Skip to main content

Miscibility, Phase Separation, and Mechanism of Phase Separation of Epoxy/Block-Copolymer Blends

  • Living reference work entry
  • First Online:
Handbook of Epoxy Blends

Abstract

Incorporating block copolymers into epoxy systems has emerged as a versatile and effective methodology not only to enhance their mechanical properties, but also as an intriguing strategy to design advanced materials with tailored properties. Knowledge of microphase separation mechanisms operating during the development of these materials is essential due to the straight relationship between block copolymer characteristics, epoxy system formulation, and curing conditions with the final nanodomain morphology. This chapter is focused on the thermodynamic and kinetic fundamentals describing microphase separation mechanisms by which the nanodomains are obtained. Moreover, key parameters affecting phase separation mechanisms and morphologies are discussed, explaining how different material properties can be tuned by controlling the nanostructure morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Amendt MA, Pitet LM, Moench S, Hillmyer MA (2012) Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets. Polym Chem 3:1827–1837

    Article  CAS  Google Scholar 

  • Barton AFM (1990) Handbook of polymer-liquid interaction parameters and solubility parameters. CRC Press, Boca Raton

    Google Scholar 

  • Bates FS, Fredrickson GH (1999) Block copolymers-designer soft materials. Phys Today 52:32–38

    Article  CAS  Google Scholar 

  • Bordes C, Fréville V, Ruffin E, Marote P, Gauvrit JY, Briancon S, Lantéri P (2010) Determination of poly(ε-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. Int J Pharm 383:236–243

    Article  CAS  Google Scholar 

  • Cano L, Builes DH, Tercjak A (2014) Morphological and mechanical study of nanostructured epoxy systems modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer. Polymer 55:738–745

    Article  CAS  Google Scholar 

  • Caseri W (2000) Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol Rapid Commun 21:705–722

    Article  CAS  Google Scholar 

  • Chen D, Pascault JP, Bertsch RJ, Drake RS, Siebert AR (1994) Synthesis, characterization, and properties of reactive liquid rubbers based on butadiene–acrylonitrile copolymers. J Appl Polym Sci 51:1959–1970

    Article  CAS  Google Scholar 

  • Cong H, Li L, Zheng S (2014) Formation of nanostructures in thermosets containing block copolymers: from self-assembly to reaction-induced microphase separation mechanism. Polymer 55:1190–1201

    Article  CAS  Google Scholar 

  • Dean JM, Lipic PM, Grubbs RB, Cook RF, Bates FS (2001) Micellar structure and mechanical properties of block copolymer-modified epoxies. J Polym Sci Pol Chem 39:2996–3010

    Article  CAS  Google Scholar 

  • Dean JM, Grubbs RB, Saad W, Cook RF, Bates FS (2003a) Mechanical properties of block copolymer vesicle and micelle modified epoxies. J Polym Sci Pol Chem 41:2444–2456

    Article  CAS  Google Scholar 

  • Dean JM, Verghese NE, Pham HQ, Bates FS (2003b) Nanostructure toughened epoxy resins. Macromolecules 36:9267–9270

    Article  CAS  Google Scholar 

  • Declet-Perez C, Francis LF, Bates FS (2015) Deformation processes in block copolymer toughened epoxies. Macromolecules 48:3672–3684

    Article  CAS  Google Scholar 

  • Esposito LH, Ramos JA, Mondragon I, Kortaberria G (2013) Nanostructured thermosetting systems modified with poly(isoprene-b-methyl methacrylate) diblock copolymer and polyisoprene-grafted carbon nanotubes. J Appl Polym Sci 129:1060–1067

    Article  CAS  Google Scholar 

  • Esposito LH, Ramos JA, Kortaberria G (2014) Dispersion of carbon nanotubes in nanostructured epoxy systems for coating application. Prog Org Coat 77:1452–1458

    Article  CAS  Google Scholar 

  • Fan W, Zheng S (2008) Reaction-induced microphase separation in thermosetting blends of epoxy resin with poly(methyl methacrylate)-block-polystyrene block copolymers: effect of topologies of block copolymers in morphological structures. Polymer 47:3157–3167

    Article  CAS  Google Scholar 

  • Fan W, Wang L, Zheng S (2009) Nanostructures in thermosetting blends of epoxy resin with polydimethylsiloxane-block-poly(ε-caprolactone)-block-polystyrene ABC triblock copolymer. Macromolecules 42:327–336

    Article  CAS  Google Scholar 

  • Fan W, Wang L, Zheng S (2010) Double reaction-induced microphase separation in epoxy resin containing polystyrene-block-poly(ε-caprolactone)-block-poly-(n-butyl acrylate) ABC triblock copolymer. Macromolecules 43:10600–10611

    Article  CAS  Google Scholar 

  • Garate H, Mondragon I, Goyanes S, D’Accorso N (2011) Controlled epoxidation of poly(styrene-b-isoprene-b-styrene) block copolymer for the development of nanostructured epoxy thermosets. J Polym Sci Pol Chem 49:4505–4515

    Article  CAS  Google Scholar 

  • Garate H, Mondragon I, D’Accorso N, Goyanes S (2013) Exploring microphase separation behavior of epoxidized poly(styrene-b-isoprene-b-styrene) block copolymer inside thin epoxy coatings. Macromolecules 46:2182–2187

    Article  CAS  Google Scholar 

  • Garate H, Goyanes S, D’Accorso N (2014) Controlling nanodomain morphology of epoxy thermosets modified with reactive amine-containing epoxidized poly(styrene-b-isoprene-b-styrene) block copolymer. Macromolecules 47:7416–7423

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Thomas S (2014) Reaction-Induced phase separation and thermomechanical properties in epoxidized styrene-block-butadiene-block-styrene triblock copolymer modified epoxy/DDM system. Ind Eng Chem Res 53:6941–6950

    Article  CAS  Google Scholar 

  • Grubbs RB, Dean JM, Broz ME, Bates FS (2000) Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 33:9522–9534

    Article  CAS  Google Scholar 

  • Grubbs RB, Dean JM, Bates FS (2001) Methacrylic block copolymers through metal-mediated living free radical polymerization for modification of thermosetting epoxy. Macromolecules 34:8593–8595

    Article  CAS  Google Scholar 

  • Guo Q, Thomann R, Gronski W (2002) Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers. Macromolecules 35:3133–3144

    Article  CAS  Google Scholar 

  • Guo Q, Liu J, Chen L, Wang K (2008) Nanostructures and nanoporosity in thermoset epoxy blends with an amphiphilic polyisoprene-block-poly (4-vinyl pyridine) reactive diblock copolymer. Polymer 49:1737–1742

    Article  CAS  Google Scholar 

  • Hameed N, Guo Q, Xu Z, Hanley TL, Mai Y-W (2010) Reactive block copolymer modified thermosets: highly ordered nanostructures and improved properties. Soft Matter 6:6119–6129

    Article  CAS  Google Scholar 

  • He X, Liu Y, Zhang R, Wu Q, Chen T, Sun P, Wang X, Xue G (2014) Unique interphase and cross-linked network controlled by different miscible blocks in nanostructured epoxy/block copolymer blends characterized by solid-state NMR. J Phys Chem C 118:13285–13299

    Article  CAS  Google Scholar 

  • Hedrick JL, Miller RD, Hawker CJ, Carter KR, Volksen W, Yoon DY, Trollsås M (1998) Templating nanoporosity in thin-film dielectric insulators. Adv Mater 10:1049–1053

    Article  CAS  Google Scholar 

  • Hermel-Davidock TJ, Tang HS, Murray DJ, Hahn S (2007) Control of the block copolymer morphology in templated epoxy thermosets. J Polym Sci Pol Phys 45:3338–3348

    Article  CAS  Google Scholar 

  • Hillmyer MA, Lipic PM, Hajduk DA, Almdal K, Bates FS (1997) Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J Am Chem Soc 119:2749–2750

    Article  CAS  Google Scholar 

  • Hu D, Zheng S (2009) Reaction-induced microphase separation in epoxy resin containing polystyrene-block-poly(ethylene oxide) alternating multiblock copolymer. Eur Polym J 45:3326–3338

    Article  CAS  Google Scholar 

  • Kanzian T, Nigst TA, Maier A, Pichl S, Mayr H (2009) Nucleophilic reactivities of primary and secondary amines in acetonitrile. Eur J Org Chem 2009:6379–6385

    Article  CAS  Google Scholar 

  • Karger-Kocsis J, Frölich J, Gryshchuk O, Kautz H, Frey H, Mülhaupt R (2004) Synthesis of reactive hyperbranched and star-like polyethers and their use for toughening of vinylester-urethane hybrid resins. Polymer 45:1185–1195

    Article  CAS  Google Scholar 

  • Leonardi AB, Zucchi IA, Williams RJJ (2015) Generation of large and locally aligned wormlike micelles in block copolymer/epoxy blends. Eur Polym J 65:202–208

    Article  CAS  Google Scholar 

  • Li T, Heinzer MJ, Redline EM, Zuo F, Bates FS, Francis LF (2014) Microstructure and performance of block copolymer modified epoxy coatings. Prog Org Coat 77:1145–1154

    Article  CAS  Google Scholar 

  • Lipic PM, Bates FS, Hillmyer MA (1998) Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J Am Chem Soc 120:8963–8970

    Article  CAS  Google Scholar 

  • Liu J, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2008) Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41:7616–7624

    Article  CAS  Google Scholar 

  • Liu J, Thompson ZJ, Sue H-J, Bates FS, Hillmyer MA, Dettloff M, Jacob G, Verghese N, Pham H (2010) Toughening of epoxies with block copolymer micelles of wormlike morphology. Macromolecules 43:7238–7243

    Article  CAS  Google Scholar 

  • Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  Google Scholar 

  • Maiez-Tribut S, Pascault JP, Soule ER, Borrajo J, Williams RJJ (2007) Nanostructured epoxies based on the self-assembly of block copolymers: a new miscible block that can be tailored to different epoxy formulations. Macromolecules 40:1268–1273

    Article  CAS  Google Scholar 

  • Matsen MW, Bates FS (1996) Unifying weak-and strong-segregation block copolymer theories. Macromolecules 29:1092–1098

    Google Scholar 

  • Meng F, Zheng S, Li H, Liang Q, Liu T (2006) Formation of ordered nanostructures in epoxy thermosets: a mechanism of reaction-induced microphase separation. Macromolecules 39:5072–5080

    Article  CAS  Google Scholar 

  • Meng F, Xu Z, Zheng S (2008) Microphase separation in thermosetting blends of epoxy resin and poly(ε-caprolactone)-block-polystyrene block copolymers. Macromolecules 41:1411–1420

    Article  CAS  Google Scholar 

  • Mijovic J, Shen M, Wing Sy J, Mondragon I (2000) Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 33:5235–5244

    Article  CAS  Google Scholar 

  • Mikos AG, Peppas NA (1988) Flory interaction parameter χ for hydrophilic copolymers with water. Biomaterials 9:419–423

    Article  CAS  Google Scholar 

  • Ng SC, Chee KK (1997) Solubility parameters of copolymers as determined by turbidimetry. Eur Polym J 33:749–752

    Article  CAS  Google Scholar 

  • O’Driscoll S, Demirel G, Farrell RA, Fitzgerald TG, O’MAhony C, Holmes JD, Morris MA (2011) The morphology and structure of PS-b-P4VP block copolymer films by solvent annealing: effect of the solvent parameter. Polym Adv Technol 22:915–923

    Article  CAS  Google Scholar 

  • Ocando C, Tercjak A, Martín MD, Ramos JA, Campo M, Mondragon I (2009) Morphology development in thermosetting mixtures through the variation on chemical functionalization degree of poly(styrene-b-butadiene) diblock copolymer modifiers. Thermomech Prop Macromol 42:6215–6224

    Article  CAS  Google Scholar 

  • Rebizant V, Abetz V, Tournilhac F, Court F, Leibler L (2003) Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks. Macromolecules 36:9889–9896

    Article  CAS  Google Scholar 

  • Rebizant V, Venet A-S, Tournilhac F, Girard-Reydet E, Navarro C, Pascault J-P, Leibler L (2004) Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 37:8017–8027

    Article  CAS  Google Scholar 

  • Redline EM, Declet-Perez C, Bates FS, Francis LF (2014) Effect of block copolymer concentration and core composition on toughening epoxies. Polymer 55:4172–4181

    Article  CAS  Google Scholar 

  • Ritzenthaler S, Court F, David L, Girard-Reydet E, Leibler L, Pascault JP (2002) ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 35:6245–6254

    Article  CAS  Google Scholar 

  • Ritzenthaler S, Court F, David L, Girard-Reydet E, Leibler L, Pascault JP (2003) ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 36:118–126

    Article  CAS  Google Scholar 

  • Romeo H, Zucchi I, Rico M, Hoppe CE, Williams RJJ (2013) From spherical micelles to hexagonally packed cylinders: the cure cycle determines nanostructures generated in block copolymer/epoxy blends. Macromolecules 46:4854–4861

    Article  CAS  Google Scholar 

  • Serrano E, Larrañaga M, Remiro PM, Mondragon I, Carrasco PM, Pomposo JA, Mecerreyes D (2004) Synthesis and characterization of epoxidized styrene-butadiene block copolymers as templates for nanostructured thermosets. Macromol Chem Phys 205:987–996

    Article  CAS  Google Scholar 

  • Serrano E, Tercjak A, Kortaberria G, Pomposo JA, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2006) Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree. Macromolecules 39:2254–2261

    Article  CAS  Google Scholar 

  • Serrano E, Tercjak A, Ocando C, Larrañaga M, Parellada MD, Corona-Galván S, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2007) Curing behavior and final properties of nanostructured thermosetting systems modified with epoxidized styrene-butadiene linear diblock copolymers. Macromol Chem Phys 208:2281–2292

    Article  CAS  Google Scholar 

  • Thio YS, Wu J, Bates FS (2006) Epoxy toughening using low molecular weight poly (hexylene oxide)-poly (ethylene oxide) diblock copolymers. Macromolecules 39:7187–7189

    Article  CAS  Google Scholar 

  • Thio YS, Wu J, Bates FS (2009) The role of inclusion size in toughening of epoxy resins by spherical micelles. J Polym Sci Pol Chem 47:1125–1129

    Article  CAS  Google Scholar 

  • Thompson ZJ, Hillmyer MA, Liu J, Sue H-J, Dettloff M, Bates FS (2009) Block copolymer toughened epoxy: role of cross-link density. Macromolecules 42:2333–2335

    Article  CAS  Google Scholar 

  • Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Verchère D, Sautereau H, Pascault JP, Moschiar SM, Riccardi CC, Williams RJJ (1989) Polymer 30:107–115

    Article  Google Scholar 

  • Williams RJJ, Rozenberg BA, Pascault J-P (1997) Reaction-induced phase separation in modified thermosetting polymers. In: Abe A, Albertsson AC, Coates GW, Genzer J, Kobayashi S, Lee K-S, Leibler L, Long TE, Möller M, Okay O, Percec V, Tang BZ, Terentjev EM, Vicent MJ, Voit B, Wiesner U, Zhang X (eds) Advances in polymer science. Springer, Berlin, pp 95–156

    Google Scholar 

  • Wu J, Thio YS, Bates FS (2005) Structure and properties of PBO–PEO diblock copolymer modified epoxy. J Polym Sci Pol Chem 43:1950–1965

    Article  CAS  Google Scholar 

  • Xu Z, Zheng S (2007) Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(ε-caprolactone)-block polydimethylsiloxane-block-poly((ε -caprolactone) triblock copolymer. Polymer 48:6134–6144

    Article  CAS  Google Scholar 

  • Yu R, Zheng S (2011) Morphological transition from spherical to lamellar nanophases in epoxy thermosets containing poly(ethylene oxide)-block-poly(ε-caprolactone)-block-polystyrene triblock copolymer by hardeners. Macromolecules 44:8546–8557

    Article  CAS  Google Scholar 

  • Yu R, Zheng S, Li X, Wang J (2012) Reaction-induced microphase separation in epoxy thermosets containing block copolymers composed of polystyrene and poly(ε-caprolactone): influence of copolymer architectures on formation of nanophases. Macromolecules 45:9155–9168

    Google Scholar 

  • Yu Y, Dubois P, Teyssié P, Jérôme R (1997) Difunctional initiator based on 1,3-diisopropenylbenzene.6. Synthesis of methyl methacrylate − butadiene − methyl methacrylate triblock copolymers. Macromolecules 30:4254–4261

    Article  CAS  Google Scholar 

  • Zhang C, Li L, Zheng S (2013) Formation and confined crystallization of polyethylene nanophases in epoxy thermosets. Macromolecules 46:2740–2753

    Article  CAS  Google Scholar 

  • Zheng Y, Xue Q, Zhu L, Xin Z, Sheng Y, Ren W (2014) Copolymer architecture effects on the morphology and surface performance of epoxy thermosets containing fluorinated block copolymers. J Polym Sci Pol Phys 52:1037–1045

    Article  CAS  Google Scholar 

  • Zhu B, Katsoulis DE, Keryk JR, McGarry FJ (2004) Toughening of polysilsesquioxane network by simultaneous incorporation of short and long PDMS chain segments. Macromolecules 37:1455–1462

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernan Garate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Garate, H., Morales, N.J., Goyanes, S., D’Accorso, N.B. (2015). Miscibility, Phase Separation, and Mechanism of Phase Separation of Epoxy/Block-Copolymer Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-18158-5_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18158-5_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-18158-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics