Skip to main content

Biocomposite Nanomaterials for Electrochemical Biosensors

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Biocomposite nanomaterials composed of biological receptors and various inorganic and organic components have recently attracted a great deal of interest due to their peculiar properties and use in electrochemical sensors and biosensors. Recognition systems based on biocomposite nanomaterials were developed as highly sensitive and selective elements for electrochemical biosensors technology. Since the development of the first marketed biosensor almost 25 years ago, the biosensor technology has benefited from the use of electrodes modified with nanostructured biomaterials that enhanced the selectivity and the sensitivity of the measurements. The use of electrochemical methods for in situ preparation and characterization of biocomposite nanomaterials resulted in the occurrence of unique electrocatalytic properties and enhanced analytical performances. In recent years, there has also been much progress in understanding the electrochemical behavior of biological elements, such as enzymes, antibodies, cells, tissues, peptides, and nucleic acids, immobilized within conducting polymer-based composite nanomaterials, as well as the synergy between their biocatalytic activity and affinity and the electrocatalytic activity of various inorganic/organic fillers towards the target analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Albareda-Sirvent M, Merkoçi A, Alegret S (2000) Configurations used in the design of screen-printed enzymatic biosensors. A review. Sens Actuators B 69:153–163. doi:10.1016/S0925-4005(00)00536-0

    CAS  Google Scholar 

  2. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2004) Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37:789–830. doi:10.1081/AL-120030682

    CAS  Google Scholar 

  3. Hart JP, Wring SA (1994) Screen-printed voltammetric and amperometric electrochemical sensors for decentralized testing. Electroanalysis 6:617–624. doi:10.1002/elan.1140060802

    CAS  Google Scholar 

  4. Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol–gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22:2387–2399. doi:10.1016/j.bios.2006.12.025

    CAS  Google Scholar 

  5. Walcarius A (2012) Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trends Anal Chem 38:79–97. doi:10.1016/j.trac.2012.05.003

    CAS  Google Scholar 

  6. Davis F, Higson SPJ (2005) Structured thin films as functional components within biosensors. Biosens Bioelectron 21:1–20. doi:10.1016/j.bios.2004.10.001

    CAS  Google Scholar 

  7. Zhou Y, Chiu CW, Liang H (2012) Interfacial structures and properties of organic materials for biosensors: an overview. Sensors 12:15036–15062. doi:10.3390/s121115036

    CAS  Google Scholar 

  8. Arya A, Krull UJ, Thompson M, Wong HE (1985) Langmuir-Blodgett deposition of lipid films on hydrogel as a basis for biosensor development. Anal Chim Acta 173:331–336. doi:10.1016/S0003-2670(00)84973-9

    CAS  Google Scholar 

  9. Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) New nanocomposite films for biosensors – layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9:677–684. doi:10.1016/0956-5663(94)80065-0

    CAS  Google Scholar 

  10. Hanazato Y, Nakako M, Shiono S, Maeda M (1989) Integrated multi-biosensors based on an ion-sensitive field-effect transistor using photolithographic techniques. IEEE Trans Electron Devices 36:1303–1310. doi:10.1109/16.30936

    CAS  Google Scholar 

  11. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. doi:10.1021/cr2001178

    CAS  Google Scholar 

  12. Willner I, Willner B (2010) Biomolecule-based nanomaterials and nanostructures. Nano Lett 10:3805–3815. doi:10.1021/nl102083j

    CAS  Google Scholar 

  13. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657. doi:10.1021/cm102406h

    CAS  Google Scholar 

  14. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496. doi:10.1038/nnano.2010.89

    CAS  Google Scholar 

  15. Newman JD, Setford SJ (2006) Enzymatic biosensors. Mol Biotechnol 32:249–268. doi:10.1385/MB:32:3:249

    CAS  Google Scholar 

  16. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500. doi:10.1016/j.biotechadv.2008.05.007

    CAS  Google Scholar 

  17. Szunerits S, Pust SE, Wittstock G (2007) Multidimensional electrochemical imaging in materials science. Anal Bioanal Chem 389:1103–1120. doi:10.1007/s00216-007-1374-0

    CAS  Google Scholar 

  18. Davies TJ, Ward-Jones S, Banks CE, del Campo J, Mas R, Xavier Munoz F, Compton RG (2005) The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: Fitting of experimental data. J Electroanal Chem 585:51–62. doi:10.1016/j.jelechem.2005.07.021

    CAS  Google Scholar 

  19. Tian J-H, Yang Y, Liu B, Schollhorn B, Wu D-Y, Maisonhaute E, Muns AS, Chen Y, Amatore C, Tao N-J, Tian Z-Q (2010) The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules. Nanotechnology 21:274012. doi:10.1088/0957-4484/21/27/274012

    Google Scholar 

  20. Varshney M, Li Y (2009) Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens Bioelectron 24:2951–2960. doi:10.1016/j.bios.2008.10.001

