Skip to main content

Transepidermal Water Loss

Agache’s Measuring the Skin
  • 125 Accesses

Abstract

The use of noninvasive measurement methods for the examination of different physiological functions of the skin or for the characterization of pharmacological or pathological reactions is recent. Following the development of suitable techniques, instruments are now available for the evaluation of such different cutaneous parameters as color, elasticity, dermal blood flow, hydration of the horny layer, sebum excretion, and, of course, transepidermal water loss (TEWL). This equipment may replace the usual visual evaluation of skin state and are able to catch changes that otherwise would be not detected by the human eye.

This chapter was originally published under the ISBN 978-3-540-01771-4. The content has not been changed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aalto-Korte K. Improvement of skin barrier function during treatment of atopic dermatitis. J Am Acad Dermatol. 1995;33:969–72.

    Article  CAS  PubMed  Google Scholar 

  • Andersen PH, Bucher AP, Saeed I, Lee PC, Davis JA, Maibach HI. Faecal enzymes: in vivo human skin irritation. Contact Dermatitis. 1994;30:152–8.

    Article  CAS  PubMed  Google Scholar 

  • Barel AO, Clarys P. Comparison of methods for measurement of transepidermal water loss. In: Serup J, Jemec JBE, editors. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press; 1995a. p. 179–84.

    Google Scholar 

  • Barel AO, Clarys P. Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: evaporimeter® and tewameter®. Skin Pharmacol. 1995b;8:186–95.

    Article  CAS  PubMed  Google Scholar 

  • Berardesca E, Elsner P. Dynamic measurements: the plastic occlusion stress test (POST) and the moisture accumulation test (MAT). In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994. p. 97–102.

    Google Scholar 

  • Berardesca E, Maibach HI. Transepidermal water loss and skin surface hydration in the non invasive assessment of stratum corneum function. Dermatosen. 1990;38:50–3.

    CAS  Google Scholar 

  • Clarys P, Manou I, Barel A. Relationship between anatomical site and response to halcinonide and methyl nicotinate studied by bioengineering techniques. Skin Res Technol. 1997;3:161–8.

    Article  CAS  PubMed  Google Scholar 

  • DermaLab®: Cortex Technology, Smedevaenget 10, DK-9560 Hasund, Denmark. http://www.cortex.dk

  • Effendy I, Maibach HI. Surfactants and experimental irritant contact dermatitis. Contact Dermatitis. 1995;33:217–25.

    Article  CAS  PubMed  Google Scholar 

  • Effendy I, Kwangsukstith C, Lee JY, Maibach HI. Functional changes in human stratum corneum induced by topical glycolic acid: comparison with all-trans retinoic acid. Acta Derm Venereol. 1995;75:455–8.

    CAS  PubMed  Google Scholar 

  • Effendy I, Weltfriend S, Patil S, Maibach HI. Differential irritant skin responses to topical retinoic acid and sodium lauryl sulphate: alone and in crossover design. Br J Dermatol. 1996a;134:424–30.

    Article  CAS  PubMed  Google Scholar 

  • Effendy I, Kwangsukstith C, Chiappe M, Maibach HI. Effects of calcipotriol on stratum corneum barrier function, hydration and cell renewal in humans. Br J Dermatol. 1996b;135:545–9.

    Article  CAS  PubMed  Google Scholar 

  • Evaporimètre®: Servo Med AB, P.O. Box 47, S-432 21 Varberg, Sweden. http://www.servomed.se

  • Frödin T, Molin L, Skogh M. Effects ofsingle doses of UVA, UVB, and UVC on skin blood flow, water content, and barrier function measured by laser-Doppler flowmetry, optothermal infrared spectrometry, and evaporimetry. Photodermatology. 1988;5:187–95.

    PubMed  Google Scholar 

  • Fullerton A, Serup J. Topical D-vitamins: multiparametric comparison of the irritant potential of calcipotriol, tacalcitol and calcitriol in a hairless guinea pig model. Contact Dermatitis. 1997;36:184–90.

    Article  CAS  PubMed  Google Scholar 

  • Gabard B. Appearance and regression of a local skin irritation in two different models. Dermatosen. 1991;39:111–6.

    Google Scholar 

  • Gabard B. Testing the efficacy of moisturizers. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994. p. 147–67.

    Google Scholar 

  • Gabard B, Treffel P, Charton-Picard F, Eloy R. Irritant reactions on hairless micropig skin: a model for testing barrier creams? In: Elsner P, Maibach HI, editors. Irritant dermatitis: new clinical and experimental aspects, Current Problems in Dermatology, vol. 23. Basel: Karger; 1995. p. 275–87.

    Google Scholar 

  • Gabard B, Elsner P, Treffel P. Barrier function of the skin in a repetitive irritation model and influence of 2 different treatments. Skin Res Technol. 1996;2:78–82.

    Article  CAS  PubMed  Google Scholar 

  • Gendimenico GJ, Liebel FT, Fernandez JA, Mezick JA. Evaluation of topical retinoids for cutaneous pharmacological activity in Yucatan microswine. Arch Dermatol Res. 1995;287:675–9.

    Article  CAS  PubMed  Google Scholar 

  • Ghadially R, Halkier-Sorensen L, Elias PM. Effects of petrolatum on stratum corneum structure and function. J Am Acad Dermatol. 1992;26:387–96.

    Article  CAS  PubMed  Google Scholar 

  • Giorgini S, Brusi C, Sertoli A. Evaporimetry in the differentiation of allergic, irritant and doubtful patch test reactions. Skin Res Technol. 1996;2:49–51.

    Article  CAS  PubMed  Google Scholar 

  • Grove GL, Grove MJ, Zerweck C, Pierce E. Comparative metrology of the evaporimeter and the DermaLab TEWL probe. Skin Res Technol. 1999;5:1–8.

    Article  Google Scholar 

  • Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH, Elias PM, Holleran WM. UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol. 1997;108:769–75.

    Article  CAS  PubMed  Google Scholar 

  • Lavrijsen APM, Oestmann E, Hermans J, Boddé HE, Vermeer BJ, Ponec M. Barrier function parameters in various keratinization disorders: transepidermal water loss and vascular response to hexyl nicotinate. Br J Dermatol. 1993;129:547–54.

    Article  CAS  PubMed  Google Scholar 

  • Lévêque JL. Measurement of transepidermal water loss. In: Lévêque JL, editor. Cutaneous investigation in health and disease: noninvasive methods and instrumentation. New York: Marcel Dekker; 1989. p. 134–52. chap. 6.

    Google Scholar 

  • Lodén M. Urea-containing moisturizers influence barrier properties of normal skin. Arch Dermatol Res. 1996;288:103–7.

    Article  PubMed  Google Scholar 

  • Lodén M. Barrier recovery and influence of irritant stimuli in skin treated with a moisturizing cream. Contact Dermatitis. 1997;36:256–60.

    Article  PubMed  Google Scholar 

  • Marti-Mestres G, Passet J, Maillols H, Van Sam V, Guilhou JJ, Mestres JP, Guillot B. Evaluation expérimentale de l’hydratation et du pouvoir occlusif in vivo et in vitro d’excipients lipophiles et de leur émulsions phase huile continue. Int J Cosmet Sci. 1994;16:161–70.

    Article  CAS  PubMed  Google Scholar 

  • Morrison BM. ServoMed evaporimeter: precautions when evaluating the effect of skin care products on barrier function. J Soc Cosmet Chem. 1992;43:161–7.

    Google Scholar 

  • Mortz CG, Andersen KE, Halkier-Sorensen L. The efficacy of different moisturizers on barrier recovery in hairless mice evaluated by non-invasive bioengineering methods. Contact Dermatitis. 1997;36:297–301.

    Article  CAS  PubMed  Google Scholar 

  • Oestmann E, Lavrijsen APM, Hermans J, Ponec M. Skin barrier function in healthy volunteers as assessed by transepidermal water loss and vascular response to hexyl nicotinate: intra- and inter-individual variability. Br J Dermatol. 1993;128:130–6.

    Article  CAS  PubMed  Google Scholar 

  • Petro AJ, Komor JA. Correction to absolute values of evaporation rates measured by the ServoMed evaporimeter. Bioeng Skin. 1987;3:271–80.

    CAS  Google Scholar 

  • Pinnagoda J. Hardware and measuring principles: evaporimeter. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994a. p. 51–8.

    Google Scholar 

  • Pinnagoda J. Standardization of measurements. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994b. p. 59–65.

    Google Scholar 

  • Pinnagoda J, Tupker RA. Measurement of transepidermal water loss. In: Serup J, Jemec JBE, editors. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press; 1995. p. 173–8.

    Google Scholar 

  • Pinnagoda J, Tupker RA, Smit JA, Coenraads PJ, Nater JP. The intra- and inter-individual variability and reliability of transepidermal water loss measurements. Contact Dermatitis. 1989;21:255–9.

    Article  CAS  PubMed  Google Scholar 

  • Pinnagoda J, Tupker RA, Agner T, Serup J. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermatitis. 1990;22:164–78.

    Article  CAS  PubMed  Google Scholar 

  • Potts RO, Francoeur ML. The influence of stratum corneum morphology on water permeability. J Invest Dermatol. 1991;96:495–9.

    Article  CAS  PubMed  Google Scholar 

  • Rogiers V. Transepidermal water loss measurements in patch test assessment: the need for standardisation. In: Elsner P, Maibach HI, editors. Irritant dermatitis: new clinical and experimental aspects, Current Problems in Dermatology, vol. 23. Basel: Karger; 1995. p. 152–8.

    Google Scholar 

  • Rougier A. TEWL and transcutaneous absorption. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994. p. 103–13.

    Google Scholar 

  • Salter D. Non-invasive cosmetic efficacy testing in human volunteers: some general principles. Skin Res Technol. 1996;2:59–63.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer H, Redelmeier TE. Skin barrier; principles of percutaneous absorption. Bâle: Karger; 1996. p. 87–9.

    Google Scholar 

  • Seidenari S, Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol. 1995;73:429–33.

    Google Scholar 

  • Tagami H, Kobayashi H, Kikuchi K. A portable device using a closed chamber system for measuring transepidermal water loss: comparison with the conventional method. Skin Res Technol. 2002;8:7–12.

    PubMed  Google Scholar 

  • Tewamètre®: Courage + Khazaka electronic GmbH, Mathias-Brüggen-Str. 91, D-50829 Cologne, Allemagne. http://www.courage-khazaka.de

  • Tupker RA, Willis C, Berardesca E, Lee CH, Fartasch M, Agner T, Serup J. Guidelines on sodium lauryl sulphate (SLS) exposure tests. Contact Dermatitis. 1997;37:53–69.

    Article  CAS  PubMed  Google Scholar 

  • Van Kemenade P. Water and ion transport through intact and damaged skin. PhD Thesis, Technische Universiteit Eindhoven; 1998. ISBN 90-386-0760-1.

    Google Scholar 

  • Von Brenken S, Jensen JM, Fartasch M, Procksch E. Topical vitamin D3 derivatives impair the epidermal permeability barrier in normal mouse skin. Dermatology. 1997;194:151–6.

    Article  Google Scholar 

  • Wilhelm KP, Surber C, Maibach HI. Quantification of sodium lauryl sulphate irritant dermatitis in man: comparison of four techniques: skin color reflectance, transepidermal water loss, laser Doppler flow measurement and visual scores. Arch Dermatol Res. 1989;281:293–5.

    Article  CAS  PubMed  Google Scholar 

  • Wilson DR, Maibach HI. Transepidermal water loss: a review. In: Lévêque JL, editor. Cutaneous investigation in health and disease: noninvasive methods and instrumentation. New York: Marcel Dekker; 1989. p. 113–33. chap. 6.

    Google Scholar 

  • Zettersten EM, Ghadially R, Feingold KR, Crumrine D, Elias PM. Optimal ratios of topical stratum corneum lipids improve barrier recovery in chronologically aged skin. J Am Acad Dermatol. 1997;37:403–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Gabard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gabard, B., Treffel, P. (2016). Transepidermal Water Loss. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Agache’s Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_142-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_142-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Transepidermal Water Loss
    Published:
    06 June 2017

    DOI: https://doi.org/10.1007/978-3-319-26594-0_142-2

  2. Original

    Transepidermal Water Loss
    Published:
    30 April 2016

    DOI: https://doi.org/10.1007/978-3-319-26594-0_142-1