Skip to main content

High-Energy Cosmic Rays from Supernovae

  • Living reference work entry
  • First Online:
Handbook of Supernovae
  • 359 Accesses

Abstract

Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around \(\sim 10^{17}\) eV, cosmic rays are believed to be produced in the Milky Way, while above that energy, their origin is probably extragalactic. In the early 1930s, supernovae were already identified as possible sources for the galactic component of cosmic rays. After the 1970s this idea has gained more and more credibility, thanks to the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterward, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the nonlinear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources, and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Achterberg A (1983) Modification of scattering waves and its importance for shock acceleration. A&A 119:274–278

    ADS  MATH  Google Scholar 

  • Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Bechtol K, Bellazzini R, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bottacini E, Brandt TJ, Bregeon J, Brigida M, Bruel P, Buehler R, Busetto G, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Charles E, Chaty S, Chaves RCG, Chekhtman A, Cheung CC, Chiang J, Chiaro G, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky LR, Conrad J, Corbel S, Cutini S, D’Ammando F, de Angelis A, de Palma F, Dermer CD, do Couto e Silva E, Drell PS, Drlica-Wagner A, Falletti L, Favuzzi C, Ferrara EC, Franckowiak A, Fukazawa Y, Funk S, Fusco P, Gargano F, Germani S, Giglietto N, Giommi P, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hayashida M, Hayashi K, Hays E, Hewitt JW, Hill AB, Hughes RE, Jackson MS, Jogler T, Jóhannesson G, Johnson AS, Kamae T, Kataoka J, Katsuta J, Knödlseder J, Kuss M, Lande J, Larsson S, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lovellette MN, Lubrano P, Madejski GM, Massaro F, Mayer M, Mazziotta MN, McEnery JE, Mehault J, Michelson PF, Mignani RP, Mitthumsiri W, Mizuno T, Moiseev AA, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nemmen R, Nuss E, Ohno M, Ohsugi T, Omodei N, Orienti M, Orlando E, Ormes JF, Paneque D, Perkins JS, Pesce-Rollins M, Piron F, Pivato G, Rainò S, Rando R, Razzano M, Razzaque S, Reimer A, Reimer O, Ritz S, Romoli C, Sánchez-Conde M, Schulz A, Sgrò C, Simeon PE, Siskind EJ, Smith DA, Spandre G, Spinelli P, Stecker FW, Strong AW, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Thorsett SE, Tibaldo L, Tibolla O, Tinivella M, Troja E, Uchiyama Y, Usher TL, Vandenbroucke J, Vasileiou V, Vianello G, Vitale V, Waite AP, Werner M, Winer BL, Wood KS, Wood M, Yamazaki R, Yang Z, Zimmer S (2013) Detection of the characteristic pion-decay signature in supernova remnants. Science 339:807–811. doi:10.1126/science.1231160. arxiv:1302.3307

    Google Scholar 

  • Amato E (2014) The origin of galactic cosmic rays. Int J Mod Phys D 23:1430013. doi:10.1142/S0218271814300134. arxiv:1406.7714

    Google Scholar 

  • Armstrong JW, Cordes JM, Rickett BJ (1981) Density power spectrum in the local interstellar medium. Nature 291:561–564. doi:10.1038/291561a0

    Article  ADS  Google Scholar 

  • Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. Int Cosm Ray Conf 11:132–137

    Google Scholar 

  • Baade W, Zwicky F (1934) Remarks on super-novae and cosmic rays. Phys Rev 46:76–77. doi:10.1103/PhysRev.46.76.2

    Article  ADS  Google Scholar 

  • Ballet J (2006) X-ray synchrotron emission from supernova remnants. Adv Space Res 37:1902–1908. doi:10.1016/j.asr.2005.03.047. arxiv:astro-ph/0503309

    Google Scholar 

  • Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. MNRAS 182:147–156. doi:10.1093/mnras/182.2.147

    Article  ADS  Google Scholar 

  • Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. MNRAS 182:443–455. doi:10.1093/mnras/182.3.443

    Article  ADS  Google Scholar 

  • Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS 353:550–558. doi:10.1111/j.1365-2966.2004.08097.x

    Article  ADS  Google Scholar 

  • Bell AR (2005) The interaction of cosmic rays and magnetized plasma. MNRAS 358:181–187. doi:10.1111/j.1365-2966.2005.08774.x

    Article  ADS  Google Scholar 

  • Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. ApJL 221:L29–L32. doi:10.1086/182658

    Article  ADS  Google Scholar 

  • Blasi P (2013) The origin of galactic cosmic rays. A&ARv 21:70. doi:10.1007/s00159-013-0070-7. arxiv:1311.7346

    Google Scholar 

  • Blasi P, Gabici S, Vannoni G (2005) On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. MNRAS 361:907–918. doi:10.1111/j.1365-2966.2005.09227.x. arxiv:astro-ph/0505351

    Google Scholar 

  • Breitschwerdt D, McKenzie JF, Voelk HJ (1991) Galactic winds. I – cosmic ray and wave-driven winds from the Galaxy. A&A 245:79–98

    Google Scholar 

  • Bykov AM, Ellison DC, Renaud M (2012) Magnetic fields in cosmic particle acceleration sources. SSRev 166:71–95. doi:10.1007/s11214-011-9761-4. arxiv:1105.0130

    Google Scholar 

  • Caprioli D, Spitkovsky A (2013) Cosmic-ray-induced filamentation instability in collisionless shocks. ApJL 765:L20. doi:10.1088/2041-8205/765/1/L20. arxiv:1211.6765

    Google Scholar 

  • Caprioli D, Spitkovsky A (2014) Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification. ApJ 794:46. doi:10.1088/0004-637X/794/1/46. arxiv:1401.7679

    Google Scholar 

  • Caprioli D, Blasi P, Amato E, Vietri M (2009) Dynamical feedback of self-generated magnetic fields in cosmic ray modified shocks. MNRAS 395:895–906. doi:10.1111/j.1365-2966.2009.14570.x. arxiv:0807.4261

    Google Scholar 

  • Caprioli D, Amato E, Blasi P (2010) The contribution of supernova remnants to the galactic cosmic ray spectrum. Astropart Phys 33:160–168. doi:10.1016/j.astropartphys.2010.01.002. arxiv:0912.2964

    Google Scholar 

  • Cassam-Chenaï G, Hughes JP, Reynoso EM, Badenes C, Moffett D (2008) Morphological evidence for azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. ApJ 680:1180–1197. doi:10.1086/588015. arxiv:0803.0805

    Google Scholar 

  • Chevalier RA, Raymond JC (1978) Optical emission from a fast shock wave – the remnants of Tycho’s supernova and SN 1006. ApJL 225:L27–L30. doi:10.1086/182785

    Article  ADS  Google Scholar 

  • Chevalier RA, Kirshner RP, Raymond JC (1980) The optical emission from a fast shock wave with application to supernova remnants. ApJ 235:186–195. doi:10.1086/157623

    Article  ADS  Google Scholar 

  • Drury LO (2011) Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova remnants? MNRAS 415:1807–1814. doi:10.1111/j.1365-2966.2011.18824.x. arxiv:1009.4799

    Google Scholar 

  • Drury LO, Falle SAEG (1986) On the stability of shocks modified by particle acceleration. MNRAS 223:353. doi:10.1093/mnras/223.2.353

    Article  ADS  MATH  Google Scholar 

  • Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75:1169–1174. doi:10.1103/PhysRev.75.1169

    Article  ADS  MATH  Google Scholar 

  • Fermi E (1954) Galactic magnetic fields and the origin of cosmic radiation. ApJ 119:1. doi:10.1086/145789

    Article  ADS  Google Scholar 

  • Giacalone J, Jokipii JR (2007) Magnetic field amplification by shocks in turbulent fluids. ApJL 663:L41–L44. doi:10.1086/519994

    Article  ADS  Google Scholar 

  • Green DA (2014) A catalogue of 294 galactic supernova remnants. Bull Astron Soc India 42:47–58. arxiv:1409.0637

    Google Scholar 

  • Heng K (2010) Balmer-dominated shocks: a concise review. PASA 27:23–44. doi:10.1071/AS09057. arxiv:0908.4080

    Google Scholar 

  • Höorandel JR (2006) A review of experimental results at the knee. J Phys Conf Ser 47:41–50. doi:10.1088/1742-6596/47/1/005. arxiv:astro-ph/0508014

    Google Scholar 

  • Krymskii GF (1977) A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akademiia Nauk SSSR Doklady 234:1306–1308

    ADS  Google Scholar 

  • Kulsrud RM, Cesarsky CJ (1971) The effectiveness of instabilities for the confinement of high energy cosmic rays in the galactic disk. ApL 8:189

    ADS  Google Scholar 

  • Kulsrud R, Pearce WP (1969) The effect of wave-particle interactions on the propagation of cosmic rays. ApJ 156:445. doi:10.1086/149981

    Article  ADS  Google Scholar 

  • Lagage PO, Cesarsky CJ (1983a) Cosmic-ray shock acceleration in the presence of self-excited waves. A&A 118:223–228

    ADS  MATH  Google Scholar 

  • Lagage PO, Cesarsky CJ (1983b) The maximum energy of cosmic rays accelerated by supernova shocks. A&A 125:249–257

    ADS  MATH  Google Scholar 

  • Longair MS (1992) High energy astrophysics. Vol.1: particles, photons and their detection. Cambridge University press, Cambridge, UK

    Google Scholar 

  • Malkov MA, Drury LO (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Prog Phys 64:429–481. doi:10.1088/0034-4885/64/4/201

    Article  ADS  Google Scholar 

  • Maurin D, Melot F, Taillet R (2014) A database of charged cosmic rays. A&A 569:A32. doi:10.1051/0004-6361/201321344. arxiv:1302.5525

    Google Scholar 

  • McKenzie JF, Voelk HJ (1982) Non-linear theory of cosmic ray shocks including self-generated Alfven waves. A&A 116:191–200

    ADS  MATH  Google Scholar 

  • Morlino G (2014) Using optical lines to study particle acceleration at supernova remnants. Nucl Phys B Proc Suppl 256:56–64. doi:10.1016/j.nuclphysbps.2014.10.006. arxiv:1409.1112

    Google Scholar 

  • Morlino G, Amato E, Blasi P, Caprioli D (2010) Spatial structure of X-ray filaments in SN 1006. MNRAS 405:L21–L25. doi:10.1111/j.1745-3933.2010.00851.x. arxiv:0912.2972

    Google Scholar 

  • Morlino G, Blasi P, Bandiera R, Amato E, Caprioli D (2013) Collisionless shocks in a partially ionized medium. III. Efficient cosmic ray acceleration. ApJ 768:148. doi:10.1088/0004-637X/768/2/148. arxiv:1211.6148

    Google Scholar 

  • Recchia S, Blasi P, Morlino G (2016) Cosmic ray driven galactic winds. ArXiv e-prints. arxiv:1603.06746

    Google Scholar 

  • Reville B, Bell AR (2012) A filamentation instability for streaming cosmic rays. MNRAS 419:2433–2440. doi:10.1111/j.1365-2966.2011.19892.x. arxiv:1109.5690

    Google Scholar 

  • Reville B, Bell AR (2013) Universal behaviour of shock precursors in the presence of efficient cosmic ray acceleration. MNRAS 430:2873–2884. doi:10.1093/mnras/stt100. arxiv:1301.3173

    Google Scholar 

  • Reynolds SP, Ellison DC (1992) Electron acceleration in Tycho’s and Kepler’s supernova remnants – spectral evidence of Fermi shock acceleration. ApJL 399:L75–L78. doi:10.1086/186610

    Article  ADS  Google Scholar 

  • Reynoso EM, Walsh AJ (2015) Radio spectral characteristics of the supernova remnant Puppis A and nearby sources. MNRAS 451:3044–3054. doi:10.1093/mnras/stv1147. arxiv:1506.03801

    Google Scholar 

  • Schure KM, Bell AR, O’C Drury L, Bykov AM (2012) Diffusive shock acceleration and magnetic field amplification. SSRev 173:491–519. doi:10.1007/s11214-012-9871-7. arxiv:1203.1637

    Google Scholar 

  • Shalchi A (ed) (2009) Nonlinear cosmic ray diffusion theories. Astrophys Space Sci Libr 362. doi:10.1007/978-3-642-00309-7

    Google Scholar 

  • Skilling J (1975a) Cosmic ray streaming. I – effect of Alfven waves on particles. MNRAS 172:557–566. doi:10.1093/mnras/172.3.557

    Google Scholar 

  • Skilling J (1975b) Cosmic ray streaming. II – effect of particles on Alfven waves. MNRAS 173:245–254. doi:10.1093/mnras/173.2.245

    Google Scholar 

  • Sollerman J, Ghavamian P, Lundqvist P, Smith RC (2003) High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. A&A 407:249–257. doi:10.1051/0004-6361:20030839. arxiv:astro-ph/0306196

    Google Scholar 

  • Uchiyama Y, Aharonian FA, Tanaka T, Takahashi T, Maeda Y (2007) Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449:576–578. doi:10.1038/nature06210

    Article  ADS  Google Scholar 

  • Vink J (2012) Supernova remnants: the X-ray perspective. A&ARv 20:49. doi:10.1007/s00159-011-0049-1. arxiv:1112.0576

    Google Scholar 

  • Wagner AY, Falle SAEG, Hartquist TW (2007) Two-fluid models of cosmic-ray modified radiative shocks including the effects of an acoustic instability. A&A 463:195–201. doi:10.1051/0004-6361:20066307

    Article  ADS  Google Scholar 

  • Warren JS, Hughes JP, Badenes C, Ghavamian P, McKee CF, Moffett D, Plucinsky PP, Rakowski C, Reynoso E, Slane P (2005) Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. ApJ 634:376–389. doi:10.1086/496941. arxiv:astro-ph/0507478

    Google Scholar 

  • Zirakashvili VN, Breitschwerdt D, Ptuskin VS, Voelk HJ (1996) Magnetohydrodynamic wind driven by cosmic rays in a rotating galaxy. A&A 311:113–126

    ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Pasquale Blasi and Elena Amato for the long-term collaboration on this subject and to Sarah Recchia and Marta D’Angelo for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Morlino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Morlino, G. (2016). High-Energy Cosmic Rays from Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics