Skip to main content

Dynamical Evolution and Radiative Processes of Supernova Remnants

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

I outline the dynamical evolution of the shell remnants of supernovae (SNRs), from initial interaction of supernova ejecta with circumstellar material (CSM) through to the final dissolution of the remnant into the interstellar medium (ISM). Supernova ejecta drive a blast wave through any CSM from the progenitor system; as material is swept up, a reverse shock forms in the ejecta, reheating them. This ejecta-driven phase lasts until ten or more times the ejected mass is swept up, and the remnant approaches the Sedov or self-similar evolutionary phase. The evolution to this time is approximately adiabatic. Eventually, as the blast wave slows, the remnant age approaches the cooling time for immediate post-shock gas, and the shock becomes radiative and highly compressive. Eventually the shock speed drops below the local ISM sound speed, and the remnant dissipates. I then review the various processes by which remnants radiate. At early times, during the adiabatic phases, thermal X-rays and nonthermal radio, X-ray, and gamma ray emission dominate, while optical emission is faint and confined to a few strong lines of hydrogen and perhaps helium. Once the shock is radiative, prominent optical and infrared emission is produced. Young remnants are profoundly affected by interaction with often anisotropic CSM, while even mature remnants can still show evidence of ejecta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Behera B, Beilicke M, Benbow W, Berge D, Bernl¨ohr K, Boisson C, Bolz O, Borrel V, Braun I, Brion E, Brown AM, B¨uhler R, Bulik T, B¨usching I, Boutelier T, Carrigan S, Chadwick PM, Chounet L-M, Clapson AC, Coignet G, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, Domainko W, Drury LO-C, Dubus G, Dyks J, Egberts K, Emmanoulopoulos D, Espigat P, Farnier C, Feinstein F, Fiasson A, F¨orster A, Fontaine G, Fukui Y, Funk S, F¨ußling M, Gallant YA, Giebels B, Glicenstein JF, Gl¨uck B, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Kendziorra E, Kerschhaggl M, Khélifi B, Komin Nu, Kosack K, Lamanna G, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Lenain J-P, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, Maurin G, McComb TJL, Moderski R, Moriguchi Y, Moulin E, de Naurois M, Nedbal D, Nolan SJ, Olive J-P, Orford KJ, Osborne JL, Ostrowski M, Panter M, Pedaletti G, Pelletier G, Petrucci P-O, Pita S, P¨uhlhofer G, Punch M, Ranchon S, Raubenheimer BC, Raue M, Rayner SM, Reimer O, Renaud M, Ripken J, Rob L, Rolland L, Rosier-Lees S, Rowell G, Rudak B, Ruppel J, Sahakian V, Santangelo A, Saugé L, Schlenker S, Schlickeiser R, Schr¨oder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sol H, Spangler D, Stawarz Ł, Steenkamp R, Stegmann C, Superina G, Takeuchi T, Tam PH, Tavernet J-P, Terrier R, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Vincent P, Vivier M, V¨olk HJ, Volpe F, Wagner SJ, Ward M (2008) Discovery of very high energy gamma ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field. A&A 481:401–410

    Google Scholar 

  • Blandford RD, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154:1–75

    Article  ADS  Google Scholar 

  • Blondin JM, Wright EB, Borkowski KJ, Reynolds SP (1998) Transition to the radiative phase in supernova remnants. ApJ 500:342–354

    Article  ADS  Google Scholar 

  • Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core-collapse supernovae. ApJ 584:971–980

    Article  ADS  Google Scholar 

  • Borkowski KJ, Reynolds SP, Roberts MSE (2016) G11.2-0.3: the young remnant of a stripped-envelope supernova. ApJ 819:160 (17 pp)

    Google Scholar 

  • Borkowski KJ, Williams BJ, Reynolds SP, Blair WP, Ghavamian P, Sankrit R, Hendrick SP, Long KS, Raymond JC, Smith RC, Points S, Winkler PF (2006) Dust destruction in Type Ia supernova remnants in the large magellanic cloud. ApJ 642:L141–L144

    Article  ADS  Google Scholar 

  • Burkey M, Reynolds SP, Borkowski KJ, Blondin JM (2013) X-ray emission from strongly asymmetric circumstellar material in the remnant of Kepler’s supernova. ApJ 764:63

    Article  ADS  Google Scholar 

  • Carlton AK, Borkowski KJ, Reynolds SP, Hwang U, Petre R, Green DA, Krishnamurthy K, Willett R (2011) Expansion of the youngest Galactic supernova remnant G1.9+0.3. ApJ 737:22

    Google Scholar 

  • Castor J, McCray R, Weaver R (1975) Interstellar bubbles. ApJ 200:107–110

    Article  ADS  Google Scholar 

  • Chevalier RA (1982) Self-similar solutions for the interaction of stellar ejecta with an external medium. ApJ 258:790–797

    Article  ADS  Google Scholar 

  • Cox DP, Raymond JC (1985) Preionization-dependent families of radiative shock waves. ApJ 298:651–659

    Article  ADS  Google Scholar 

  • DeLaney T, Kassim NE, Rudnick L, Perley RA (2014) The density and mass of unshocked ejecta in Cassiopeia A through low frequency radio absorption. ApJ 785:7 (16pp)

    Article  ADS  Google Scholar 

  • Dohm-Palmer RC, Jones TW (1996) Young supernova remnants in nonuniform media. ApJ 471:279:291

    Google Scholar 

  • Draine B (2011) Physics of the interstellar and intergalactic medium. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Dwarkadas VV, Chevalier RA (1998) Interaction of Type Ia supernovae with their surroundings. ApJ 497:807–823

    Article  ADS  Google Scholar 

  • Dwek E, Arendt RG (1992) Dust-gas interactions and the infrared emission from hot astrophysical plasmas. ARA&A 30:11–50

    Article  ADS  Google Scholar 

  • Gomez HL, Clark CJR, Nozawa T, Krause O, Gomez EL, Matsuura M, Barlow MJ, Besel M-A, Dunne L, Gear WK, Hargrave P, Henning T, Ivison RJ, Sibthorpe B, Swinyard BM, Wesson R (2012) Dust in historical galactic Type Ia supernova remnants with Herschel. MNRAS 420:3557–3573

    Article  ADS  Google Scholar 

  • Grefenstette BW, Harrison FA, Boggs SE, Reynolds SP, Fryer CL, Madsen KK, Wik DR, Zoglauer A, Ellinger CI, Alexander DM, An H, Barret D, Christensen FE, Craig WW, Forster K, Giommi P, Hailey CJ, Hornstrup A, Kaspi VM, Kitaguchi T, Koglin JE, Mao PH, Miyasaka H, Mori K, Perri M, Pivovaroff MJ, Puccetti S, Rana V, Stern D, Westergaard NJ, Zhang WW (2014) Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A. Nature 506:339–342

    Article  ADS  Google Scholar 

  • Grefenstette BW, Reynolds SP, Harrison FA, Humensky TB, Boggs SE, Fryer CL, DeLaney T, Madsen KK, Miyasaka H, Wik DR, Zoglauer A, Forster K, Kitaguchi T, Lopez L, Nynka M, Christensen FE, Craig WW, Hailey CJ, Stern D, Zhang WW (2015) Locating the most energetic electrons in Cassiopeia A. ApJ 802:15 (11pp)

    Article  ADS  Google Scholar 

  • Green DA (2014) A catalogue of galactic supernova remnants (2014 May version). Cavendish Laboratory, Cambridge. Available at http://www.mrao.cam.ac.uk/surveys/snrs/

    Google Scholar 

  • Hammell MC, Fesen RA (2008) A catalog of outer ejecta knots in the Cassiopeia A supernova remnant. ApJS 179:196–208

    Article  ADS  Google Scholar 

  • Helder EA, Broos PS, Dewey D, Dwek E, McCray R, Park S, Racusin JL, Zhekov SA, Burrows DN (2013) Chandra observations of SN 1987A: the soft x-ray light curve revisited. ApJ 764:11 (7pp)

    Article  ADS  Google Scholar 

  • Heng K (2010) Balmer-dominated shocks: a concise review. PASA 27:23–44

    Article  ADS  Google Scholar 

  • Innes DE, Giddings JR, Falle SAEG (1987) Dynamical models of radiative shocks. III – spectra. MNRAS 227:1021–1053

    Google Scholar 

  • Isensee K, Rudnick L, DeLaney T, Smith JD, Rho J, Reach WT, Kozasa T, Gomez H (2010) The three-dimensional structure of interior ejecta in Cassiopeia A at high spectral resolution. ApJ 700:2059–2070

    Article  ADS  Google Scholar 

  • Itoh H (1977) Theoretical spectra of the thermal x-rays from young supernova remnants. PASJ 29:813–830

    ADS  Google Scholar 

  • Itoh H (1978) Two-fluid blast-wave model for supernova remnants. PASJ 30:489–498

    ADS  Google Scholar 

  • Li H, McCray R, Sunyaev RA (1993) Iron, Cobalt, and Nickel in SN 1987A. ApJ 419:824–836

    Article  ADS  Google Scholar 

  • Matzner CD, McKee CF (1999) The expulsion of stellar envelopes in core-collapse supernovae. ApJ 510:379–403

    Article  ADS  Google Scholar 

  • Matsuura M, Dwek E, Meixner M, Otsuka M, Babler B, Barlow MJ, Roman-Duval J, Engelbracht C, Sandstrom K, Lakićević M, van Loon JT, Sonneborn G, Clayton GC, Long KS, Lundqvist P, Nozawa T, Gordon KD, Hony S, Panuzzo P, Okumura K, Misselt KA, Montiel E, Sauvage M (2011) Herschel detects a massive dust reservoir in supernova 1987A. Science 333:1258–1261

    Article  ADS  Google Scholar 

  • Murphy T, Gaensler BM, Chatterjee S (2008) A 20-yr radio light curve for the young supernova remnant G1.9+0.3. MNRAS 389:L23–L27

    Article  ADS  Google Scholar 

  • Nadezhin, DK (1985) On the initial phase of interaction between expanding stellar envelopes and surrounding medium. Ap&Sp Sci 112:225–249

    ADS  Google Scholar 

  • Onić D (2013) On the supernova remnants with flat radio spectra. Ap&Sp Sci 346:3–13

    ADS  Google Scholar 

  • Ozawa M, Koyama K, Yamaguchi H, Masai K, Tamagawa T (2009) Suzaku Discovery of the strong radiative recombination continuum of Iron from the supernova remnant W49B. ApJ 706:L71–L75

    Article  ADS  Google Scholar 

  • Pacholczyk AG (1970) Radio astrophysics. Freeman, San Francisco

    Google Scholar 

  • Parizot E, Marcowith A, Ballet J, Gallant YA (2006) Observational constraints on energetic particle diffusion in young supernovae remnants: amplified magnetic field and maximum energy. A&A 453:387–395

    Article  ADS  Google Scholar 

  • Peimbert M, van den Bergh S (1970) Optical studies of Cassiopeia A.IV. Physical conditions in the gaseous remnant. ApJ 167:223–234

    Article  ADS  Google Scholar 

  • Rakowski C (2005) Electron ion temperature equilibration at collisionless shocks in supernova remnants. Ad&Sp Res 35:1017–1026

    ADS  Google Scholar 

  • Reynolds SP (1998) Models of synchrotron X-rays from shell supernova remnants. ApJ 493:375–396

    Article  ADS  Google Scholar 

  • Reynolds SP (2008) Supernova remnants at high energy. ARA&A 46:89–126

    Article  ADS  Google Scholar 

  • Reynolds SP, Chevalier RA (1981) Nonthermal radiation from supernova remnants in the adiabatic phase of evolution. ApJ 245:912–919

    Article  ADS  Google Scholar 

  • Reynolds SP, Moffett DA (1993) High-resolution radio observations of the supernova remnant 3C 391 – possible breakout morphology. AJ 105:2226–2230

    Article  ADS  Google Scholar 

  • Reynolds SP, Borkowski KJ, Hwang U, Hughes JP, Badenes C, Laming JM, Blondin JM (2007) A deep Chandra observation of Kepler’s supernova remnant: a Type Ia event with circumstellar interaction. ApJ 668:L135–L138

    Article  ADS  Google Scholar 

  • Reynoso EM, Moffett DA, Goss WM, Dubner GM, Dickel JR, Reynolds SP, Giacani EB (1997) A VLA study of the expansion of Tycho’s supernova remnant. ApJ 491:816–828

    Article  ADS  Google Scholar 

  • Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley, New York

    Google Scholar 

  • Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic, New York

    MATH  Google Scholar 

  • Shu FH (1991) The physics of astrophysics. University Science Books, Mill Valley

    Google Scholar 

  • Smith N (2014) Mass loss: its effect on the evolution and fate of high-mass stars. ARA&A 52:487–528

    Article  ADS  Google Scholar 

  • Smith N, Li W, Filippenko AV, Chornock R (2011) Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. MNRAS 412:1522–1538

    Article  ADS  Google Scholar 

  • Spitzer L (1978) Physical processes in the interstellar medium. Wiley-Interscience, New York

    Google Scholar 

  • Stankevich KS, Aslanyan AM, Ivanov VP, Martirosyan RM, Terzian Ye (2003) Evolution of the radio luminosities of the Tycho and Kepler supernovae remnants. Astrophysics 46:429–433

    Article  ADS  Google Scholar 

  • Truelove JK, McKee CF (1999) Evolution of nonradiative supernova remnants. ApJS 120:299–326

    Article  ADS  Google Scholar 

  • van der Laan H (1962) Expanding supernova remnants and galactic radio sources. MNRAS 124:125–145

    Article  ADS  Google Scholar 

  • Vinyaikin EN (2014) Frequency dependence of the evolution of the radio emission of the supernova remnant Cas A. Astrophys Rep 58:626–639

    ADS  Google Scholar 

  • Williams BJ, Borkowski KJ, Reynolds SP, Blair WP, Ghavamian P, Hendrick SP, Long KS, Points S, Raymond JC, Sankrit R, Smith RC, Winkler PF (2006) Dust destruction in fast shocks of core-collapse supernova remnants in the large magellanic cloud. ApJ 652:L33–L36

    Article  ADS  Google Scholar 

  • Williams BJ, Blair WP, Blondin JM, Borkowski KJ, Ghavamian P, Long KS, Raymond JC, Reynolds SP, Rho J, Winkler PF (2011) RCW 86: a Type Ia supernova in a wind-blown bubble. ApJ 741:96 (15pp)

    Article  ADS  Google Scholar 

  • Williams BJ, Borkowski KJ, Ghavamian P, Hewitt JW, Mao SA, Petre R, Reynolds SP, Blondin JM (2013) Azimuthal density variations around the rim of Tycho’s supernova remnant. ApJ 770:129–139

    Article  ADS  Google Scholar 

  • Winkler PF, Williams BJ, Reynolds SP, Petre R, Long KS, Katsuda S, Hwang, U (2014) A high-resolution X-ray and optical study of SN 1006: asymmetric expansion and small-scale structure in a Type Ia supernova remnant. ApJ 781:65

    Article  ADS  Google Scholar 

  • Yamaguchi H, Ozawa M, Koyama K, Masai K, Hiraga JS, Ozaki M, Yonetoku D (2009) Discovery of strong radiative recombination continua from the supernova remnant IC 443 with Suzaku. ApJ 705:L6–L9

    Article  ADS  Google Scholar 

  • Zanardo G, Staveley-Smith L, Ball L, Gaensler BM, Kesteven MJ, Manchester RN, Ng C-Y, Tzioumis AK, Potter TM (2010) Multifrequency radio measurements of supernova 1987A over 22 years. ApJ 710:1515–1529

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful for discussions with many colleagues over many years, among whom Roger Chevalier, Kazimierz Borkowski, John Blondin, and Roger Blandford are particularly prominent. I am pleased to acknowledge support from the National Science Foundation and National Aeronautics and Space Administration for research support over the last 30 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Reynolds, S.P. (2016). Dynamical Evolution and Radiative Processes of Supernova Remnants. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics