Skip to main content

Thermonuclear Explosions of Chandrasekhar Mass White Dwarfs

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

The thermonuclear explosion of a Chandrasekhar mass white dwarf is an important class of supernovae which can attribute to various subclasses of Type Ia supernovae and accretion induced collapse. Type Ia supernovae are not only essential as their roles of standard candle in the discovery of dark energy, but also robust sources of iron-peak elements for the galactic chemical evolution. In this chapter we discuss the physics of the explosion mechanisms of the Chandrasekhar mass white dwarf. First we review the possible evolutionary paths for the accreting white dwarf to increase its mass to the Chandrasekhar mass in the binary systems. When the white dwarf’s mass reaches near the Chandrasekhar limit, carbon burning is ignited and grows into deflagration in the central region. We review the principle component of deflagration physics and how it is implemented in supernova simulations. We then review the physics of detonation by examining its structure. We also discuss how the detonation is triggered physically and computationally. At last, we describe how these components are applied to various explosion mechanisms, including the deflagration-detonation transition, pure deflagration, and gravitationally confined detonation. Their typical behaviour, nucleosynthesis, and applications to the galactic chemical evolution and observed supernovae are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arnett D (1969) A possible model of supernovae: detonation of 12C. Ap & SS 5:180–212

    Article  ADS  Google Scholar 

  • Arnett D (1996) Supernovae and nucleosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Benvenuto OG, Panei JA, Nomoto K, Kitamura H, Hachisu I (2015) Final evolution and delayed explosions of spinning white dwarfs in single degenerate models for Type Ia supernovae. ApJL 809:L6

    Article  ADS  Google Scholar 

  • Denissenkov PA, Herwig F, Truwan JW et al (2013) The C-flame quenching by convective boundary mixing in super-AGB stars and the formation of hybrid C/O/Ne white dwarfs and SN progenitors. ApJ 772:37–45

    Article  ADS  Google Scholar 

  • Dilday B, Howell DA, Cenko SB et al (2012) PTF 11kx: A Type Ia supernova with a symbiotic nova progenitor. Science 337:942

    Article  ADS  Google Scholar 

  • Di Stefano R, Voss R, Claeys JSW (2011) Spin-up/spin-down models for Type Ia supernovae. ApJL 738:L1

    Article  ADS  Google Scholar 

  • Fink M, Kromer M, Seitenzahl IR et al (2014) Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. MNRAS 438:1762–1782

    Article  ADS  Google Scholar 

  • Foley RJ, Simon JD, Burns CR et al (2012) Linking Type Ia supernova progenitors and their resulting explosions. ApJ 752:101

    Article  ADS  Google Scholar 

  • Hachisu I, Kato M (2001) Recurrent novae as a progenitor system of Type Ia supernovae. I. RS Ophiuchi subclass: systems with a red giant companion. ApJ 558:323

    Google Scholar 

  • Hachisu I, Kato M, Nomoto K (1996) A new model for progenitor systems of Type Ia supernovae. ApJL 470:97

    Article  ADS  Google Scholar 

  • Hachisu I, Kato M, Nomoto K, Umeda H (1999a) A new evolutionary path to Type IA supernovae: a helium-rich supersoft X-ray source channel. ApJ 519:314

    Article  ADS  Google Scholar 

  • Hachisu I, Kato M, Nomoto K (1999b) A wide symbiotic channel to Type IA supernovae. ApJ 522:487

    Article  ADS  Google Scholar 

  • Hachisu I, Kato M, Nomoto K (2008a) Young and massive binary progenitors of Type Ia supernovae and their circumstellar matter. ApJ 679:1390–1404

    Article  ADS  Google Scholar 

  • Hachisu I, Kato M, Nomoto K (2008b) The delay-time distribution of Type Ia supernovae and the single-degenerate model. ApJ 683:L27

    Article  Google Scholar 

  • Hachisu I, Kato M, Nomoto K (2012a) Final fates of rotating white dwarfs and their companions in the single degenerate model of Type Ia supernovae. ApJL 756:L4

    Article  ADS  Google Scholar 

  • Hachisu I, Kato M, Saio H, Nomoto K (2012b) A single degenerate progenitor model for Type Ia supernovae highly exceeding the Chandrasekhar mass limit. ApJ 744:69

    Article  ADS  Google Scholar 

  • Hamuy M, Phillips MM, Suntzeff NB et al (2003) An asymptotic-giant-branch star in the progenitor system of a Type Ia supernova. Nature 424:651

    Article  ADS  Google Scholar 

  • Han Z, Podsiadlowski Ph (2004) The single-degenerate channel for the progenitors of Type Ia supernovae. MNRAS 350:1301

    Article  ADS  Google Scholar 

  • Hillebrandt W, Niemeyer JC (2000) Type Ia supernova explosion models. ARAA 38:191

    Article  ADS  Google Scholar 

  • Iben I Jr, Tutukov AV (1984) Supernovae of Type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). ApJS 54:335

    Article  ADS  Google Scholar 

  • Ilkov M, Soker N (2012) Type Ia supernovae from very long delayed explosion of core-white dwarf merger. MNRAS 419:1695

    Article  ADS  Google Scholar 

  • Iwamoto K, Brachwitz F, Nomoto K et al (1999) Nucleosynthesis in Chandrasekhar mass models for Type IA supernovae and constraints on progenitor systems and burning-front propagation. ApJS 125:439–463

    Article  ADS  Google Scholar 

  • Justham S (2011) Single-degenerate Type Ia supernovae without hydrogen contamination. ApJL 730:L34

    Article  ADS  Google Scholar 

  • Kamiya Y, Tanaka M, Nomoto K et al (2012) Super-Chandrasekhar-mass light curve models for the highly luminous Type Ia supernova 2009dc. ApJ 756:191

    Article  ADS  Google Scholar 

  • Kato M, Saio H, Hachisu I, Nomoto K (2014) Shortest recurrence periods of novae. ApJ 793:136

    Article  ADS  Google Scholar 

  • Khokhlov AM (1991) Delayed detonation model for Type IA supernovae. A & A 245:114–128

    ADS  Google Scholar 

  • Kitamura H (2000) Pycnonuclear reactions in dense matter near solidification. ApJ 539:888

    Article  ADS  Google Scholar 

  • Kitaura FS, Janka H-Th, Hillebrandt W (2006) Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. A & A 450:345

    Article  ADS  Google Scholar 

  • Krause O, Tanaka M, Usuda T, Hattori T, Goto M, Birkmann S, Nomoto K (1997) Tycho Brahe’s 1572 supernova as a standard Type Ia as revealed by its light-echo spetraum. Nature 456:617

    Article  ADS  Google Scholar 

  • Kromer M, Fink M, Stanishev V (2013) 3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae. MNRAS 429:2287–2297

    Article  ADS  Google Scholar 

  • Kromer M, Ohlmann ST, Pakmor R et al (2015) Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha. MNRAS 450:3045–3053

    Article  ADS  Google Scholar 

  • Langer N, Deutschmann A, Wellstein S, Höflich P (2000) The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae. A & A 362:1046

    ADS  Google Scholar 

  • Leung S-C, Nomoto K (2017a) Nucleosynthesis of iron-peak elements in Type-Ia supernovae. JPS Conf Proc 14:020506

    Google Scholar 

  • Leung S-C, Nomoto K (2017b) Dependence of nucleosynthesis on model parameters of Type Ia supernovae. ApJ (submitted)

    Google Scholar 

  • Leung S-C, Chu M-C, Lin L-M (2015a) A new hydrodynamics code for Type Ia supernovae. MNRAS 454:1238

    Article  ADS  Google Scholar 

  • Leung S-C, Chu M-C, Lin L-M (2015b) Dark matter admixed Type Ia supernovae. MNRAS 812:110

    ADS  Google Scholar 

  • Li X-D, van den Heuvel EPJ (1997) Evolution of white dwarf binaries: supersoft X-ray sources and progenitors of Type IA supernovae. A & A 322:L9

    ADS  Google Scholar 

  • Li W, Bloom JS, Podsiadlowski P et al (2011) Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480:348

    Article  ADS  Google Scholar 

  • Livio M (2000) The progenitors of Type Ia supernovae. In: Niemeyer JC, Truran JW (eds) Type Ia supernovae, theory and cosmology. Cambridge University Press, Cambridge, p 33

    Google Scholar 

  • Maeda K et al (2010) An asymmetric explosion as the origin of spectral evolution diversity in Type Ia supernovae. Nature 466:82

    Article  ADS  Google Scholar 

  • Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of Type Ia supernovae. ARAA 52:107

    Article  ADS  Google Scholar 

  • Mori K et al (2016) Impact of new Gamow-Teller strengths on explosive Type Ia supernova nucleosynthesis. ApJ 833:179

    Article  ADS  Google Scholar 

  • Nomoto K (1982) Accreting white dwarf models for Type I supernovae. I – presupernova evolution and triggering mechanisms. ApJ 253:798

    Google Scholar 

  • Nomoto K, Sugimoto D, Neo S (1976) Carbon deflagration supernova, an alternative to carbon detonation. Ap & SS 39:L37–L42

    Article  ADS  Google Scholar 

  • Nomoto K, Nariai K, Sugimoto D (1979) Rapid mass accretion onto white dwarfs and formation of an extended envelope. PASJ 31:287

    ADS  Google Scholar 

  • Nomoto K, Thielemann F-K, Yokoi K (1984) Accreting white dwarf models of Type I supernovae. III – carbon deflagration supernovae. ApJ 286:644–658

    Google Scholar 

  • Nomoto K, Yamaoka H, Shigeyama T, Kumagai S, Tsujimoto T (1994) Type I supernovae and evolution of interacting binaries. In: Bludmann S et al. (eds) Proceedings of session LIV held in Les Houche 1990. Supernovae, NATO ASI series C, vol 199. North-Holland

    Google Scholar 

  • Nomoto K, Iwamoto K, Kishimoto N (1997) Type Ia supernovae: their origin and possible applications in cosmology. Science 276:1378

    Article  ADS  Google Scholar 

  • Nomoto K, Umeda H, Kobayashi C et al (2000a) Type Ia supernova progenitors, environmental effects, and cosmic supernova rates. In: Niemeyer JC and Truran JW (eds) Type Ia Supernovae, Theory and Cosmology, Cambridge University Press, p.63

    Google Scholar 

  • Nomoto K, Umeda H, Kobayashi C et al (2000b) Type Ia supernovae: progenitors and evolution with redshift. In: Cosmic Explosions: AIP Conf Proc 522:35

    Article  ADS  Google Scholar 

  • Nomoto K, Suzuki T, Deng J, Uenishi T, Hachisu I (2005) Progenitors of Type Ia Supernovae: circumstellar interaction, rotation, and steady hydrogen burning. In: Turatto et al (eds) 1604-2004: Supernovae as Cosmological Lighthouses, ASP conference series, 342:105

    Google Scholar 

  • Nomoto K, Saio H, Kato M, Hachisu I (2007) Thermal stability of white dwarfs accreting hydrogen-rich matter and progenitors of Type Ia supernovae. ApJ 663:1269

    Article  ADS  Google Scholar 

  • Nomoto K, Kamiya Y, Nakasato N et al (2009) Progenitors of Type Ia supernovae: single degenerate and double degenerates. AIPC 1111:267

    ADS  Google Scholar 

  • Nomoto K, Kamiya M, Nakasato N (2013) Type Ia supernova models and progenitor scenarios. In: Di. Stefano R et al (eds) IAU Symposium 281, Binary Paths to Type Ia Supernovae Explosions, Cambridge University Press, Cambridge, p. 253–260

    Google Scholar 

  • Nugent P et al (2000) Synthetic spectra of hydrodynamical models of Type Ia supernovae. ApJ 485:812

    Article  ADS  Google Scholar 

  • Patat F, Chandra P, Chevalier R et al (2007) Detection of circumstellar material in a normal Type Ia supernova. Science 317:924

    Article  ADS  Google Scholar 

  • Plewa T (2007) Detonating failed deflagration model of thermonuclear supernovae. I. Explosion dynamics. ApJ 657:942–960

    Google Scholar 

  • Pocheau A (1994) Scale invariance in turbulent front propagation. PRE 49:1109–1122

    Article  ADS  MathSciNet  Google Scholar 

  • Potekhin AY, Chabrier G (2012) Thermonuclear fusion in dense stars. Electron screening, conductive cooling, and magnetic field effects. Astron Astropart 538:AA115

    Google Scholar 

  • Schaefer BE, Pagnotta A (2012) An absence of ex-companion stars in the Type Ia supernova remnant SNR 0509-67.5. Nature 481:164

    Google Scholar 

  • Schmidt W, Niemeyer JC, Hillebrandt W, Roepke FK (2006) A localised subgrid scale model for fluid dynamical simulations in astrophysics. II. Application to Type Ia supernovae. A & A 450:283–294

    Google Scholar 

  • Schwab J, Quataert E, Bildsten L (2015) Thermal runaway during the evolution of ONeMg cores towards accretion-induced collapse. MNRAS 453:1910–1927

    Article  ADS  Google Scholar 

  • Seitenzahl IR, Kromer M, Ohlmann ST et al (2016) Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. A & A 592:A57

    Article  ADS  Google Scholar 

  • Sharpe GJ (1999) The structure of steady detonation waves in Type Ia supernovae: pathological detonations in C+O cores. MNRAS 310:1039–1052

    Article  ADS  Google Scholar 

  • Shen K, Bildsten L (2007) Thermally stable nuclear burning on accreting white dwarfs. ApJ 660:1444

    Article  ADS  Google Scholar 

  • Shigeyama T, Nomoto K, Yamoka H, Thielemann F-K (1992) Possible models for the Type IA supernova 1990N. ApJL 386:13

    Article  ADS  Google Scholar 

  • Sternberg A, Gal-Yam A, Simon JD et al (2011) Circumstellar material in Type Ia supernovae via sodium absorption features. Science 333:856

    Article  ADS  Google Scholar 

  • Webbink RF (1984) Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. ApJ 277:355

    Article  ADS  Google Scholar 

  • Yamaguchi H et al (2015) A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of Nickel and Manganese. ApJ 801:L31

    Article  ADS  Google Scholar 

Further Reading

  • Barth TJ, Deconinck H (1999) High-order methods for computational physics. Lecture notes in computational science and engineering, vol 9. Springer, New York

    Google Scholar 

  • Calder AC, Townsley DM, Seitenzahl IR et al (2007) Capturing the fire: flame energetics and neutronization for Type Ia supernova simulations. ApJ 656:313–332

    Article  ADS  Google Scholar 

  • Clement MJ (1993) Hydrodynamical simulations of rotating stars. I – A model for subgrid-scale flow. ApJ 406:651–660

    Google Scholar 

  • Feltzing S, Fohlman M, Bensby T (2007) Manganese trends in a sample of thin and thick disk stars. The origin of Mn. A & A 467:665

    Google Scholar 

  • Förster F, Lesaffre P, Podsiadlowski P (2010) Simplified hydrostatic carbon burning in white dwarf interiors. ApJS 190:334

    Article  ADS  Google Scholar 

  • Garcia-Senz D, Woosley SE (1995) Type IA supernovae: the flame is born. ApJ 454:895–900

    Article  ADS  Google Scholar 

  • Golombek I, Niemeyer JC (2005) A model for multidimensional delayed detonations in SN Ia explosions. A & A 438:611–616

    Article  ADS  Google Scholar 

  • Graur O et al (2016) Late-time photometry of Type Ia supernova SN 2012cg reveals the radioactive decay of 57 Co. ApJ 819:31

    Article  ADS  Google Scholar 

  • Hachisu I (1986) A versatile method for obtaining structures of rapidly rotating stars. ApJS 61:479

    Article  ADS  Google Scholar 

  • Hicks EP (2015) Rayleigh-Taylor unstable flames – fast or faster? ApJ 803:72

    Article  ADS  Google Scholar 

  • Jackson AP, Townsley DM, Calder AC (2014) Power-law wrinkling turbulence-flame interaction model for astrophysical flames. ApJ 784:174

    Article  ADS  Google Scholar 

  • Kerzendorf WE, Schmidt BP, Asplund M et al (2009) Subaru high-resolution spectroscopy of star G in the Tycho supernova remnant. ApJ 701:1665

    Article  ADS  Google Scholar 

  • Kerzendorf WE, Schmidt BP, Laird JB et al (2012) Hunting for the progenitor of SN 1006: high-resolution spectroscopic search with the FLAMES instrument. ApJ 759:7

    Article  ADS  Google Scholar 

  • Khokhlov AM, Oran E, Wheeler JC (1997) Deflagration-to-detonation transition in thermonuclear supernovae. ApJ 478:678–688

    Article  ADS  Google Scholar 

  • Kobayashi C, Nakasato N (2011) Chemodynamical simulations of the milky way galaxy. ApJ 729:16

    Article  ADS  Google Scholar 

  • Lesaffre P, Podsiadlowski P, Tout CA (2005) A two-stream formalism for the convective Urca process. MNRAS 356:131

    Article  ADS  Google Scholar 

  • Likewski AM, Hillebrandt W, Woosley SE et al (2000) Distributed burning in Type Ia supernovae: a statistical approach. ApJ 503:405–413

    Article  ADS  Google Scholar 

  • Livne E, Asida SM, Hoeflich P (2005) On the sensitivity of deflagrations in a Chandrasekhar mass white dwarf to initial conditions. ApJ 632:443–449

    Article  ADS  Google Scholar 

  • Maeda K et al (2010) Nebular spectra and explosion asymmetry of Type Ia supernovae. ApJ 708:1703

    Article  ADS  Google Scholar 

  • Maeder A (2009) Physics, formation and evolution of rotating stars. Springer, Berlin

    Google Scholar 

  • Mazzali PA, Sullivan M, Filippenko AV et al (2015) Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core. MNRAS 450:2631

    Article  ADS  Google Scholar 

  • Niemeyer JC, Hillebrandt W (1995) Turbulent nuclear flames in Type IA supernovae. ApJ 452:769–778

    Article  ADS  Google Scholar 

  • Nomoto K (1982) Accreting white dwarf models for Type 1 supernovae. II – off-center detonation supernovae. ApJ 257:780

    Google Scholar 

  • Nomoto K, Kondo Y (1991) Conditions for accretion-induced collapse of white dwarfs. ApJL 367:19–22

    Article  ADS  Google Scholar 

  • Nomoto K, Suzuki T, Deng J, Uenishi T, Hachisu I, Mazzali P (2004) Circumstellar interaction of Type Ia supernova SN 2002ic. Front Astropart Phys Cosmol: RESCEU Int Symp Ser 6:323

    ADS  Google Scholar 

  • Ostriker JP, Bodenheimer P (1968) Rapidly rotating stars. II. Massive white dwarfs. ApJ 151:1989

    Google Scholar 

  • Pakmor R, Kromer M, Roepke FK et al (2010) Sub-luminous Type Ia supernovae from the mergers of equal-mass white dwarfs with mass 0.9 Msolar. Nature 463:61

    Google Scholar 

  • Piersanti L, Gagliardi S, Iben I, Tornambe A (2003) Carbon-oxygen white dwarf accreting cO-rich matter. II. Self-regulating accretion process up to the explosive stage. ApJ 598:1229

    Google Scholar 

  • Piro AL (2008) The internal shear of Type Ia supernova progenitors during accretion and simmering. ApJ 679:616

    Article  ADS  Google Scholar 

  • Poludenko AY, Gardiner TA, Oran ES (2011) Spontaneous transition of turbulent flames to detonations in unconfined media. PRL 107:054501

    Article  ADS  Google Scholar 

  • Reddy BE, Tomkin J, Lambert DL, Allende Prieto C (2003) The chemical compositions of galactic disc F and G dwarfs. MNRAS 340:304

    Article  ADS  Google Scholar 

  • Reinecke M, Hillebrandt W, Niemeyer JC et al (1999a) A new model for deflagration fronts in reactive fluids. A & A 347:724–733

    ADS  Google Scholar 

  • Reinecke M, Hillebrandt W, Niemeyer JC (1999b) Thermonuclear explosions of Chandrasekhar-mass C+O white dwarfs. A & A 347:739–747

    ADS  Google Scholar 

  • Reinecke M, Hillebrandt W, Niemeyer JC (2002) Three-dimensional simulations of Type Ia supernovae. A & A 391:1167–1172

    Article  ADS  Google Scholar 

  • Roepke FK (2007) Flame-driven deflagration-to-detonation transitions in Type Ia supernovae? ApJ 668:1103–1108

    Article  ADS  Google Scholar 

  • Rueda JA, Boshkayev K, Izzo L et al (2013) A white dwarf merger as progenitor of the anomalous X-ray pulsar 4U 0142+61?. ApJL 772:L24

    Article  ADS  Google Scholar 

  • Saio H, Nomoto K (2004) Off-center carbon ignition in rapidly rotating, accreting carbon-oxygen white dwarfs. ApJ 615:444

    Article  ADS  Google Scholar 

  • Seitenzahl IR et al (2013) Solar abundance of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors. A & A 559:L5

    Article  ADS  Google Scholar 

  • Sethian JA (1996) Level set method. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Shih T-H, Liou WW, Shabbir A et al (1994) A new kɛ eddy viscosity model for high reynolds number turbulent flows. Comput Fluids 24:227–238

    Article  MATH  Google Scholar 

  • Shih T-H, Zhu J, Lumley JL (1995) A new Reynolds stress algebraic equation model. Comput Methods Appl Mech Eng 125:287–302

    Article  ADS  Google Scholar 

  • Sobeck JS, Ivans II, Simmerer JA et al (2006) Manganese abundances in cluster and field stars. AJ 131:2949

    Article  ADS  Google Scholar 

  • Timmes FX (2000) Physical properties of Laminar Helium deflagrations. ApJ 528:913–945

    Article  ADS  Google Scholar 

  • Timmes FX, Woosley SE (1992) The conductive propagation of nuclear flames. I – degenerate C + O and O + NE + MG white dwarfs. ApJ 396:649–667

    Article  ADS  Google Scholar 

  • Townsley DM, Calder AC, Asida SM et al (2007) Flame evolution during Type Ia supernovae and the deflagration phase in the gravitationally confined detonation scenario. ApJ 668:1118–1131

    Article  ADS  Google Scholar 

  • Uenishi T, Nomoto K, Hachisu I (2003) Evolution of rotating accreting white dwarfs and the diversity of Type Ia supernovae. ApJ 595:1094

    Article  ADS  Google Scholar 

  • Wang R, Spiteri RJ (2007) Linear instability of the fifth-order WENO method. SIAM J Numer Anal 45:1871

    Article  MathSciNet  MATH  Google Scholar 

  • Wang B, Justham S, Liu Z-W et al (2014) On the evolution of rotating accreting white dwarfs and Type Ia supernovae. MNRAS 445:2340

    Article  ADS  Google Scholar 

  • Woosley SE, Weaver TA (1994) Sub-Chandrasekhar mass models for Type IA supernovae. ApJ 423:371

    Article  ADS  Google Scholar 

  • Wunsch W, Woosley SE (2004) Convection and off-center ignition in Type Ia supernovae. ApJ 616:1102–1108

    Article  ADS  Google Scholar 

  • Yoon S-C, Langer N (2004) Presupernova evolution of accreting white dwarfs with rotation. A & A 419:623

    Article  ADS  Google Scholar 

  • Yoon S-C, Langer N (2005) On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. A & A 435:967

    Article  ADS  Google Scholar 

  • Zhang Y (2009) A two-dimensional flame tracking algorithm with application to Type Ia supernova. Nonlinear Phys 22:1909–1925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zingale M, Dursi LJ (2007) Propagation of the first flames in Type Ia supernovae. ApJ 656:333–346

    Article  ADS  Google Scholar 

  • Zingale M, Nonaka A, Almgren AS et al (2011) The convective phase preceding Type Ia supernovae. ApJ 740:8–25

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by Grants-in-Aid for Scientific Research (JP26400222, JP16H02168, JP17K05382) from the Japan Society for the Promotion of Science and by the WPI Initiative, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichi Nomoto .

Editor information

Editors and Affiliations

Appendices

Appendix: A Short Review of Detonation Physics

1.1 Deflagration to Dedonation Transition

In the previous section why the deflagration phase is necessary and how to implement the flame physics in SNe Ia simulation are discussed. In this section the motivation of including detonation in the framework, its background physics, and the implementation technique are further discussed.

The multidimentional turbulent flame model attempts to introduce a flame-acceleration scheme which allows the flame to burn more material before the expansion of the WD quenches the flame. It is found that the multidimentional PTD model predicts a significant amount of unburnt carbon and oxygen in the central region. As a result, the explosion energy inclines to the weaker side of the observed explosion.

If the transition of deflagration to detonation occurs, the above problem might be solved. Detonation wave is the propagation of burning through shock compression. Unlike the deflagration counterpart, the supersonic motion of detonation can ensure that all necessary material in WD is burnt before the density becomes too low to sustain nuclear burning. This also bypasses the inconsistency of pure detonation model which tends to overproduce58Ni and54Fe due to electron capture (see Figs. 9 vs. 10, and Figs. 16 vs. 14) because in DDT model, deflagration part is confined in small mass region and the detonation mostly burns the outer material, which has too low density for electron capture to take place.

1.2 Physics of Detonation and Transition

The detonation in general consists of three parts, the pre-shock region, the reaction zone, and the post-reaction zone region. To study the detonation structure, one usually solve the eigenstate(s) for the steady-state detonation wave structure equations (Sharpe 1999).

By assuming the matter remains in thermodynamics equilibrium, that

$$\displaystyle{ \Delta \varepsilon = \frac{\partial \varepsilon } {\partial \rho }\vert _{T,X_{i}} + \frac{\partial \varepsilon } {\partial T}\vert _{\rho,Y _{i}} +\sum _{i} \frac{\partial \varepsilon } {\partial Y _{i}}\vert _{\rho,T}, }$$
(4)

the steady-state Euler equation can be written as

$$\displaystyle\begin{array}{rcl} \frac{d\rho } {dx}& =& -\frac{\rho a_{f}^{2}} {v} \frac{\boldsymbol{\sigma }\cdot \mathbf{R}} {\iota },{}\end{array}$$
(5)
$$\displaystyle\begin{array}{rcl} \frac{dT} {dx}& =& \left ( \frac{\partial p} {\partial T}\right )_{\rho,Y }^{-1}\left \{\left [u^{2} -\left (\frac{\partial p} {\partial \rho } \right )_{T,Y }\right ] \frac{d\rho } {dx} -\sum _{i=1}^{N}\left ( \frac{\partial p} {\partial X_{i}}\right )_{\rho,T,Y _{j\neq i}}\frac{dY _{i}} {dx} \right \},{}\end{array}$$
(6)
$$\displaystyle\begin{array}{rcl} \frac{dY } {dx} & =& \frac{R} {v},{}\end{array}$$
(7)

where

$$\displaystyle{ \eta = a_{f}^{2} - v^{2} }$$
(8)

is the sonic parameter,

$$\displaystyle{ a_{f}^{2} = \left (\frac{\partial p} {\partial \rho } \right )_{T,Y } + \left [\frac{p} {\rho ^{2}} -\left (\frac{\partial \varepsilon } {\partial \rho }\right )_{T,Y }\right ]\left ( \frac{\partial p} {\partial T}\right )_{\rho,T}\left ( \frac{\partial \varepsilon } {\partial T}\right )_{\rho,Y }^{-1} }$$
(9)

is the sound speed of constant composition (also known as frozen sound speed in the literature of detonation), and

$$\displaystyle\begin{array}{rcl} \sigma _{i} = \frac{1} {\rho a_{f}^{2}}\left \{\left ( \frac{\partial p} {\partial Y _{i}}\right )_{\rho,T,Y _{j\neq i}} -\left ( \frac{\partial p} {\partial T}\right )_{\rho,Y }\left ( \frac{\partial \varepsilon } {\partial T}\right )_{\rho,Y }^{-1}\right.& & \\ \left.\left [\left ( \frac{\partial \varepsilon } {\partial Y _{i}}\right )_{\rho,T,Y _{j\neq,i}} -\left ( \frac{\partial q} {\partial Y _{i}}\right )_{Y _{j\neq i}}\right ]\right \}& &{}\end{array}$$
(10)

is the thermicity constant, such that \(\boldsymbol{\sigma }\cdot \mathbf{R}\) is the thermicity.

It should be noted that at Eq. (7), the denominator η can bring subtlety to the calculation. In Chapman-Jouget detonation, η is always positive that the solution is continuous everywhere. However, for realistic equation of states and network, η can change sign. It corresponds to the point that the fluid velocity equals to the frozen speed of sound. At this point, there are two solutions for the detonation. First, by direct integration, the zone beyond that points has supersonic velocity. This corresponds to self-sustained detonation wave. Second, the reaction zone remains to be subsonic everywhere. This produces cusps in both density and temperature at that point, so that the solution remains continuous while satisfying the above equations.

In general, only the second solution represents the stable detonation wave which occurs in SNe Ia. In Fig. 23 the density and temperature of a typical detonation wave is plotted. After the shock, there is a buffer zone which allows the temperature to increase. Once the matter reaches 4 × 109 K, the burning of carbon and oxygen becomes explosive that the temperature can be doubled within a few 10−2 cm. At about 0.1 cm, the drop of density has significantly led to a jump in the fluid velocity, due to mass conservation. This makes the wave reach the frozen sound speed. At that point, the solution to the pathological detonation is connected, which ensures the ash propagates subsonic everywhere. The density reaches its equilibrium ∼ 1 cm, while the temperature reaches equilibrium at about 102 cm. In Fig. 24 the abundance profile for the same detonation wave is plotted. Similar to deflagration, at x < 10−2 cm,12C burns to form20Ne and4He. At 10−2 < x < 10−1 cm, both carbon and oxygen burning produce intermediate mass isotopes such as32S,36Ar,40Ca, and44Ti. At 10−2 < x < 102 cm, the matter slowly converts to NSE that iron-peak isotopes, including48Cr,52Fe, and56Ni form. The matter reaches equilibrium and no net change is observed beyond x > 102 cm.

Fig. 23
figure 23

Upper panel: The density profile of the detonation wave at density 109 g cm−3. The detonation is assumed to start with a post-shock temperature 3. 5 × 109 K with a composition 50 % 12C and 50 % 16O by mass. Lower panel: Same as above, but for the temperature profile

Fig. 24
figure 24

The chemical profile of the detonation wave for a detonation wave at density 109 g cm−3

In SNe Ia simulations, the detonation energy and composition table need to be computed prior to the hydrodynamics simulations. This is because the table includes solving the equations for the detonation wave structure in order to find the energy release, propagation velocity for the pathological detonation, and ash composition as a function of density. In general, it depends on temperature as well. Owing to the electron degeneracy and that the nuclear binding energy change is much larger than the matter internal energy, the exact yield is less sensitive to the choice of temperature than that of density. After that, similar to the deflagration, the front is tracked by some discontinuity tracking scheme. By extracting the geometric properties of the front, corresponding energy and composition of the fluid swept by detonation wave are changed.

One technical difference between deflagration and detonation is that detonation does not start at the beginning of the simulation and requires certain trigger. In practice, detonation is assumed to start when the local Karlovitz number Ka ≥ 1, namely, the ratio between turbulence length scale and the flame width. When it is satisfied, the eddies around the thick flame becomes important to diffuse the heat from the hot ash to the cold fuel and cease the explosive burning. The hot region can carry out carbon burning simultaneously, creating a supersonic pulse and the shock. The shock then develops into detonation and burns the remaining fuel.

To demonstrate the technique in carrying out detonation physics in Type Ia supernova simulations, a two-dimensional hydrodynamics simulation for the explosion phase of a carbon-oxygen core is presented. The configuration is similar to the model in Sect. 4.1. In Fig. 25 the energy evolution is plotted. The phase before DDT that has started is exactly the same as the PTD model since the same initial model and flame physics are used. But once DDT is triggered, the two models deviate. The total energy increases much faster to a much higher equilibrium value. It also leads to the global heating of matter, as shown by the increase of internal energy. Kinetic energy also continues to grow, in contrast to the asymptotic behavior as shown in the PTD counterpart.

Fig. 25
figure 25

The time evolution of the total, kinetic, internal, and potential energy of the same model as in Fig. 13

1.3 Open Questions in Detonation

It should be noted that there are two outstanding questions in the detonation transition remain unresolved. In one way, detonation transition is shown to be possible in the form of shock compression in a closed system and by turbulent compression in an open system. Certainly, the environment of a WD belongs to the latter one, where turbulent diffusion is relied to generate a smeared hot spot which can undergo supersonic heating. However, in the large-eddy simulations, it is shown that the typical turbulence strength is only marginally strong to diffuse the thermal energy. In terms of power spectrum, the probability of finding a fluid element with the required velocity fluctuation is small. Certainly, in most SNe Ia simulation, subgrid turbulence are used to estimate the turbulent kinetic energy. This points to the uncertainty in the subgrid turbulence model. Future work in how to achieve a robust turbulence model will offer important insight to the feasibility of the DDT model. Second, the exact Karlovitz number for DDT is not exactly known. In SNe Ia simulation in the literature, typical value of Ka ≈ 1. However, in direct numerical simulation of DDT for the H2-air flame, at least Ka = 100 is required. Certainly, a one-one correspondence between the H2-air flame and the carbon-oxygen flame cannot be drawn straightforwardly due to the huge differences in the equation of states and reaction channel. Despite that, the terrestrial flame experiment has demonstrated that the detonation transition can be much harder than one has assumed. It is therefore necessary to understand the critical Ka for DDT transition for a carbon-oxygen WD and if it can be achieved in hydrodynamics simulation.

Cross-References

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Nomoto, K., Leung, SC. (2017). Thermonuclear Explosions of Chandrasekhar Mass White Dwarfs. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics