Skip to main content

Therapeutic Approach to the Critically Poisoned Patient

  • Living reference work entry
  • First Online:
Critical Care Toxicology
  • 797 Accesses

Abstract

Aggressive supportive care is the mainstay of treatment provided to patients in the intensive care unit (ICU). Basic aspects of care must be reevaluated or adjusted to account for unique aspects in the pathophysiology of the critically ill poisoned patient. This may include the use of gastrointestinal (GI) decontamination or the administration of antidotes. This chapter discusses the initial management and resuscitation of the critically ill poisoned patient. Subsequent chapters describe therapeutic decisions unique to particular drugs and xenobiotics and discuss specific antidotes in greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Zimmerman JE, Knaus WA, Wagner DP, Sun X, Hakim RB, Nystrom PO. A comparison of risks and outcomes for patients with organ system failure: 1982–1990. Crit Care Med. 1996;24(10):1633–41.

    Article  CAS  PubMed  Google Scholar 

  2. Mowry JB, Spyker DA, Brooks DE, McMillan N, Schauben JL. 2014 annual report of the American association of poison control centers' national poison data system (NPDS): 32nd annual report. Clin Toxicol (Phila). 2015;53(10):962–1147.

    Article  CAS  Google Scholar 

  3. O'Connor MFHJ, Schmidt GA, Wod LDH. Acute hypoxemic respiratory failure. In: Hall JBSG, Wood LDH, editors. Principles of critical care. 2nd ed. New York: McGraw-Hill; 1998.

    Google Scholar 

  4. Gabbott DA, Baskett PJ. Management of the airway and ventilation during resuscitation. Br J Anaesth. 1997;79(2):159–71.

    Article  CAS  PubMed  Google Scholar 

  5. Bach A, Boehrer H, Schmidt H, Geiss HK. Nosocomial sinusitis in ventilated patients. Nasotracheal versus orotracheal intubation. Anaesthesia. 1992;47(4):335–9.

    Article  CAS  PubMed  Google Scholar 

  6. Michelson A, Schuster B, Kamp HD. Paranasal sinusitis associated with nasotracheal and orotracheal long-term intubation. Arch Otolaryngol Head Neck Surg. 1992;118(9):937–9.

    Article  CAS  PubMed  Google Scholar 

  7. Salord F, Gaussorgues P, Marti-Flich J, Sirodot M, Allimant C, Lyonnet D, et al. Nosocomial maxillary sinusitis during mechanical ventilation: a prospective comparison of orotracheal versus the nasotracheal route for intubation. Intensive Care Med. 1990;16(6):390–3.

    Article  CAS  PubMed  Google Scholar 

  8. O'connor MFKM, Hall JB. Airway management. In: Hall JBSG, Wood LDH, editors. Principles of critical care. 2nd ed. New York: Mc-Graw Hill; 1998.

    Google Scholar 

  9. Holzapfel L, Chevret S, Madinier G, Ohen F, Demingeon G, Coupry A, et al. Influence of long-term oro- or nasotracheal intubation on nosocomial maxillary sinusitis and pneumonia: results of a prospective, randomized, clinical trial. Crit Care Med. 1993;21(8):1132–8.

    Article  CAS  PubMed  Google Scholar 

  10. Aebert H, Hunefeld G, Regel G. Paranasal sinusitis and sepsis in ICU patients with nasotracheal intubation. Intensive Care Med. 1988;15(1):27–30.

    Article  CAS  PubMed  Google Scholar 

  11. Wright PE, Marini JJ, Bernard GR. In vitro versus in vivo comparison of endotracheal tube airflow resistance. Am Rev Respir Dis. 1989;140(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  12. Friedman EM, Lovejoy Jr FH. The emergency management of caustic ingestions. Emerg Med Clin North Am. 1984;2(1):77–86.

    CAS  PubMed  Google Scholar 

  13. Howell JM. Alkaline ingestions. Ann Emerg Med. 1986;15(7):820–5.

    Article  CAS  PubMed  Google Scholar 

  14. Moulin D, Bertrand JM, Buts JP, Nyakabasa M, Otte JB. Upper airway lesions in children after accidental ingestion of caustic substances. J Pediatr. 1985;106(3):408–10.

    Article  CAS  PubMed  Google Scholar 

  15. Heffner AC, Swords DS, Neale MN, Jones AE. Incidence and factors associated with cardiac arrest complicating emergency airway management. Resuscitation. 2013;84(11):1500–4.

    Article  PubMed  Google Scholar 

  16. Weingart SD, Trueger NS, Wong N, Scofi J, Singh N, Rudolph SS. Delayed sequence intubation: a prospective observational study. Ann Emerg Med. 2015;65(4):349–55.

    Article  PubMed  Google Scholar 

  17. Weingart SD. Preoxygenation, reoxygenation, and delayed sequence intubation in the emergency department. J Emerg Med. 2011;40(6):661–7.

    Article  PubMed  Google Scholar 

  18. Ramkumar V. Preparation of the patient and the airway for awake intubation. Indian J Anaesth. 2011;55(5):442–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Simmons ST, Schleich AR. Airway regional anesthesia for awake fiberoptic intubation. Reg Anesth Pain Med. 2002;27(2):180–92.

    PubMed  Google Scholar 

  20. Roppolo LP, Wigginton JG. Preventing severe hypoxia during emergent intubation: is nasopharyngeal oxygenation the answer? Crit Care. 2010;14(6):1005.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weingart SD, Levitan RM. Preoxygenation and prevention of desaturation during emergency airway management. Ann Emerg Med. 2012;59(3):165–75. e1.

    Article  PubMed  Google Scholar 

  22. Frumin MJ, Epstein RM, Cohen G. Apneic oxygenation in man. Anesthesiology. 1959;20:789–98.

    Article  CAS  PubMed  Google Scholar 

  23. Wood LDHSG, Hall JB. Principles of critical care of respiratory failure. In: Murray JF, Nadal JA, editors. Textbook of respiratory medicine. 3rd ed. Philadelphia: WB Saunders; 2000.

    Google Scholar 

  24. Fessler HE, Derdak S, Ferguson ND, Hager DN, Kacmarek RM, Thompson BT, et al. A protocol for high-frequency oscillatory ventilation in adults: results from a roundtable discussion. Crit Care Med. 2007;35(7):1649–54.

    Article  PubMed  Google Scholar 

  25. Taki K, Huang DT. High-frequency oscillation in early adult respiratory distress syndrome. Crit Care. 2014;18(3):310.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Malhotra A, Drazen JM. High-frequency oscillatory ventilation on shaky ground. N Engl J Med. 2013;368(9):863–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marini JJ, Rodriguez RM, Lamb V. The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis. 1986;134(5):902–9.

    Article  CAS  PubMed  Google Scholar 

  28. Marini JJ, Capps JS, Culver BH. The inspiratory work of breathing during assisted mechanical ventilation. Chest. 1985;87(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  29. Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651–9.

    Article  CAS  PubMed  Google Scholar 

  30. Fuller BM, Mohr NM, Drewry AM, Carpenter CR. Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review. Crit Care. 2013;17(1):R11.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schmidt GA, Hall JB. Management of the ventilated patient. In: Hall JB, Schmidt GA, Wood LDH, editors. Principles of critical care. 2nd ed. New York: McGraw-Hill; 1998.

    Google Scholar 

  32. Murphy C. Hypertensive emergencies. Emerg Med Clin North Am. 1995;13(4):973–1007.

    CAS  PubMed  Google Scholar 

  33. Grossman E, Messerli FH. High blood pressure. A side effect of drugs, poisons, and food. Arch Intern Med. 1995;155(5):450–60.

    Article  CAS  PubMed  Google Scholar 

  34. Olmedo R, Hoffman RS. Withdrawal syndromes. Emerg Med Clin North Am. 2000;18(2):273–88.

    Article  CAS  PubMed  Google Scholar 

  35. Walley KR, Wood L. Shock. In: Hall JB, Schmidt G, Wood LDH, editors. Principles of critical care. 2nd ed. New York: McGraw-Hill; 1998.

    Google Scholar 

  36. Porter JM, Ivatury RR. In search of the optimal end points of resuscitation in trauma patients: a review. J Trauma. 1998;44(5):908–14.

    Article  CAS  PubMed  Google Scholar 

  37. Griffin JP. Methaemoglobinaemia. Adverse Drug React Toxicol Rev. 1997;16(1):45–63.

    CAS  PubMed  Google Scholar 

  38. Park CM, Nagel RL, Blumberg WE, Peisach J, Magliozzo RS. Sulfhemoglobin. Properties of partially sulfurated tetramers. J Biol Chem. 1986;261(19):8805–10.

    CAS  PubMed  Google Scholar 

  39. Hardy KR, Thom SR. Pathophysiology and treatment of carbon monoxide poisoning. J Toxicol Clin Toxicol. 1994;32(6):613–29.

    Article  CAS  PubMed  Google Scholar 

  40. Cyanide toxicity. Agency for Toxic Substances and Disease Registry. Am Fam Physician. 1993;48(1):107–14.

    Google Scholar 

  41. Smith RP, Gosselin RE. Hydrogen sulfide poisoning. J Occup Med. 1979;21(2):93–7.

    Article  CAS  PubMed  Google Scholar 

  42. Abrams J, el-Mallakh RS, Meyer R. Suicidal sodium azide ingestion. Ann Emerg Med. 1987;16(12):1378–80.

    Article  CAS  PubMed  Google Scholar 

  43. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371(24):2309–19.

    Article  PubMed  CAS  Google Scholar 

  44. Ruiz JP, Singh AK, Hart P. Type B lactic acidosis secondary to malignancy: case report, review of published cases, insights into pathogenesis, and prospects for therapy. Sci World J. 2011;11:1316–24.

    Article  Google Scholar 

  45. Cohen RD, Woods HF. Clinical and biochemical aspects of lactic acidosis. J Clin Pathol. 1976;30(1):92.

    Google Scholar 

  46. Luft FC. Lactic acidosis update for critical care clinicians. J Am Soc Nephrol. 2001;12 Suppl 17:S15–9.

    PubMed  Google Scholar 

  47. Sia P, Plumb TJ, Fillaus JA. Type B lactic acidosis associated with multiple myeloma. Am J Kidney Dis. 2013;62(3):633–7.

    Article  PubMed  Google Scholar 

  48. Megarbane B, Brivet F, Guerin JM, Baud FJ. Lactic acidosis and multi-organ failure secondary to anti-retroviral therapy in HIV-infected patients. Presse Med. 1999;28(40):2257–64.

    CAS  PubMed  Google Scholar 

  49. Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nichol AD, Egi M, Pettila V, Bellomo R, French C, Hart G, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care. 2010;14(1):R25.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Manini AF, Kumar A, Olsen D, Vlahov D, Hoffman RS. Utility of serum lactate to predict drug-overdose fatality. Clin Toxicol (Phila). 2010;48(7):730–6.

    Article  CAS  Google Scholar 

  52. Megarbane B, Deye N, Malissin I, Baud FJ. Usefulness of the serum lactate concentration for predicting mortality in acute beta-blocker poisoning. Clin Toxicol (Phila). 2010;48(10):974–8.

    Article  CAS  Google Scholar 

  53. Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  54. Rohde JM, Dimcheff DE, Blumberg N, Saint S, Langa KM, Kuhn L, et al. Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA. 2014;311(13):1317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Franchini M, Lippi G. Prothrombin complex concentrates: an update. Blood Transfus. 2010;8(3):149–54.

    PubMed  PubMed Central  Google Scholar 

  56. Pollack Jr CV, Reilly PA, Eikelboom J, Glund S, Verhamme P, Bernstein RA, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373(6):511–20.

    Article  CAS  PubMed  Google Scholar 

  57. Pollack Jr CV, Reilly PA, Bernstein R, Dubiel R, Eikelboom J, Glund S, et al. Design and rationale for RE-VERSE AD: a phase 3 study of idarucizumab, a specific reversal agent for dabigatran. Thromb Haemost. 2015;114(1):198–205.

    Article  PubMed  Google Scholar 

  58. Chang DN, Dager WE, Chin AI. Removal of dabigatran by hemodialysis. Am J Kidney Dis. 2013;61(3):487–9.

    Article  CAS  PubMed  Google Scholar 

  59. Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124(14):1573–9.

    Article  CAS  PubMed  Google Scholar 

  60. Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, Wiens BL, et al. Andexanet alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373(25):2413–24.

    Article  CAS  PubMed  Google Scholar 

  61. Jones AE, Tayal VS, Sullivan DM, Kline JA. Randomized, controlled trial of immediate versus delayed goal-directed ultrasound to identify the cause of nontraumatic hypotension in emergency department patients. Crit Care Med. 2004;32(8):1703–8.

    Article  PubMed  Google Scholar 

  62. Seif D, Perera P, Mailhot T, Riley D, Mandavia D. Bedside ultrasound in resuscitation and the rapid ultrasound in shock protocol. Crit Care Res Pract. 2012;2012:503254.

    PubMed  PubMed Central  Google Scholar 

  63. Velanovich V. Crystalloid versus colloid fluid resuscitation: a meta-analysis of mortality. Surgery. 1989;105(1):65–71.

    CAS  PubMed  Google Scholar 

  64. Schierhout G, Roberts I. Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ. 1998;316(7136):961–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shoemaker WC, Monson DO. The effect of whole blood and plasma expanders on volume-flow relationships in critically ill patients. Surg Gynecol Obstet. 1973;137(3):453–7.

    CAS  PubMed  Google Scholar 

  66. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ. 1998;317(7153):235–40.

    Article  Google Scholar 

  67. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51.

    Article  CAS  PubMed  Google Scholar 

  68. Shoemaker WC. Comparison of the relative effectiveness of whole blood transfusions and various types of fluid therapy in resuscitation. Crit Care Med. 1976;4(2):71–8.

    Article  CAS  PubMed  Google Scholar 

  69. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.

    Article  CAS  PubMed  Google Scholar 

  70. Jiang L, Jiang S, Zhang M, Zheng Z, Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One. 2014;9(12), e114666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.

    Google Scholar 

  72. Albumin R. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. 2011;10:CD001208.

    Google Scholar 

  73. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    Article  CAS  PubMed  Google Scholar 

  74. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  75. Muller RB, Haase N, Lange T, Wetterslev J, Perner A. Acute kidney injury with hydroxyethyl starch 130/0.42 in severe sepsis. Acta Anaesthesiol Scand. 2015;59(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  76. Santi M, Lava SA, Camozzi P, Giannini O, Milani GP, Simonetti GD, et al. The great fluid debate: saline or so-called “balanced” salt solutions? Ital J Pediatr. 2015;41:47.

    Google Scholar 

  77. Carlesso E, Maiocchi G, Tallarini F, Polli F, Valenza F, Cadringher P, et al. The rule regulating pH changes during crystalloid infusion. Intensive Care Med. 2011;37(3):461–8.

    Article  CAS  PubMed  Google Scholar 

  78. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9 % saline compared to plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Google Scholar 

  79. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  PubMed  Google Scholar 

  80. Rochwerg B, Alhazzani W, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–55.

    Article  PubMed  Google Scholar 

  81. Moritz ML, Ayus JC. Maintenance intravenous fluids in acutely Ill patients. N Engl J Med. 2015;373(14):1350–60.

    Article  PubMed  Google Scholar 

  82. Freeman MA, Ayus JC, Moritz ML. Maintenance intravenous fluid prescribing practices among paediatric residents. Acta Paediatr. 2012;101(10):e465–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Padhi S, Bullock I, Li L, Stroud M, National Institute for Health, Care Excellence Guideline Development Group. Intravenous fluid therapy for adults in hospital: summary of NICE guidance. BMJ. 2013;347:f7073.

    Article  PubMed  Google Scholar 

  84. Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852–62.

    Article  CAS  PubMed  Google Scholar 

  85. Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S30–5.

    Article  CAS  PubMed  Google Scholar 

  86. DeVita MV, Gardenswartz MH, Konecky A, Zabetakis PM. Incidence and etiology of hyponatremia in an intensive care unit. Clin Nephrol. 1990;34(4):163–6.

    CAS  PubMed  Google Scholar 

  87. Waikar SS, Mount DB, Curhan GC. Mortality after hospitalization with mild, moderate, and severe hyponatremia. Am J Med. 2009;122(9):857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moritz ML, Ayus JC. Hospital-acquired hyponatremia--why are hypotonic parenteral fluids still being used? Nat Clin Pract Nephrol. 2007;3(7):374–82.

    Article  CAS  PubMed  Google Scholar 

  89. Moritz ML, Ayus JC. Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics. 2003;111(2):227–30.

    Article  PubMed  Google Scholar 

  90. Foster BA, Tom D, Hill V. Hypotonic versus isotonic fluids in hospitalized children: a systematic review and meta-analysis. J Pediatr. 2014;165(1):163–9. e2.

    Article  PubMed  Google Scholar 

  91. McNab S, Ware RS, Neville KA, Choong K, Coulthard MG, Duke T, et al. Isotonic versus hypotonic solutions for maintenance intravenous fluid administration in children. Cochrane Database Syst Rev. 2014;12:CD009457.

    Google Scholar 

  92. Murray P, Wylam ME. Dopamine, dobutamine, and dopexamine. In: Leff AR, editor. Pulmonary and critical care pharmacology and therapeutics. New York: McGraw-Hill; 1996. p. 242.

    Google Scholar 

  93. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    Article  PubMed  Google Scholar 

  94. Hannemann L, Reinhart K, Grenzer O, Meier-Hellmann A, Bredle DL. Comparison of dopamine to dobutamine and norepinephrine for oxygen delivery and uptake in septic shock. Crit Care Med. 1995;23(12):1962–70.

    Article  CAS  PubMed  Google Scholar 

  95. Teba L, Schiebel F, Dedhia HV, Lazzell VA. Beneficial effect of norepinephrine in the treatment of circulatory shock caused by tricyclic antidepressant overdose. Am J Emerg Med. 1988;6(6):566–8.

    Article  CAS  PubMed  Google Scholar 

  96. Tran TP, Panacek EA, Rhee KJ, Foulke GE. Response to dopamine vs norepinephrine in tricyclic antidepressant-induced hypotension. Acad Emerg Med. 1997;4(9):864–8.

    Article  CAS  PubMed  Google Scholar 

  97. Vernon DD, Banner Jr W, Garrett JS, Dean JM. Efficacy of dopamine and norepinephrine for treatment of hemodynamic compromise in amitriptyline intoxication. Crit Care Med. 1991;19(4):544–9.

    Article  CAS  PubMed  Google Scholar 

  98. Levine M, Curry SC, Padilla-Jones A, Ruha AM. Critical care management of verapamil and diltiazem overdose with a focus on vasopressors: a 25-year experience at a single center. Ann Emerg Med. 2013;62(3):252–8.

    Article  PubMed  Google Scholar 

  99. Loubani OM, Green RS. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care. 2015;30(3):653 e9–17.

    Article  PubMed  CAS  Google Scholar 

  100. White CM. A review of potential cardiovascular uses of intravenous glucagon administration. J Clin Pharmacol. 1999;39(5):442–7.

    CAS  PubMed  Google Scholar 

  101. Doyon S, Roberts JR. The use of glucagon in a case of calcium channel blocker overdose. Ann Emerg Med. 1993;22(7):1229–33.

    Article  CAS  PubMed  Google Scholar 

  102. Walter FG, Frye G, Mullen JT, Ekins BR, Khasigian PA. Amelioration of nifedipine poisoning associated with glucagon therapy. Ann Emerg Med. 1993;22(7):1234–7.

    Article  CAS  PubMed  Google Scholar 

  103. Stone CK, May WA, Carroll R. Treatment of verapamil overdose with glucagon in dogs. Ann Emerg Med. 1995;25(3):369–74.

    Article  CAS  PubMed  Google Scholar 

  104. Salzberg MR, Gallagher EJ. Propranolol overdose. Ann Emerg Med. 1980;9(1):26–7.

    Article  CAS  PubMed  Google Scholar 

  105. Sensky PR, Olczak SA. High-dose intravenous glucagon in severe tricyclic poisoning. Postgrad Med J. 1999;75(888):611–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sener EK, Gabe S, Henry JA. Response to glucagon in imipramine overdose. J Toxicol Clin Toxicol. 1995;33(1):51–3.

    Article  CAS  PubMed  Google Scholar 

  107. Wolf LR, Spadafora MP, Otten EJ. Use of amrinone and glucagon in a case of calcium channel blocker overdose. Ann Emerg Med. 1993;22(7):1225–8.

    Article  CAS  PubMed  Google Scholar 

  108. Hantson P, Ronveau JL, De Coninck B, Horn JL, Mahieu P, Hassoun A. Amrinone for refractory cardiogenic shock following chloroquine poisoning. Intensive Care Med. 1991;17(7):430–1.

    Article  CAS  PubMed  Google Scholar 

  109. Whitehurst VE, Vick JA, Alleva FR, Zhang J, Joseph X, Balazs T. Reversal of propranolol blockade of adrenergic receptors and related toxicity with drugs that increase cyclic AMP. Proc Soc Exp Biol Med. 1999;221(4):382–5.

    Article  CAS  PubMed  Google Scholar 

  110. Koury SI, Stone CK, Thomas SH. Amrinone as an antidote in experimental verapamil overdose. Acad Emerg Med. 1996;3(8):762–7.

    Article  CAS  PubMed  Google Scholar 

  111. Tuncok Y, Apaydin S, Gidener S, Guven H, Oto O, Ates M, et al. The effects of amrinone and glucagon on verapamil-induced myocardial depression in a rat isolated heart model. Gen Pharmacol. 1997;28(5):773–6.

    Article  CAS  PubMed  Google Scholar 

  112. Vinetti M, Haufroid V, Capron A, Classen JF, Marchandise S, Hantson P. Severe acute cardiomyopathy associated with venlafaxine overdose and possible role of CYP2D6 and CYP2C19 polymorphisms. Clin Toxicol (Phila). 2011;49(9):865–9.

    Article  CAS  Google Scholar 

  113. Lee KC, Canniff PC, Hamel DW, Pagani ED, Ezrin AM. Cardiovascular and renal effects of milrinone in beta-adrenoreceptor blocked and non-blocked anaesthetized dogs. Drugs Exp Clin Res. 1991;17(3):145–58.

    CAS  PubMed  Google Scholar 

  114. Kline JA, Leonova E, Raymond RM. Beneficial myocardial metabolic effects of insulin during verapamil toxicity in the anesthetized canine. Crit Care Med. 1995;23(7):1251–63.

    Article  CAS  PubMed  Google Scholar 

  115. Engebretsen KM, Kaczmarek KM, Morgan J, Holger JS. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning. Clin Toxicol (Phila). 2011;49(4):277–83.

    Article  CAS  Google Scholar 

  116. Kline JA, Tomaszewski CA, Schroeder JD, Raymond RM. Insulin is a superior antidote for cardiovascular toxicity induced by verapamil in the anesthetized canine. J Pharmacol Exp Ther. 1993;267(2):744–50.

    CAS  PubMed  Google Scholar 

  117. Kline JA, Raymond RM, Leonova ED, Williams TC, Watts JA. Insulin improves heart function and metabolism during non-ischemic cardiogenic shock in awake canines. Cardiovasc Res. 1997;34(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  118. Holger JS, Engebretsen KM, Fritzlar SJ, Patten LC, Harris CR, Flottemesch TJ. Insulin versus vasopressin and epinephrine to treat beta-blocker toxicity. Clin Toxicol (Phila). 2007;45(4):396–401.

    Article  CAS  Google Scholar 

  119. Yuan TH, Kerns 2nd WP, Tomaszewski CA, Ford MD, Kline JA. Insulin-glucose as adjunctive therapy for severe calcium channel antagonist poisoning. J Toxicol Clin Toxicol. 1999;37(4):463–74.

    Article  CAS  PubMed  Google Scholar 

  120. Agarwal A, Yu SW, Rehman A, Henkle JQ. Hyperinsulinemia euglycemia therapy for calcium channel blocker overdose: a case report. Tex Heart Inst J. 2012;39(4):575–8.

    PubMed  PubMed Central  Google Scholar 

  121. Holger JS, Engebretsen KM, Marini JJ. High dose insulin in toxic cardiogenic shock. Clin Toxicol (Phila). 2009;47(4):303–7.

    Article  CAS  Google Scholar 

  122. Holger JS, Stellpflug SJ, Cole JB, Harris CR, Engebretsen KM. High-dose insulin: a consecutive case series in toxin-induced cardiogenic shock. Clin Toxicol (Phila). 2011;49(7):653–8.

    Article  CAS  Google Scholar 

  123. Jang DH, Spyres MB, Fox L, Manini AF. Toxin-induced cardiovascular failure. Emerg Med Clin North Am. 2014;32(1):79–102.

    Article  PubMed  Google Scholar 

  124. Jang DH, Donovan S, Nelson LS, Bania TC, Hoffman RS, Chu J. Efficacy of methylene blue in an experimental model of calcium channel blocker-induced shock. Ann Emerg Med. 2015;65(4):410–5.

    Article  PubMed  Google Scholar 

  125. Jang DH, Nelson LS, Hoffman RS. Methylene blue in the treatment of refractory shock from an amlodipine overdose. Ann Emerg Med. 2011;58(6):565–7.

    Article  PubMed  Google Scholar 

  126. Aggarwal N, Kupfer Y, Seneviratne C, Tessler S. Methylene blue reverses recalcitrant shock in beta-blocker and calcium channel blocker overdose. BMJ Case Rep. 2013;2013.

    Google Scholar 

  127. Haikala H, Linden IB. Mechanisms of action of calcium-sensitizing drugs. J Cardiovasc Pharmacol. 1995;26 Suppl 1:S10–9.

    Article  CAS  PubMed  Google Scholar 

  128. Osthoff M, Bernsmeier C, Marsch SC, Hunziker PR. Levosimendan as treatment option in severe verapamil intoxication: a case report and review of the literature. Case Rep Med. 2010;2010:3.

    Google Scholar 

  129. Varpula T, Rapola J, Sallisalmi M, Kurola J. Treatment of serious calcium channel blocker overdose with levosimendan, a calcium sensitizer. Anesth Analg. 2009;108(3):790–2.

    Article  PubMed  Google Scholar 

  130. Teker MG, Ozdemir H, Saidoglu L, Erkalp K, Basaranoglu G. Levosimendan as a rescue adjunct in amlodipine intoxication--a case report. Middle East J Anaesthesiol. 2010;20(6):869–72.

    PubMed  Google Scholar 

  131. Cave G, Harvey M, Willers J, Uncles D, Meek T, Picard J, et al. LIPAEMIC report: results of clinical use of intravenous lipid emulsion in drug toxicity reported to an online lipid registry. J Med Toxicol. 2014;10(2):133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Weinberg G. Lipid rescue resuscitation from local anaesthetic cardiac toxicity. Toxicol Rev. 2006;25(3):139–45.

    Article  CAS  PubMed  Google Scholar 

  133. Young AC, Velez LI, Kleinschmidt KC. Intravenous fat emulsion therapy for intentional sustained-release verapamil overdose. Resuscitation. 2009;80(5):591–3.

    Article  CAS  PubMed  Google Scholar 

  134. Blaber MS, Khan JN, Brebner JA, McColm R. “Lipid rescue” for tricyclic antidepressant cardiotoxicity. J Emerg Med. 2012;43(3):465–7.

    Google Scholar 

  135. Cao D, Heard K, Foran M, Koyfman A. Intravenous lipid emulsion in the emergency department: a systematic review of recent literature. J Emerg Med. 2015;48(3):387–97.

    Article  PubMed  Google Scholar 

  136. Sirianni AJ, Osterhoudt KC, Calello DP, Muller AA, Waterhouse MR, Goodkin MB, et al. Use of lipid emulsion in the resuscitation of a patient with prolonged cardiovascular collapse after overdose of bupropion and lamotrigine. Ann Emerg Med. 2008;51(4):412-5–5 e1.

    Article  Google Scholar 

  137. Abdelmalek D, Schwarz ES, Sampson C, Halcomb SE, McCammon C, Arroyo-Plasencia A, et al. Life-threatening diphenhydramine toxicity presenting with seizures and a wide complex tachycardia improved with intravenous fat emulsion. Am J Ther. 2014;21(6):542–4.

    Article  PubMed  Google Scholar 

  138. Finn SD, Uncles DR, Willers J, Sable N. Early treatment of a quetiapine and sertraline overdose with Intralipid. Anaesthesia. 2009;64(2):191–4.

    Article  CAS  PubMed  Google Scholar 

  139. Jakkala-Saibaba R, Morgan PG, Morton GL. Treatment of cocaine overdose with lipid emulsion. Anaesthesia. 2011;66(12):1168–70.

    Article  CAS  PubMed  Google Scholar 

  140. Dagtekin O, Marcus H, Muller C, Bottiger BW, Spohr F. Lipid therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and diazepam. Minerva Anestesiol. 2011;77(1):93–5.

    CAS  PubMed  Google Scholar 

  141. Geib AJ, Liebelt E, Manini AF, Toxicology IC. Clinical experience with intravenous lipid emulsion for drug-induced cardiovascular collapse. J Med Toxicol. 2012;8(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  142. Levine M, Skolnik AB, Ruha AM, Bosak A, Menke N, Pizon AF. Complications following antidotal use of intravenous lipid emulsion therapy. J Med Toxicol. 2014;10(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  143. American College of Medical Toxicology. ACMT position statement: interim guidance for the use of lipid resuscitation therapy. J Med Toxicol. 2011;7(1):81–2.

    Article  PubMed Central  Google Scholar 

  144. de Lange DW, Sikma MA, Meulenbelt J. Extracorporeal membrane oxygenation in the treatment of poisoned patients. Clin Toxicol (Phila). 2013;51(5):385–93.

    Article  CAS  Google Scholar 

  145. Shenoi AN, Gertz SJ, Mikkilineni S, Kalyanaraman M. Refractory hypotension from massive bupropion overdose successfully treated with extracorporeal membrane oxygenation. Pediatr Emerg Care. 2011;27(1):43–5.

    Article  PubMed  Google Scholar 

  146. Weinberg RL, Bouchard NC, Abrams DC, Bacchetta M, Dzierba AL, Burkart KM, et al. Venoarterial extracorporeal membrane oxygenation for the management of massive amlodipine overdose. Perfusion. 2014;29(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  147. Masson R, Colas V, Parienti JJ, Lehoux P, Massetti M, Charbonneau P, et al. A comparison of survival with and without extracorporeal life support treatment for severe poisoning due to drug intoxication. Resuscitation. 2012;83(11):1413–7.

    Article  PubMed  Google Scholar 

  148. Palatinus JA, Lieber SB, Joyce KE, Richards JB. Extracorporeal membrane oxygenation support for hypokalemia-induced cardiac arrest: a case report and review of the literature. J Emerg Med. 2015;49(2):159–64.

    Article  PubMed  Google Scholar 

  149. Eurosurveillance editorial team. The European Monitoring Centre for Drugs and Drug Addiction publishes the European Drug Report 2013: trends and developments. Euro Surveill. 2013;18(22):1–80.

    Google Scholar 

  150. Horburger D, Kurkciyan I, Sterz F, Schober A, Stockl M, Stratil P, et al. Cardiac arrest caused by acute intoxication-insight from a registry. Am J Emerg Med. 2013;31(10):1443–7.

    Article  PubMed  Google Scholar 

  151. Richman PB, Nashed AH. The etiology of cardiac arrest in children and young adults: special considerations for ED management. Am J Emerg Med. 1999;17(3):264–70.

    Article  CAS  PubMed  Google Scholar 

  152. Albertson TE, Dawson A, de Latorre F, Hoffman RS, Hollander JE, Jaeger A, et al. TOX-ACLS: toxicologic-oriented advanced cardiac life support. Ann Emerg Med. 2001;37(4 Suppl):S78–90.

    Article  CAS  PubMed  Google Scholar 

  153. Proano L, Chiang WK, Wang RY. Calcium channel blocker overdose. Am J Emerg Med. 1995;13(4):444–50.

    Article  CAS  PubMed  Google Scholar 

  154. Quezado Z, Lippmann M, Wertheimer J. Severe cardiac, respiratory, and metabolic complications of massive verapamil overdose. Crit Care Med. 1991;19(3):436–8.

    Article  CAS  PubMed  Google Scholar 

  155. Brass BJ, Winchester-Penny S, Lipper BL. Massive verapamil overdose complicated by noncardiogenic pulmonary edema. Am J Emerg Med. 1996;14(5):459–61.

    Article  CAS  PubMed  Google Scholar 

  156. Coulter TD, Wiedemann HP. Complications of hemodynamic monitoring. Clin Chest Med. 1999;20(2):249–67. vii.

    Article  CAS  PubMed  Google Scholar 

  157. Morris AH, Chapman RH, Gardner RM. Frequency of wedge pressure errors in the ICU. Crit Care Med. 1985;13(9):705–8.

    Article  CAS  PubMed  Google Scholar 

  158. Gnaegi A, Feihl F, Perret C. Intensive care physicians' insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med. 1997;25(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  159. Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE. A multicenter study of physicians' knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA. 1990;264(22):2928–32.

    Article  CAS  PubMed  Google Scholar 

  160. Yamada T, Tsutsui M, Sugo Y, Sato T, Akazawa T, Sato N, et al. Multicenter study verifying a method of noninvasive continuous cardiac output measurement using pulse wave transit time: a comparison with intermittent bolus thermodilution cardiac output. Anesth Analg. 2012;115(1):82–7.

    Article  PubMed  Google Scholar 

  161. Montenij LJ, de Waal EE, Buhre WF. Arterial waveform analysis in anesthesia and critical care. Curr Opin Anaesthesiol. 2011;24(6):651–6.

    Article  PubMed  Google Scholar 

  162. Linton RA, Band DM, Haire KM. A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth. 1993;71(2):262–6.

    Article  CAS  PubMed  Google Scholar 

  163. Mora B, Ince I, Birkenberg B, Skhirtladze K, Pernicka E, Ankersmit HJ, et al. Validation of cardiac output measurement with the LiDCO pulse contour system in patients with impaired left ventricular function after cardiac surgery. Anaesthesia. 2011;66(8):675–81.

    Article  CAS  PubMed  Google Scholar 

  164. Hadian M, Kim HK, Severyn DA, Pinsky MR. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care. 2010;14(6):R212.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Alhashemi JA, Cecconi M, Hofer CK. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15(2):214.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Jones AE, Craddock PA, Tayal VS, Kline JA. Diagnostic accuracy of left ventricular function for identifying sepsis among emergency department patients with nontraumatic symptomatic undifferentiated hypotension. Shock. 2005;24(6):513–7.

    Article  PubMed  Google Scholar 

  167. Vieillard-Baron A, Page B, Augarde R, Prin S, Qanadli S, Beauchet A, et al. Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med. 2001;27(9):1481–6.

    Article  CAS  PubMed  Google Scholar 

  168. Grifoni S, Olivotto I, Cecchini P, Pieralli F, Camaiti A, Santoro G, et al. Utility of an integrated clinical, echocardiographic, and venous ultrasonographic approach for triage of patients with suspected pulmonary embolism. Am J Cardiol. 1998;82(10):1230–5.

    Article  CAS  PubMed  Google Scholar 

  169. Randazzo MR, Snoey ER, Levitt MA, Binder K. Accuracy of emergency physician assessment of left ventricular ejection fraction and central venous pressure using echocardiography. Acad Emerg Med. 2003;10(9):973–7.

    Article  PubMed  Google Scholar 

  170. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66(4):493–6.

    Article  CAS  PubMed  Google Scholar 

  171. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. quiz 86–8.

    Article  PubMed  Google Scholar 

  172. Jang T, Aubin C, Naunheim R, Lewis LM, Kaji AH. Jugular venous distension on ultrasound: sensitivity and specificity for heart failure in patients with dyspnea. Am J Emerg Med. 2011;29(9):1198–202.

    Article  PubMed  Google Scholar 

  173. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.

    Article  PubMed  Google Scholar 

  174. Evans D, Ferraioli G, Snellings J, Levitov A. Volume responsiveness in critically ill patients: use of sonography to guide management. J Ultrasound Med. 2014;33(1):3–7.

    Article  PubMed  Google Scholar 

  175. Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143(2):364–70.

    Article  PubMed  Google Scholar 

  176. Schelling G, Stoll C, Haller M, Briegel J, Manert W, Hummel T, et al. Health-related quality of life and posttraumatic stress disorder in survivors of the acute respiratory distress syndrome. Crit Care Med. 1998;26(4):651–9.

    Article  CAS  PubMed  Google Scholar 

  177. Devlin JW. The pharmacology of oversedation in mechanically ventilated adults. Curr Opin Crit Care. 2008;14(4):403–7.

    Article  PubMed  Google Scholar 

  178. Kress JP, Gehlbach B, Lacy M, Pliskin N, Pohlman AS, Hall JB. The long-term psychological effects of daily sedative interruption on critically ill patients. Am J Respir Crit Care Med. 2003;168(12):1457–61.

    Article  PubMed  Google Scholar 

  179. Rock LF. Sedation and its association with posttraumatic stress disorder after intensive care. Crit Care Nurse. 2014;34(1):30–7. quiz 9.

    Article  PubMed  Google Scholar 

  180. Jones JG. Perception and memory during general anaesthesia. Br J Anaesth. 1994;73(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  181. Rhoney DH, Murry KR. National survey of the use of sedating drugs, neuromuscular blocking agents, and reversal agents in the intensive care unit. J Intensive Care Med. 2003;18(3):139–45.

    Article  PubMed  Google Scholar 

  182. Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151–60.

    Article  CAS  PubMed  Google Scholar 

  183. Demuro JP, Mongelli MN, Hanna AF. Use of dexmedetomidine to facilitate non-invasive ventilation. Int J Crit Illn Inj Sci. 2013;3(4):274–5.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Devlin JW, Al-Qadheeb NS, Chi A, Roberts RJ, Qawi I, Garpestad E, et al. Efficacy and safety of early dexmedetomidine during noninvasive ventilation for patients with acute respiratory failure: a randomized, double-blind, placebo-controlled pilot study. Chest. 2014;145(6):1204–12.

    Article  CAS  PubMed  Google Scholar 

  185. Rayner SG, Weinert CR, Peng H, Jepsen S, Broccard AF, Study I. Dexmedetomidine as adjunct treatment for severe alcohol withdrawal in the ICU. Ann Intensive Care. 2012;2(1):12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Ludtke KA, Stanley KS, Yount NL, Gerkin RD. Retrospective review of critically ill patients experiencing alcohol withdrawal: dexmedetomidine versus propofol and/or lorazepam continuous infusions. Hosp Pharm. 2015;50(3):208–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mohorn PL, Vakkalanka JP, Rushton W, Hardison L, Woloszyn A, Holstege C, et al. Evaluation of dexmedetomidine therapy for sedation in patients with toxicological events at an academic medical center. Clin Toxicol (Phila). 2014;52(5):525–30.

    Article  CAS  Google Scholar 

  188. Shapiro BA, Warren J, Egol AB, Greenbaum DM, Jacobi J, Nasraway SA, et al. Practice parameters for intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary. Society of Critical Care Medicine. Crit Care Med. 1995;23(9):1596–600.

    Article  CAS  PubMed  Google Scholar 

  189. Young C, Knudsen N, Hilton A, Reves JG. Sedation in the intensive care unit. Crit Care Med. 2000;28(3):854–66.

    Article  CAS  PubMed  Google Scholar 

  190. Kollef MH, Levy NT, Ahrens TS, Schaiff R, Prentice D, Sherman G. The use of continuous i.v. sedation is associated with prolongation of mechanical ventilation. Chest. 1998;114(2):541–8.

    Article  CAS  PubMed  Google Scholar 

  191. Kress JP, Hall JB. Sedation in the mechanically ventilated patient. Crit Care Med. 2006;34(10):2541–6.

    Article  PubMed  Google Scholar 

  192. Wheeler AP. Sedation, analgesia, and paralysis in the intensive care unit. Chest. 1993;104(2):566–77.

    Article  CAS  PubMed  Google Scholar 

  193. Barrientos-Vega R, Mar Sanchez-Soria M, Morales-Garcia C, Robas-Gomez A, Cuena-Boy R, Ayensa-Rincon A. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs. Crit Care Med. 1997;25(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  194. Kress JP, O'Connor MF, Pohlman AS, Olson D, Lavoie A, Toledano A, et al. Sedation of critically ill patients during mechanical ventilation. A comparison of propofol and midazolam. Am J Respir Crit Care Med. 1996;153(3):1012–8.

    Article  CAS  PubMed  Google Scholar 

  195. Pohlman AS, Simpson KP, Hall JB. Continuous intravenous infusions of lorazepam versus midazolam for sedation during mechanical ventilatory support: a prospective, randomized study. Crit Care Med. 1994;22(8):1241–7.

    Article  CAS  PubMed  Google Scholar 

  196. Malacrida R, Fritz ME, Suter PM, Crevoisier C. Pharmacokinetics of midazolam administered by continuous intravenous infusion to intensive care patients. Crit Care Med. 1992;20(8):1123–6.

    Article  CAS  PubMed  Google Scholar 

  197. Fragen RJ. Pharmacokinetics and pharmacodynamics of midazolam given via continuous intravenous infusion in intensive care units. Clin Ther. 1997;19(3):405–19. discussion 367–8.

    Article  CAS  PubMed  Google Scholar 

  198. Sessler CN, Varney K. Patient-focused sedation and analgesia in the ICU. Chest. 2008;133(2):552–65.

    Article  CAS  PubMed  Google Scholar 

  199. Shehabi Y, Riker RR, Bokesch PM, Wisemandle W, Shintani A, Ely EW, et al. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit Care Med. 2010;38(12):2311–8.

    Article  PubMed  Google Scholar 

  200. Kam PC, Cardone D. Propofol infusion syndrome. Anaesthesia. 2007;62(7):690–701.

    Article  CAS  PubMed  Google Scholar 

  201. Kress JP, Pohlman AS, O'Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7.

    Article  CAS  PubMed  Google Scholar 

  202. Mattia C, Savoia G, Paoletti F, Piazza O, Albanese D, Amantea B, et al. SIAARTI recommendations for analgo-sedation in intensive care unit. Minerva Anestesiol. 2006;72(10):769–805.

    CAS  PubMed  Google Scholar 

  203. Park G, Lane M, Rogers S, Bassett P. A comparison of hypnotic and analgesic based sedation in a general intensive care unit. Br J Anaesth. 2007;98(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  204. Breen D, Karabinis A, Malbrain M, Morais R, Albrecht S, Jarnvig IL, et al. Decreased duration of mechanical ventilation when comparing analgesia-based sedation using remifentanil with standard hypnotic-based sedation for up to 10 days in intensive care unit patients: a randomised trial [ISRCTN47583497]. Crit Care. 2005;9(3):R200–10.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Devabhakthuni S, Armahizer MJ, Dasta JF, Kane-Gill SL. Analgosedation: a paradigm shift in intensive care unit sedation practice. Ann Pharmacother. 2012;46(4):530–40.

    Article  PubMed  Google Scholar 

  206. Mallick ASS, Bodenham AR. Local anaesthesia to the airway reduces sedation requirements in patients undergoing artificial ventilation. Br J Anaesth. 1966;77:731–4.

    Article  Google Scholar 

  207. Marik PE, Kaufman D. The effects of neuromuscular paralysis on systemic and splanchnic oxygen utilization in mechanically ventilated patients. Chest. 1996;109(4):1038–42.

    Article  CAS  PubMed  Google Scholar 

  208. Pohlman AOCM, Olsen D, et al. Sedation with propofol lowers VO2 in critically ill patients. Am J Respir Crit Care Med. 1995;151:A325.

    Article  Google Scholar 

  209. Hansen-Flaschen J, Cowen J, Raps EC. Neuromuscular blockade in the intensive care unit. More than we bargained for. Am Rev Respir Dis. 1993;147(1):234–6.

    Article  CAS  PubMed  Google Scholar 

  210. Segredo V, Caldwell JE, Matthay MA, Sharma ML, Gruenke LD, Miller RD. Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med. 1992;327(8):524–8.

    Article  CAS  PubMed  Google Scholar 

  211. Shapiro BA, Warren J, Egol AB, Greenbaum DM, Jacobi J, Nasraway SA, et al. Practice parameters for sustained neuromuscular blockade in the adult critically ill patient: an executive summary. Society of Critical Care Medicine. Crit Care Med. 1995;23(9):1601–5.

    Article  CAS  PubMed  Google Scholar 

  212. Watling SM, Dasta JF. Prolonged paralysis in intensive care unit patients after the use of neuromuscular blocking agents: a review of the literature. Crit Care Med. 1994;22(5):884–93.

    Article  CAS  PubMed  Google Scholar 

  213. Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150(4):896–903.

    Article  CAS  PubMed  Google Scholar 

  214. Esteban A, Frutos F, Tobin MJ, Alia I, Solsona JF, Valverdu I, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332(6):345–50.

    Article  CAS  PubMed  Google Scholar 

  215. Hall JB, Wood LD. Liberation of the patient from mechanical ventilation. JAMA. 1987;257(12):1621–8.

    Article  CAS  PubMed  Google Scholar 

  216. Millbern SM, Downs JB, Jumper LC, Modell JH. Evaluation of criteria for discontinuing mechanical ventilatory support. Arch Surg. 1978;113(12):1441–3.

    Article  CAS  PubMed  Google Scholar 

  217. Sahn SA, Lakshminarayan S. Bedside criteria for discontinuation of mechanical ventilation. Chest. 1973;63(6):1002–5.

    Article  CAS  PubMed  Google Scholar 

  218. Manthous CA, Schmidt GA, Hall JB. Liberation from mechanical ventilation: a decade of progress. Chest. 1998;114(3):886–901.

    Article  CAS  PubMed  Google Scholar 

  219. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.

    Article  CAS  PubMed  Google Scholar 

  220. Chatila W, Jacob B, Guaglionone D, Manthous CA. The unassisted respiratory rate-tidal volume ratio accurately predicts weaning outcome. Am J Med. 1996;101(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  221. Jacob B, Chatila W, Manthous CA. The unassisted respiratory rate/tidal volume ratio accurately predicts weaning outcome in postoperative patients. Crit Care Med. 1997;25(2):253–7.

    Article  CAS  PubMed  Google Scholar 

  222. Esteban A, Alia I. Clinical management of weaning from mechanical ventilation. Intensive Care Med. 1998;24(10):999–1008.

    Article  CAS  PubMed  Google Scholar 

  223. Fisher MM, Raper RF. The 'cuff-leak' test for extubation. Anaesthesia. 1992;47(1):10–2.

    Article  CAS  PubMed  Google Scholar 

  224. Miller RL, Cole RP. Association between reduced cuff leak volume and postextubation stridor. Chest. 1996;110(4):1035–40.

    Article  CAS  PubMed  Google Scholar 

  225. Brainsky A, Fletcher RH, Glick HA, Lanken PN, Williams SV, Kundel HL. Routine portable chest radiographs in the medical intensive care unit: effects and costs. Crit Care Med. 1997;25(5):801–5.

    Article  CAS  PubMed  Google Scholar 

  226. Strain DS, Kinasewitz GT, Vereen LE, George RB. Value of routine daily chest x-rays in the medical intensive care unit. Crit Care Med. 1985;13(7):534–6.

    Article  CAS  PubMed  Google Scholar 

  227. Greenbaum DM, Marschall KE. The value of routine daily chest x-rays in intubated patients in the medical intensive care unit. Crit Care Med. 1982;10(1):29–30.

    Article  CAS  PubMed  Google Scholar 

  228. Bekemeyer WB, Crapo RO, Calhoon S, Cannon CY, Clayton PD. Efficacy of chest radiography in a respiratory intensive care unit. A prospective study. Chest. 1985;88(5):691–6.

    Article  CAS  PubMed  Google Scholar 

  229. Hall JB, White SR, Karrison T. Efficacy of daily routine chest radiographs in intubated, mechanically ventilated patients. Crit Care Med. 1991;19(5):689–93.

    Article  CAS  PubMed  Google Scholar 

  230. Liolios A, Oropello JM, Benjamin E. Gastrointestinal complications in the intensive care unit. Clin Chest Med. 1999;20(2):329–45. viii.

    Article  CAS  PubMed  Google Scholar 

  231. Cook D, Guyatt G, Marshall J, Leasa D, Fuller H, Hall R, et al. A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N Engl J Med. 1998;338(12):791–7.

    Article  CAS  PubMed  Google Scholar 

  232. Legere BM, Dweik RA, Arroliga AC. Venous thromboembolism in the intensive care unit. Clin Chest Med. 1999;20(2):367–84. ix.

    Article  CAS  PubMed  Google Scholar 

  233. Hojer J, Troutman WG, Hoppu K, Erdman A, Benson BE, Megarbane B, et al. Position paper update: ipecac syrup for gastrointestinal decontamination. Clin Toxicol (Phila). 2013;51(3):134–9.

    Article  CAS  Google Scholar 

  234. Benson BE, Hoppu K, Troutman WG, Bedry R, Erdman A, Hojer J, et al. Position paper update: gastric lavage for gastrointestinal decontamination. Clin Toxicol (Phila). 2013;51(3):140–6.

    Article  CAS  Google Scholar 

  235. Chyka PA, Seger D, Krenzelok EP, Vale JA, American Academy of Clinical Toxicology, European Association of Poisons Centre, et al. Position paper: single-dose activated charcoal. Clin Toxicol (Phila). 2005;43(2):61–87.

    Article  CAS  Google Scholar 

  236. Merigian KS, Woodard M, Hedges JR, Roberts JR, Stuebing R, Rashkin MC. Prospective evaluation of gastric emptying in the self-poisoned patient. Am J Emerg Med. 1990;8(6):479–83.

    Article  CAS  PubMed  Google Scholar 

  237. Buckley NA, Whyte IM, O'Connell DL, Dawson AH. Activated charcoal reduces the need for N-acetylcysteine treatment after acetaminophen (paracetamol) overdose. J Toxicol Clin Toxicol. 1999;37(6):753–7.

    Article  CAS  PubMed  Google Scholar 

  238. Hillman RJ, Prescott LF. Treatment of salicylate poisoning with repeated oral charcoal. Br Med J (Clin Res Ed). 1985;291(6507):1472.

    Article  CAS  Google Scholar 

  239. Chyka PA, Holley JE, Mandrell TD, Sugathan P. Correlation of drug pharmacokinetics and effectiveness of multiple-dose activated charcoal therapy. Ann Emerg Med. 1995;25(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  240. Arimori K, Nakano M. Accelerated clearance of intravenously administered theophylline and phenobarbital by oral doses of activated charcoal in rats. A possibility of the intestinal dialysis. J Pharmacobiodyn. 1986;9(5):437–41.

    Article  CAS  PubMed  Google Scholar 

  241. Neuvonen PJ, Elonen E. Effect of activated charcoal on absorption and elimination of phenobarbitone, carbamazepine and phenylbutazone in man. Eur J Clin Pharmacol. 1980;17(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  242. Wason S, Baker RC, Carolan P, Seigel R, Druckenbrod RW. Carbamazepine overdose--the effects of multiple dose activated charcoal. J Toxicol Clin Toxicol. 1992;30(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  243. Position statement and practice guidelines on the use of multi-dose activated charcoal in the treatment of acute poisoning. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol. 1999;37(6):731–51.

    Google Scholar 

  244. Beckley I, Ansari NA, Khwaja HA, Mohsen Y. Clinical management of cocaine body packers: the Hillingdon experience. Can J Surg. 2009;52(5):417–21.

    PubMed  PubMed Central  Google Scholar 

  245. Farmer JW, Chan SB. Whole body irrigation for contraband bodypackers. J Clin Gastroenterol. 2003;37(2):147–50.

    Article  PubMed  Google Scholar 

  246. Hoffman RS, Smilkstein MJ, Goldfrank LR. Whole bowel irrigation and the cocaine body-packer: a new approach to a common problem. Am J Emerg Med. 1990;8(6):523–7.

    Article  CAS  PubMed  Google Scholar 

  247. Givens ML, Gabrysch J. Cardiotoxicity associated with accidental bupropion ingestion in a child. Pediatr Emerg Care. 2007;23(4):234–7.

    Article  PubMed  Google Scholar 

  248. Narsinghani U, Chadha M, Farrar HC, Anand KS. Life-threatening respiratory failure following accidental infusion of polyethylene glycol electrolyte solution into the lung. J Toxicol Clin Toxicol. 2001;39(1):105–7.

    Article  CAS  PubMed  Google Scholar 

  249. Thanacoody R, Caravati EM, Troutman B, Hojer J, Benson B, Hoppu K, et al. Position paper update: whole bowel irrigation for gastrointestinal decontamination of overdose patients. Clin Toxicol (Phila). 2015;53(1):5–12.

    Article  Google Scholar 

Download references

Acknowledgment

Edward M. Bottei and Donna L. Seger contributed a prior version of this chapter in the previous edition of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan S. Schwarz .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies, and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Schwarz, E.S. (2016). Therapeutic Approach to the Critically Poisoned Patient. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics