Skip to main content

Rifampin, Dapsone, and Vancomycin

  • Living reference work entry
  • First Online:
Critical Care Toxicology
  • 202 Accesses

Abstract

Rifampin is a macrocyclic antimicrobial agent synthetically derived from many generations of rifamycin B, a virtually inactive metabolite of Streptomyces mediterranei. In 1968, an active product was conceived, rifamycin SV, which showed activity against gram-positive organisms [1]. Rifampin, a hydrazone derivative of 3-formylrifamycin SV, is used today in various settings as a broad-spectrum agent against gram-positive organisms (Staphylococcus aureus, Staphylococcus epidermidis, Neisseria meningitidis, Haemophilus influenzae) and gram-negative organisms (Escherichia coli, Klebsiella, Proteus, Pseudomonas) [2]. More commonly, rifampin is used as a synergistic, bactericidal agent against tuberculous and nontuberculous mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Sensi P. History of the development of rifampin. Rev Infect Dis. 1983;5 Suppl 3:S402–6.

    Article  CAS  PubMed  Google Scholar 

  2. Loeffler AM. Uses of rifampin for infections other than tuberculosis. Pediatr Infect Dis J. 1999;18:631–2.

    Article  CAS  PubMed  Google Scholar 

  3. Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104:901–12.

    Article  CAS  PubMed  Google Scholar 

  4. Holdiness MR. A review of the redman syndrome and rifampicin overdosage. Med Toxicol Adverse drug Exp. 1989;4:444–51.

    Article  CAS  PubMed  Google Scholar 

  5. Hong Kong Chest Service/Tuberculosis Research Centre, Madras/ British Medical Research Council. A double-blind placebo-controlled clinical trial of three antituberculosis chemoprophylaxis regimens in patients with silicosis in Hong Kong. Am Rev Respir Dis. 1992;145:36–41.

    Article  Google Scholar 

  6. Dossing M, Wilcke JT, Askgaard DS, et al. Liver injury during antituberculosis treatment: an 11-year study. Tuber Lung Dis. 1996;77:335–40.

    Article  CAS  PubMed  Google Scholar 

  7. Lange P, Oun H, Fuller S, et al. Eosinophilic colitis due to rifampicin. Lancet. 1994;344:1296–7.

    Article  CAS  PubMed  Google Scholar 

  8. Dutt AK, Moers D, Stead WW. Undesirable side effects of isoniazid and rifampin in largely twice-weekly short-course chemotherapy for tuberculosis. Am Rev Respir Dis. 1983;128:419–24.

    Article  CAS  PubMed  Google Scholar 

  9. Covic A, Golea O, Segall L, et al. A clinical description of rifampicin-induced acute renal failure in 170 consecutive cases. Nephrol Dial Transplant. 1998;13:924–9.

    Article  CAS  PubMed  Google Scholar 

  10. De Vriese AS, Robbrecht DL, Vanholder RC, et al. Rifampicin-associated acute renal failure: pathophysiologic, immunologic, and clinical features. J Indian Med Assoc. 2004;102(1):20. 22-5.

    Google Scholar 

  11. Patel GK, Anstey AV. Rifampicin-induced lupus erythematosus. Clin Exp Dermatol. 2001;26:260–2.

    Article  CAS  PubMed  Google Scholar 

  12. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40:327–41.

    Article  CAS  PubMed  Google Scholar 

  13. McKeon J, Patel AM. Antituberculous therapy and acute liver failure. Lancet. 1995;345:1170–1.

    Article  CAS  PubMed  Google Scholar 

  14. Di Piazza S, Cottone M, Craxi A, et al. Severe rifampicin-associated liver failure in patients with compensated cirrhosis. Lancet. 1978;1:774.

    Article  PubMed  Google Scholar 

  15. ANON. Position statement and practice guidelines on the use of multi-dose activated charcoal in the treatment of acute poisoning. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1999;37:731–751.

    Google Scholar 

  16. Blanchet KD. Current management practices in the treatment of Pneumocystis carinii pneumonia (PCP). AIDS Patient Care STDs. 1996;10:116–21.

    Article  CAS  PubMed  Google Scholar 

  17. Williams DL, Pittman TL, Gillis TP, et al. Simultaneous detection of Mycobacterium leprae and its susceptibility to dapsone using DNA heteroduplex analysis. J Clin Microbiol. 2001;39:2083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Triglia T, Menting JG, Wilson C, et al. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1997;94:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Booth SA, Moody CE, Dahl MV, et al. Dapsone suppresses integrin-mediated neutrophil adherence function. J Invest Dermatol. 1992;98:135–40.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu YI, Stiller MJ. Dapsone and sulfones in dermatology: overview and update. J Am Acad Dermatol. 2000;45(3 Pt 1):420–34.

    Google Scholar 

  21. Rees R, Campbell D, Rieger E, et al. The diagnosis and treatment of brown recluse spider bites. Ann Emerg Med. 1987;16:945–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jollow DJ, Bradshaw TP, McMillan DC. Dapsone-induced hemolytic anemia. Drug Metab Rev. 1995;27:107–24.

    Article  CAS  PubMed  Google Scholar 

  23. Solheim L, Brun AC, Greibrokk TS, et al. Methemoglobinemia – causes, diagnosis, and treatment. Tidsskr Nor Laegeforen. 2000;120:1549–51.

    CAS  PubMed  Google Scholar 

  24. Lambert M, Sonnet J, Mahieu P, et al. Delayed sulfhemoglobinemia after acute dapsone intoxication. J Toxicol Clin Toxicol. 1982;19:45–60.

    Article  CAS  PubMed  Google Scholar 

  25. Kenner DJ, Holt K, Agnello R, et al. Permanent retinal damage following massive dapsone overdosage. Br J Ophthalmol. 1980;64:741–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chugh KS, Singhal PC, Sharma BK, et al. Acute renal failure due to intravascular hemolysis in the North Indian patients. Am J Med Sci. 1977;274:139–46.

    Article  CAS  PubMed  Google Scholar 

  27. Woodhouse KW, Henderson DB, Charlton B, et al. Acute dapsone poisoning: clinical features and pharmacokinetic studies. Hum Toxicol. 1983;2:507–10.

    Article  CAS  PubMed  Google Scholar 

  28. Elonen E, Neuvonen PJ, Halmekoski J, et al. Acute dapsone intoxication: a case with prolonged symptoms. Clin Toxicol. 1979;14:79–85.

    Article  CAS  PubMed  Google Scholar 

  29. Kugler W, Pekrun A, Laspe P, et al. Molecular basis of recessive congenital methemoglobinemia, types I and II: exon skipping and three novel missense mutations in the NADH-cytochrome b 5 reductase (diaphorase 1) gene. Hum Mutat. 2001;17:348.

    Article  CAS  PubMed  Google Scholar 

  30. Coleman MD. Dapsone-mediated agranulocytosis: risks, possible mechanisms and prevention. Toxicology. 2001;162:53–60.

    Article  CAS  PubMed  Google Scholar 

  31. Chalasani P, Baffoe-Bonnie H, Jurado RL. Dapsone therapy causing sulfone syndrome and lethal hepatic failure in an HIV-infected patient. South Med J. 1994;87:1145–6.

    Article  CAS  PubMed  Google Scholar 

  32. Coleman MD, Coleman NA. Drug-induced methaemoglobinaemia: treatment issues. Drug Saf. 1996;14:394–405.

    Article  CAS  PubMed  Google Scholar 

  33. Mansouri A, Lurie AA. Concise review: methemoglobinemia. Am J Hematol. 1993;42:7–12.

    Article  CAS  PubMed  Google Scholar 

  34. Endre ZH, Charlesworth JA, Macdonald GJ, et al. Successful treatment of acute dapsone intoxication using charcoal hemoperfusion. Aust N Z J Med. 1983;13:509–12.

    Article  CAS  PubMed  Google Scholar 

  35. Dawson AH, Whyte IM. Management of dapsone poisoning complicated by methaemoglobinaemia. Med Toxicol Adverse Drug Exp. 1989;4:387–92.

    Article  CAS  PubMed  Google Scholar 

  36. Goldstein BD. Exacerbation of dapsone-induced Heinz body hemolytic anemia following treatment with methylene blue. Am J Med Sci. 1974;267:291–7.

    Article  CAS  PubMed  Google Scholar 

  37. Drori-Zeides T, Raveh D, Schlesinger Y, et al. Practical guidelines for vancomycin usage, with prospective drug-utilization evaluation. Infect Control Hosp Epidemiol. 2000;21:45–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gerding DN. Treatment of Clostridium difficile-associated diarrhea and colitis. Curr Top Microbiol Immunol. 2000;250:127–39.

    CAS  PubMed  Google Scholar 

  39. da Cunha A, Weisdorf D, Shu XO, et al. Early gram-positive bacteremia in BMT recipients: impact of three different approaches to antimicrobial prophylaxis. Bone Marrow Transplant. 1998;21:173–80.

    Article  Google Scholar 

  40. Chiosis G, Boneca IG. Selective cleavage of D-Ala-D-Lac by small molecules: re-sensitizing resistant bacteria to vancomycin. Science. 2001;293:1484–7.

    Article  CAS  PubMed  Google Scholar 

  41. Veien M, Szlam F, Holden JT, et al. Mechanisms of nonimmunological histamine and tryptase release from human cutaneous mast cells. Anesthesiology. 2000;92:1074–81.

    Article  CAS  PubMed  Google Scholar 

  42. Polk RE. Anaphylactoid reactions to glycopeptide antibiotics. J Antimicrob Chemother. 1991;27:17–29.

    Article  CAS  PubMed  Google Scholar 

  43. Hassaballa H, Mallick N, Orlowski J. Vancomycin anaphylaxis in a patient with vancomycin-induced red man syndrome. Am J Ther. 2000;7:319–20.

    Article  CAS  PubMed  Google Scholar 

  44. Brummett RE. Ototoxicity of vancomycin and analogues. Otolaryngol Clin North Am. 1993;26:821–8.

    CAS  PubMed  Google Scholar 

  45. Bhatt-Mehta V, Schumacher RE, Faix RG, et al. Lack of vancomycin-associated nephrotoxicity in newborn infants: a case-control study. Pediatrics. 1999;103:E48.

    Article  CAS  PubMed  Google Scholar 

  46. Cantu TG, Yamanaka-Yuen NA, Lietman PS. Serum vancomycin concentrations: reappraisal of their clinical value. Clin Infect Dis. 1994;18:533–43.

    Article  CAS  PubMed  Google Scholar 

  47. Christie DJ, Van Buren N, Lennon SS, et al. Vancomycin-dependent antibodies associated with thrombocytopenia and refractoriness to platelet transfusion in patients with leukemia. Blood. 1990;785:518–25.

    Google Scholar 

  48. Domen RE, Horowitz S. Vancomycin-induced neutropenia associated with anti-granulocyte antibodies. Immunohematology. 1990;6:41–3.

    CAS  PubMed  Google Scholar 

  49. Somerville AL, Wright DH, Rotschafer JC. Implications of vancomycin degradation products on therapeutic drug monitoring in patients with end-stage renal disease. Pharmacotherapy. 1999;19:702–7.

    Article  CAS  PubMed  Google Scholar 

  50. Wrishko RE, Levine M, Khoo D, et al. Vancomycin pharmacokinetics and Bayesian estimation in pediatric patients. Ther Drug Monit. 2000;22:522–31.

    Article  CAS  PubMed  Google Scholar 

  51. Lamarre P, Lebel D, Ducharme MP. A population pharmacokinetic model for vancomycin in pediatric patients and its predictive value in a naive population. Antimicrob Agents Chemother. 2000;44:278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wallace MR, Mascola JR, Oldfield EC. Red man syndrome: incidence, etiology, and prophylaxis. J Infect Dis. 1991;164:1180–5.

    Article  CAS  PubMed  Google Scholar 

  53. Appel GB, Given DB, Levine LR, et al. Vancomycin and the kidney. Am J Kidney Dis. 1986;8:75–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Rangan .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Rangan, C., Clark, R.F. (2016). Rifampin, Dapsone, and Vancomycin. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics