Skip to main content

Hydrogen Sulfide

  • Living reference work entry
  • First Online:
Critical Care Toxicology

Abstract

Hydrogen sulfide (HS), cyanide, azide, and carbon monoxide are collectively referred to as or chemical asphyxiants because of their ability to disrupt aerobic cellular respiration. Exposure to H2S is associated with a “knockdown” effect and may be rapidly fatal. The American Association of Poison Control Centers reported 766 H2S exposures in 2013, with 327 treated in a healthcare facility and 10 deaths [1]. Hydrogen sulfide is the second most common cause of fatal gas inhalation in the workplace [2]. Olfactory fatigue to the smell of H2S occurs quickly and has led to fatal poisoning of rescuers on multiple occasions [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Mowry JB, Spyker DA, Cantilena Jr LR, McMillan N, Ford M. 2013 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st annual report. Clin Toxicol (Phila). 2014;52(10):1032–283.

    Article  Google Scholar 

  2. Guidotti TL. Hydrogen sulfide: advances in understanding human toxicity. Int J Toxicol. 2010;29(6):569–81.

    Article  CAS  PubMed  Google Scholar 

  3. Kage S, Ikeda H, Ikeda N, Tsujita A, Kudo K. Fatal hydrogen sulfide poisoning at a dye works. Legal Med (Tokyo, Japan). 2004;6(3):182–6.

    Article  CAS  Google Scholar 

  4. Fuller DC, Suruda AJ. Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994. J Occup Environ Med/Am Coll Occup Environ Med. 2000;42(9):939–42.

    Article  CAS  Google Scholar 

  5. Guidotti TL. Occupational exposure to hydrogen sulfide in the sour gas industry: some unresolved issues. Int Arch Occup Environ Health. 1994;66(3):153–60.

    Article  CAS  PubMed  Google Scholar 

  6. ATSDR. Health Consultation, Puna Geothermal Venture Pahoa (Puna District). Hawaii: Hawaii County; 1997. www.atsdr.cdc.gov/HAC/PAH/PUNA/pgv.html. Accessed 23 Jan 2015.

    Google Scholar 

  7. Bates MN, Garrett N, Graham B, Read D. Cancer incidence, morbidity and geothermal air pollution in Rotorua, New Zealand. Int J Epidemiol. 1998;27(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  8. Kamijo Y, Takai M, Fujita Y, Hirose Y, Iwasaki Y, Ishihara S. A multicenter retrospective survey on a suicide trend using hydrogen sulfide in Japan. Clin Toxicol (Phila). 2013;51(5):425–8.

    Article  CAS  Google Scholar 

  9. Reedy SJ, Schwartz MD, Morgan BW. Suicide fads: frequency and characteristics of hydrogen sulfide suicides in the United States. West J Emerg Med. 2011;12(3):300–4.

    PubMed  PubMed Central  Google Scholar 

  10. Truscott A. Suicide fad threatens neighbours, rescuers. CMAJ. 2008;179(4):312–3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. ATSDR. Toxicological profile for hydrogen sulfide. Atlanta: US Department of Health and Human Services, Public Health Service, Agency for Toxic Health Substances and Disease Registry; 2006.

    Google Scholar 

  12. Barr LA, Calvert JW. Discoveries of hydrogen sulfide as a novel cardiovascular therapeutic. Circ J. 2014;78(9):2111–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896.

    Article  CAS  PubMed  Google Scholar 

  14. Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol. 2005;569(Pt 2):519–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J Med Chem. 2010;53(17):6275–86.

    Article  CAS  PubMed  Google Scholar 

  16. Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  17. American Industrial Hygiene Association. Odor thresholds for chemicals with established occupational health standards. Fairfax: AIHA Press; 2007.

    Google Scholar 

  18. Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol. 1992;32:109–34.

    Article  CAS  PubMed  Google Scholar 

  19. Beauchamp Jr RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol. 1984;13(1):25–97.

    Article  CAS  PubMed  Google Scholar 

  20. Policastro MA, Otten EJ. Case files of the University of Cincinnati fellowship in medical toxicology: two patients with acute lethal occupational exposure to hydrogen sulfide. J Med Toxicol. 2007;3(2):73–81.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haggard HW, Henderson Y, Charlton TJ. The influence of hydrogen sulfide on respiration. Am J Physiol. 1922;61:289–97.

    CAS  Google Scholar 

  22. Warenycia MW, Smith KA, Blashko CS, Kombian SB, Reiffenstein RJ. Monoamine oxidase inhibition as a sequel of hydrogen sulfide intoxication: increases in brain catecholamine and 5-hydroxytryptamine levels. Arch Toxicol. 1989;63(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  23. Snyder JW, Safir EF, Summerville GP, Middleberg RA. Occupational fatality and persistent neurological sequelae after mass exposure to hydrogen sulfide. Am J Emerg Med. 1995;13(2):199–203.

    Article  CAS  PubMed  Google Scholar 

  24. Occupational Safety and Health Administration. Hydrogen sulfide: hazards. https://www.osha.gov/SLTC/hydrogensulfide/hazards.html. Accessed 23 Jan 2015.

  25. Burnett WW, King EG, Grace M, Hall WF. Hydrogen sulfide poisoning: review of 5 years’ experience. Can Med Assoc J. 1977;117(11):1277–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lambert TW, Goodwin VM, Stefani D, Strosher L. Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective. Sci Total Environ. 2006;367(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  27. Milby TH, Baselt RC. Hydrogen sulfide poisoning: clarification of some controversial issues. Am J Ind Med. 1999;35(2):192–5.

    Article  CAS  PubMed  Google Scholar 

  28. Haouzi P. Ventilatory and metabolic effects of exogenous hydrogen sulfide. Respir Physiol Neurobiol. 2012;184(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  29. Parra O, Monso E, Gallego M, Morera J. Inhalation of hydrogen sulphide: a case of subacute manifestations and long term sequelae. Br J Ind Med. 1991;48(4):286–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Duong TX, Suruda AJ, Maier LA. Interstitial fibrosis following hydrogen sulfide exposure. Am J Ind Med. 2001;40(2):221–4.

    Article  CAS  PubMed  Google Scholar 

  31. Gregorakos L, Dimopoulos G, Liberi S, Antipas G. Hydrogen sulfide poisoning: management and complications. Angiology. 1995;46(12):1123–31.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Huang H, Liu P, Tang C, Wang J. Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening K ATP channels. Can J Physiol Pharmacol. 2007;85(12):1248–53.

    Article  CAS  PubMed  Google Scholar 

  33. Shen Y, Shen Z, Luo S, Guo W, Zhu YZ. The cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxid Med Cell Longev. 2015;2015:925167.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arnold IM, Dufresne RM, Alleyne BC, Stuart PJ. Health implication of occupational exposures to hydrogen sulfide. J Occup Med. 1985;27(5):373–6.

    Article  CAS  PubMed  Google Scholar 

  35. Gabbay DS, De Roos F, Perrone J. Twenty-foot fall averts fatality from massive hydrogen sulfide exposure. J Emerg Med. 2001;20(2):141–4.

    Article  CAS  PubMed  Google Scholar 

  36. Adelson L, Sunshine I. Fatal hydrogen sulfide intoxication. Report of three cases occurring in a sewer. Arch Pathol. 1966;81(5):375–80.

    CAS  PubMed  Google Scholar 

  37. Audeau FM, Gnanaharan C, Davey K. Hydrogen sulphide poisoning: associated with pelt processing. N Z Med J. 1985;98(774):145–7.

    CAS  PubMed  Google Scholar 

  38. Breysse PA. Hydrogen sulfide fatality in a poultry feather fertilizer plant. Am Ind Hyg Assoc J. 1961;22:220–2.

    Article  Google Scholar 

  39. Perry Jr GF. Occupational medicine forum. J Occup Environ Med/Am Coll Occup Environ Med. 1995;37:656–8.

    Article  Google Scholar 

  40. Kage S, Takekawa K, Kurosaki K, Imamura T, Kudo K. The usefulness of thiosulfate as an indicator of hydrogen sulfide poisoning: three cases. Int J Legal Med. 1997;110(4):220–2.

    Article  CAS  PubMed  Google Scholar 

  41. Smith L, Kruszyna H, Smith RP. The effect of methemoglobin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide. Biochem Pharmacol. 1977;26(23):2247–50.

    Article  CAS  PubMed  Google Scholar 

  42. Smith RP, Gosselin RE. The influence of methemoglobinemia on the lethality of some toxic anions. II. Sulfide. Toxicol Appl Pharmacol. 1964;6:584–92.

    Article  CAS  PubMed  Google Scholar 

  43. Smith RP, Gosselin RE. On the mechanism of sulfide inactivation by methemoglobin. Toxicol Appl Pharmacol. 1966;8(1):159–72.

    Article  CAS  PubMed  Google Scholar 

  44. Chenuel B, Sonobe T, Haouzi P. Effects of infusion of human methemoglobin solution following hydrogen sulfide poisoning. Clin Toxicol (Phila). 2015;53(2):93–101.

    Article  CAS  PubMed Central  Google Scholar 

  45. Beck JF, Bradbury CM, Connors AJ, Donini JC. Nitrite as antidote for acute hydrogen sulfide intoxication? Am Ind Hyg Assoc J. 1981;42(11):805–9.

    Article  CAS  PubMed  Google Scholar 

  46. Stine RJ, Slosberg B, Beacham BE. Hydrogen sulfide intoxication. A case report and discussion of treatment. Ann Intern Med. 1976;85(6):756–8.

    Article  CAS  PubMed  Google Scholar 

  47. Truong DH, Mihajlovic A, Gunness P, Hindmarsh W, O’Brien PJ. Prevention of hydrogen sulfide (H2S)-induced mouse lethality and cytotoxicity by hydroxocobalamin (vitamin B(12a)). Toxicology. 2007;242(1–3):16–22.

    Article  CAS  PubMed  Google Scholar 

  48. Haouzi P, Chenuel B, Sonobe T. High-dose hydroxocobalamin administered after H2S exposure counteracts sulfide-poisoning-induced cardiac depression in sheep. Clin Toxicol (Phila). 2015;53(1):28–36.

    Article  CAS  PubMed Central  Google Scholar 

  49. Fujita Y, Fujino Y, Onodera M, et al. A fatal case of acute hydrogen sulfide poisoning caused by hydrogen sulfide: hydroxocobalamin therapy for acute hydrogen sulfide poisoning. J Anal Toxicol. 2011;35(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  50. Brenner M, Benavides S, Mahon SB, et al. The vitamin B12 analog cobinamide is an effective hydrogen sulfide antidote in a lethal rabbit model. Clin Toxicol (Phila). 2014;52(5):490–7.

    Article  CAS  Google Scholar 

  51. Dulaney Jr M, Hume AS. Pyruvic acid protects against the lethality of sulfide. Res Commun Chem Pathol Pharmacol. 1988;59(1):133–6.

    CAS  PubMed  Google Scholar 

  52. Haouzi P, Chenuel B, Sonobe T, Klingerman CM. Are H2S-trapping compounds pertinent to the treatment of sulfide poisoning? Clin Toxicol (Phila). 2014;52(5):566.

    Article  Google Scholar 

  53. Klingerman CM, Trushin N, Prokopczyk B, Haouzi P. H2S concentrations in the arterial blood during H2S administration in relation to its toxicity and effects on breathing. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asif MJ, Exline MC. Utilization of hyperbaric oxygen therapy and induced hypothermia after hydrogen sulfide exposure. Respir Care. 2012;57(2):307–10.

    Article  PubMed  Google Scholar 

  55. Lindenmann J, Matzi V, Neuboeck N, Ratzenhofer-Komenda B, Maier A, Smolle-Juettner FM. Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and hyperbaric oxygen. Diving Hyperb Med. 2010;40(4):213–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron Skolnik or C. William Heise .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I.

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1.

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2.

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3.

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III.

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Skolnik, A., Heise, C.W. (2016). Hydrogen Sulfide. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics