Skip to main content

The Multidimensional Character of Nucleosynthesis in Core-Collapse Supernovae

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Observations of supernovae and their remnants reveal highly aspherical distributions of the newly-formed elements that are the dying stars’ contributions to the interstellar medium. Modern simulations of the supernova’s neutrino-powered central engine reveal that these inhomogeneities originate in the first seconds of the explosions. Yet, much of our understanding of supernova nucleosynthesis is based on spherically symmetric models of the explosions. Recent simulations, combining high-fidelity treatments of the neutrino field that drives the explosion, the multidimensional fluid flow that taps this energy source, and the thermonuclear kinetics responsible for the composition of the ejecta, are revealing the limitations of our spherically symmetric understanding. Here, we highlight these recent results to presage the changes in our understanding of supernova nucleosynthesis that will result from a full appreciation of the multidimensional character of core-collapse supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aufderheide MB, Baron E, Thielemann FK (1991) Shock waves and nucleosynthesis in type II supernovae. ApJ 370:630–642

    Article  ADS  Google Scholar 

  • Bruenn SW, Lentz EJ, Hix WR, Mezzacappa A, Harris JA, Messer OEB, Endeve E, Blondin JM, Chertkow MA, Marronetti P (2016) Chimera: a massively parallel, multi-physics code for core-collapse supernova simulations. ApJ 818:123

    Article  ADS  Google Scholar 

  • Buras R, Rampp M, Janka HT, Kifonidis K (2006) Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M star. A&A 447:1049–1092. doi: 10.1051/0004-6361:20053783, astro-ph/0507135

    Google Scholar 

  • Colgate SA, White RH (1966) The hydrodynamic behavior of supernovae explosions. ApJ 143:626

    Article  ADS  Google Scholar 

  • Couch SM, Ott CD (2013) Revival of the Stalled Core-collapse supernova shock triggered by precollapse asphericity in the progenitor star. ApJ 778:L7. doi:10.1088/2041-8205/778/1/L7, 1309.2632

    Google Scholar 

  • Couch SM, Chatzopoulos E, Arnett WD, Timmes FX (2015) The Three-dimensional evolution to core collapse of a massive star. ApJ 808:L21. doi:10.1088/2041-8205/808/1/L21, 1503.02199

    Google Scholar 

  • Elekes Z, Fulop Z, Gyurky G, Kertesz Z, Kiss G. G, Simon A, Somorjai E, Torok Z, Frei Z, Vinko J, Keresturi A & Szabo R (eds) (2014) Proceedings of nuclei in the Cosmos XIII, SISSA Proceedings of Science

    Google Scholar 

  • Ellinger CI, Young PA, Fryer CL, Rockefeller G (2012) A case study of small-scale structure formation in three-dimensional supernova simulations. ApJ 755:160. doi:10.1088/0004-637X/755/2/160, 1206.1834

    Google Scholar 

  • Fassia A, Meikle WPS (1999) 56Ni dredge-up in Supernova 1987A. MNRAS 302:314–320. doi:10.1046/j.1365-8711.1999.02127.x, astro-ph/9809244

    Google Scholar 

  • Fröhlich C, Hauser P, Liebendörfer M, Martínez-Pinedo G, Thielemann FK, Bravo E, Zinner NT, Hix WR, Langanke K, Mezzacappa A, Nomoto K (2006a) Composition of the innermost supernova ejecta. ApJ 637:415–426. doi:10.1086/498224, astro-ph/0410208

    Google Scholar 

  • Fröhlich C, Martínez-Pinedo G, Liebendörfer M, Thielemann FK, Bravo E, Hix WR, Langanke K, Zinner NT (2006b) Neutrino-induced nucleosynthesis of A > 64 nuclei: the nu p-process. Phys Rev Lett 96(14):142502. doi:10.1103/PhysRevLett.96.142502, astro-ph/0511376

    Google Scholar 

  • Fryer C, Young P, Bennet ME, Diehl S, Herwig F, Hirschi R, Hungerford A, Pignatari M, Magkotsios G, Rockefeller G, Timmes FX (2008) Nucleosynthesis from supernovae as a function of explosion energy from NuGrid. In: Schatz H, Austin S, Beers T, Brown A, Brown E, Cyburt R, Lynch W, Zegers R (eds) Proceedings of nuclei in the cosmos X, SISSA proceedings of science, p 101

    Google Scholar 

  • Hachisu I, Matsuda T, Nomoto K, Shigeyama T (1990) Nonlinear growth of Rayleigh-Taylor instabilities and mixing in SN 1987A. ApJ 358:L57–LL61

    Article  ADS  Google Scholar 

  • Hammer NJ, Janka HT, Müller E (2010) Three-dimensional simulations of mixing instabilities in supernova explosions. ApJ 714:1371–1385. doi:10.1088/0004-637X/714/2/1371, 0908.3474

    Google Scholar 

  • Hanuschik RW, Thimm G, Dachs J (1988) H-alpha fine-structure in SN 1987A within the first 111 days. MNRAS 234:41P–49P

    Article  ADS  Google Scholar 

  • Harris JA, Hix WR, Chertkow MA, Bruenn SW, Lentz EJ, Messer OEB, Mezzacappa A, Blondin JM, Marronetti P, Yakunin KN (2014) Advancing nucleosynthesis in self-consistent, multidimensional models of core-collapse supernovae. In: Elekes Z et al (eds) Proceedings of nuclei in the Cosmos XIII, SISSA Proceedings of Science, PoS(NIC XIII)099, 1411.0037

    Google Scholar 

  • Harris JA, Hix WR, Chertkow MA, Bruenn SW, Lentz EJ, Messer OEB, Mezzacappa A, Blondin JM, Endeve E, Lingerfelt EJ, Marronetti P, Yakunin KN (2016a, in preparation) The nucleosynthesis of axisymmetric Ab initio core-collapse supernova simulations of 12–25 M Stars. ApJ

    Google Scholar 

  • Harris JA, Hix WR, Chertkow MA, Lee CT, Lentz EJ, Messer OEB (2016b, in preparation) Implications for post-processing nucleosynthesis of core-collapse supernova models with lagrangian particles. ApJ

    Google Scholar 

  • Herant M, Benz W (1992) Postexplosion hydrodynamics of SN 1987A. ApJ 387:294–308

    Article  ADS  Google Scholar 

  • Hix WR, Thielemann FK (1999) Silicon burning II: Quasi-Equilibrium and explosive burning. ApJ 511:862–875

    Article  ADS  Google Scholar 

  • Hix WR, Harris JA, Lentz EJ, Bruenn SW, Chertkow MA, Messer OEB, Mezzacappa A, Blondin JM, Endeve E, Marronetti P, Yakunin KN (2014) Multidimensional simulations of core-collapse supernovae and the implications for nucleosynthesis. In: Elekes Z, et al (eds) Proceedings of nuclei in the Cosmos XIII, SISSA Proceedings of Science, p PoS(NIC XIII)019

    Google Scholar 

  • Janka HT, Müller B, Kitaura FS, Buras R (2008) Dynamics of shock propagation and nucleosynthesis conditions in O-Ne-Mg core supernovae. A&A 485:199–208. doi:10.1051/0004-6361:20079334, 0712.4237

    Google Scholar 

  • Kane J, Arnett D, Remington BA, Glendinning SG, Bazán G, Müller E, Fryxell BA, Teyssier R (2000) Two-dimensional versus three-dimensional supernova hydrodynamic instability growth. ApJ 528:989–994

    Article  ADS  Google Scholar 

  • Kifonidis K, Plewa T, Janka HT, Müller E (2003) Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps. A&A 408:621–649

    Article  ADS  Google Scholar 

  • Kifonidis K, Plewa T, Scheck L, Janka HT, Müller E (2006) Non-spherical core collapse supernovae. II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A. A&A 453:661–678. doi:10.1051/0004-6361:20054512, astro-ph/0511369

    Google Scholar 

  • Kitaura FS, Janka HT, Hillebrandt W (2006) Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. A&A 450:345–350. doi:10.1051/0004-6361:20054703, astro-ph/0512065

    Google Scholar 

  • Maeda K, Nakamura T, Nomoto K, Mazzali PA, Patat F, Hachisu I (2002) Explosive nucleosynthesis in aspherical hypernova explosions and late-time spectra of SN 1998bw. ApJ 565:405–412

    Article  ADS  Google Scholar 

  • Magkotsios G, Timmes FX, Hungerford AL, Fryer CL, Young PA, Wiescher M (2010) Trends in 44Ti and 56Ni from core-collapse supernovae. ApJS 191:66–95. doi:10.1088/0067-0049/191/1/66, 1009.3175

    Google Scholar 

  • Marek A, Janka HT (2009) Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability. ApJ 694:664–696. doi:10.1088/0004-637X/694/1/664, 0708.3372

    Google Scholar 

  • Mazzali PA, Kawabata KS, Maeda K, Foley RJ, Nomoto K, Deng J, Suzuki T, Iye M, Kashikawa N, Ohyama Y, Filippenko AV, Qiu Y, Wei J (2007) The aspherical properties of the energetic type Ic SN 2002ap as inferred from its nebular spectra. ApJ 670:592–599. doi:10.1086/521873, 0708.0966

    Google Scholar 

  • McCray R (1993) Supernova 1987A revisited. ARA&A 31:175–216

    Article  ADS  Google Scholar 

  • Meyer BS, Krishnan TD, Clayton DD (1998) Theory of Quasi-Equilibrium nucleosynthesis and applications to matter expanding from high temperature and density. ApJ 498:808

    Article  ADS  Google Scholar 

  • Müller B, Janka HT (2015) Non-radial instabilities and progenitor asphericities in core-collapse supernovae. MNRAS 448:2141–2174. doi:10.1093/mnras/stv101, 1409.4783

    Google Scholar 

  • Müller E, Fryxell B, Arnett D (1991) Instability and clumping in SN 1987A. A&A 251:505–514

    ADS  Google Scholar 

  • Nagataki S, Hashimoto M, Sato K, Yamada S (1997) Explosive nucleosynthesis in axisymmetrically deformed type II supernovae. ApJ 486:1026

    Article  ADS  Google Scholar 

  • Nagataki S, Shimizu TM, Sato K (1998) Matter mixing from axisymmetric supernova explosion. ApJ 495:413. doi:10.1086/305258, astro-ph/9709152

    Google Scholar 

  • Nishimura N, Takiwaki T, Thielemann FK (2015) The r-process nucleosynthesis in the various Jet-like explosions of magnetorotational core-collapse supernovae. ApJ 810:109. doi:10.1088/0004-637X/810/2/109, 1501.06567

    Google Scholar 

  • Nishimura S, Kotake K, Hashimoto Ma, Yamada S, Nishimura N, Fujimoto S, Sato K (2006) r-Process nucleosynthesis in magnetohydrodynamic jet explosions of core-Collapse supernovae. ApJ 642:410–419. doi:10.1086/500786, astro-ph/0504100

    Google Scholar 

  • Perego A, Hempel M, Fröhlich C, Ebinger K, Eichler M, Casanova J, Liebendörfer M, Thielemann FK (2015) PUSHing core-collapse supernovae to explosions in spherical symmetry I: the model and the case of SN 1987A. ApJ 806:275. doi:10.1088/0004-637X/806/2/275, 1501.02845

    Google Scholar 

  • Pruet J, Woosley SE, Buras R, Janka HT, Hoffman RD (2005) Nucleosynthesis in the hot convective bubble in core-collapse supernovae. ApJ 623:325–336

    Article  ADS  Google Scholar 

  • Rampp M, Janka HT (2002) Radiation hydrodynamics with neutrinos. Variable eddington factor method for core-collapse supernova simulations. A&A 396:361–392

    Google Scholar 

  • Rauscher T, Heger A, Hoffman RD, Woosley SE (2002) Nucleosynthesis in massive stars with improved nuclear and stellar physics. ApJ 576:323–348

    Article  ADS  Google Scholar 

  • Schatz H, Austin S, Beers T, Brown A, Brown E, Cyburt R, Lynch W, Zegers R (eds) Proceedings of nuclei in the cosmos X, SISSA proceedings of science

    Google Scholar 

  • Scheck L, Kifonidis K, Janka HT, Müller E (2006) Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. A&A 457:963–986. doi:10.1051/0004-6361:20064855

    Google Scholar 

  • Spyromilio J, Meikle WPS, Allen DA (1990) Spectral line profiles of iron and nickel in supernova 1987A - Evidence for a fragmented nickel bubble. MNRAS 242:669–673

    Article  ADS  Google Scholar 

  • Ugliano M, Janka HT, Marek A, Arcones A (2012) Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. ApJ 757:69. doi:10.1088/0004-637X/757/1/69, 1205.3657

    Google Scholar 

  • Utrobin VP, Chugai NN, Andronova AA (1995) Asymmetry of SN 1987A: Fast Ni-56 clump. A&A 295:129–135

    ADS  Google Scholar 

  • Wanajo S, Nomoto K, Janka HT, Kitaura FS, Müller B (2009) Nucleosynthesis in electron capture supernovae of asymptotic giant branch stars. ApJ 695:208–220, doi:10.1088/0004-637X/695/1/208, 0810.3999

    Google Scholar 

  • Wanajo S, Janka HT, Müller B (2011) Electron-capture Supernovae as the origin of elements beyond iron. ApJ 726:L15, doi:10.1088/2041-8205/726/2/L15, 1009.1000

    Google Scholar 

  • Wanajo S, Janka HT, Müller B (2013a) Electron-capture Supernovae as origin of 48Ca. ApJ 767:L26, doi:10.1088/2041-8205/767/2/L26, 1302.0929

    Google Scholar 

  • Wanajo S, Janka HT, Müller B (2013b) Electron-capture Supernovae as Sources of 60Fe. ApJ 774:L6, doi:10.1088/2041-8205/774/1/L6, 1307.3319

    Google Scholar 

  • Wongwathanarat A, Janka HT, Müller E (2013) Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. A&A 552:A126, doi:10.1051/0004-6361/201220636, 1210.8148

    Google Scholar 

  • Wongwathanarat A, Müller E, Janka HT (2015) Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout. A&A 577:A48, doi:10.1051/0004-6361/201425025, 1409.5431

    Google Scholar 

  • Woosley SE, Heger A (2007) Nucleosynthesis and remnants in massive stars of solar metallicity. Phys Rep 442:269–283, doi:10.1016/j.physrep.2007.02.009, astro-ph/0702176

    Google Scholar 

  • Woosley SE, Wilson JR, Mathews GJ, Hoffman RD, Meyer BS (1994) The r-process and neutrino-heated supernova ejecta. ApJ 433:229–246

    Article  ADS  Google Scholar 

  • Young P, Ellinger C, Arnett D, Fryer C, Rockefeller G (2008) Spatial distribution of nucleosynthesis products in Cassiopeia A: comparison between observations and 3D explosion models. In: Schatz H, Austin S, Beers T, Brown A, Brown E, Cyburt R, Lynch W, Zegers R (eds) Proceedings of nuclei in the cosmos X, SISSA proceedings of science, p 20. 0811.4655

    Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy Office of Nuclear Physics, the NASA Astrophysics Theory Program (NNH11AQ72I), and the National Science Foundation Theoretical Physics Program (PHY-1516197). The simulations here were performed via NSF TeraGrid resources provided by the National Institute for Computational Sciences under grant number TG-MCA08X010 and resources of the National Energy Research Scientific Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Raphael Hix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this entry

Cite this entry

Hix, W.R., Harris, J.A. (2016). The Multidimensional Character of Nucleosynthesis in Core-Collapse Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics