. Standardization of measurements. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994b. p. 59–65.

    Google Scholar 

  • Pinnagoda J, Tupker RA. Measurement of transepidermal water loss. In: Serup J, Jemec JBE, editors. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press; 1995. p. 173–8.

    Google Scholar 

  • Pinnagoda J, Tupker RA, Smit JA, Coenraads PJ, Nater JP. The intra- and inter-individual variability and reliability of transepidermal water loss measurements. Contact Dermatitis. 1989;21:255–9.

    Article  CAS  PubMed  Google Scholar 

  • Pinnagoda J, Tupker RA, Agner T, Serup J. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermatitis. 1994;22:164–78.

    Article  Google Scholar 

  • Potts RO, Francoeur ML. The influence of stratum corneum morphology on water permeability. J Invest Dermatol. 1991;96:495–9.

    Article  CAS  PubMed  Google Scholar 

  • Querleux B, De Lacharrière O. Neurophysiology of self-perceived sensitive-skin subjects by functional magnetic resonance imaging. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology, 4th Edtion. Boca Raton: CRC Press, Taylor & Francis Group. 2014. p. 71–75.

    Google Scholar 

  • Rieger MM, Deem DE. Skin moisturizers. I: Methods for measuring water regain, mechanical properties and transepidermal moisture loss of stratum corneum. J Soc Cosmet Chem. 1974;25:239–52.

    Google Scholar 

  • Rogiers V. Transepidermal water loss measurements in patch test assessment: the need for standardisation. In: Elsner P, Maibach HI, editors. Irritant dermatitis: new clinical and experimental aspects, current problems in dermatology, vol. 23. Basel: Karger; 1995. p. 152–8.

    Google Scholar 

  • Rogiers V. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Physiol. 2001;14:117–28.

    Article  CAS  Google Scholar 

  • Saggar V, Banker N, Wesley NO, Maibach HI (2014) Ethnic differences in skin properties. The objective data. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology, 4th Edtion. Boca Raton: CRC Press, Taylor & Francis Group. 2014. p. 19–57.

    Google Scholar 

  • Salter D. Non-invasive cosmetic efficacy testing in human volunteers: some general principles. Skin Res Technol. 1996;2:59–63.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer H, Redelmeier TE. Skin barrier; principles of percutaneous absorption. Basel: Karger; 1996. p. 87–9.

    Google Scholar 

  • Seidenari S, Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol. 1995;73:429–33.

    Google Scholar 

  • Tagami H, Kobayashi H, Kikuchi K. A portable device using a closed chamber system for measuring transepidermal water loss: comparison with the conventional method. Skin Res Technol. 2002;8:7–12.

    PubMed  Google Scholar 

  • Tupker RA, Willis C, Berardesca E, Lee CH, Fartasch M, Agner T, Serup J. Guidelines on sodium lauryl sulphate (SLS) exposure tests. Contact Dermatitis. 1997;37:53–69.

    Article  CAS  PubMed  Google Scholar 

  • Van Kemenade P (1998) Water and ion transport through intact and damaged skin. PhD Thesis, Technische Universiteit Eindhoven, ISBN 90-386-0760-1

    Google Scholar 

  • Wilhelm KP, Surber C, Maibach HI. Quantification of sodium lauryl sulphate irritant dermatitis in man: comparison of four techniques: skin color reflectance, transepidermal water loss, laser Doppler flow measurement and visual scores. Arch Dermatol Res. 1989;281:293–5.

    Article  CAS  PubMed  Google Scholar 

  • Wilson DR, Maibach HI. Transepidermal water loss: a review. In: Lévêque JL, editor. Cutaneous investigation in health and disease: noninvasive methods and instrumentation. New York: Marcel Dekker; 1989. p. 113–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Barel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Barel, A., Clarys, P., Gabard, B. (2017). Transepidermal Water Loss. In: Humbert, P., Fanian, F., Maibach, H., Agache, P. (eds) Agache’s Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_142-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_142-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26594-0

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Transepidermal Water Loss
    Published:
    06 June 2017

    DOI: https://doi.org/10.1007/978-3-319-26594-0_142-2

  2. Original

    Transepidermal Water Loss
    Published:
    30 April 2016

    DOI: https://doi.org/10.1007/978-3-319-26594-0_142-1