    CAS  Google Scholar 

  21. Blodgett KB (1934) Monomolecular films of fatty acids on glass. J Am Chem Soc 56(2):495. doi:10.1021/ja01317a513

    CAS  Google Scholar 

  22. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57(6):1007–1022. doi:10.1021/ja01309a011

    CAS  Google Scholar 

  23. Blodgett KB, Langmuir I (1937) Built-up films of barium stearate and their optical properties. Phys Rev 51:964–982. doi:10.1103/PhysRev.51.964

    CAS  Google Scholar 

  24. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835. doi:10.1016/0040-6090(92)90417-A

    Google Scholar 

  25. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237. doi:10.1126/science.277.5330.1232

    CAS  Google Scholar 

  26. Higson SPJ, Vadgama PM (1994) Biosensors: a viable monitoring technology? Med Biol Eng Comput 32:601–609. doi:10.1007/BF02524233

    CAS  Google Scholar 

  27. Clark LC Jr (1956) Monitor and control of blood tissue O2 tensions. Trans Am Soc Artif Intern Organs 2:41–48

    Google Scholar 

  28. Clark LC Jr, Lyons C (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. doi:10.1111/j.1749-6632.1962.tb13623.x

    CAS  Google Scholar 

  29. Ohnuki H, Saiki T, Kusakari A, Ichihara M, Izumi M (2008) Immobilization of glucose oxidase in Langmuir–Blodgett films containing Prussian blue nano-clusters. Thin Solid Films 516:8860–8864. doi:10.1016/j.tsf.2007.11.059

    CAS  Google Scholar 

  30. Ravaine S, Lafuente C, Mingotaud C (1998) Electrochemistry of Langmuir  −  Blodgett films based on Prussian Blue. Langmuir 14:6347–6349. doi:10.1021/la9808014

    CAS  Google Scholar 

  31. Lee D-Y, Kafi AKM, Choi W-S, Park S-H, Kwon Y-S (2008) Glucose sensor based on glucose oxidase-lipid LB film immobilized in Prussian Blue layer. J Nanosci Nanotechnol 8:4543–4547. doi:10.1166/jnn.2008.IC04

    CAS  Google Scholar 

  32. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407. doi:10.1016/j.bios.2004.12.001

    CAS  Google Scholar 

  33. Watanabe N, Ohnuki H, Saiki T, Endo H, Izumi M, Imakubo T (2005) Conducting organic Langmuir–Blodgett films as chemical sensors. Sens Actuators B 108:404–408. doi:10.1016/j.snb.2005.01.048

    CAS  Google Scholar 

  34. Skotheim TA, Lee HS, Hale PD, Karan HI, Okamoto Y, Samuelson L, Tripathy S (1991) Derivatized polypyrrole Langmuir-Blodgett films. Applications to bioelectronics. Synth Met 42:1433–1437. doi:10.1016/0379-677991(91)871-7

    CAS  Google Scholar 

  35. Rikukawa M, Nakagawa M, Nishizawa N, Sanui K, Ogata N (1997) Electrochemical and sensing properties of enzyme-polypyrrole multicomponent electrodes. Synth Met 85:1377–1378. doi:10.1016/S0379-6779(97)80280-9

    CAS  Google Scholar 

  36. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821. doi:10.1016/j.bios.2010.10.017

    CAS  Google Scholar 

  37. Ramanathan K, Ram MK, Malhotra BD, Murthy ASN (1995) Application of polyaniline-Langmuir-Blodgett films as a glucose biosensor. Mater Sci Eng C3:159–163. doi:10.1016/0928-4931(95)00113-1

    CAS  Google Scholar 

  38. Hourdou M-L, Besson F (1995) Enzymatic activities and infrared studies of glutamate dehydrogenase immobilized on Langmuir-Blodgett films. Biotechnol Tech 9:643–648. doi:10.1007/BF00156349

    CAS  Google Scholar 

  39. Schmidt TF, Caseli L, Viitala T, Oliveira ON Jr (2008) Enhanced activity of horseradish peroxidase in Langmuir–Blodgett films of phospholipids. Biochim Biophys Acta 1778:2291–2297. doi:10.1016/j.bbamem.2008.05.012

    CAS  Google Scholar 

  40. Caseli L, Crespilho FN, Nobre TM, Zaniquelli MED, Zucolotto V, Oliveira ON Jr (2008) Using phospholipid Langmuir and Langmuir–Blodgett films as matrix for urease immobilization. J Colloid Interface Sci 319:100–108. doi:10.1016/j.jcis.2007.12.007

    CAS  Google Scholar 

  41. Sharma SK, Singhal R, Malhotra BD, Sehgal N, Kumar A (2004) Biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene) for detection of galactose in human blood. Biotechnol Lett 26:645–647. doi:10.1023/B:BILE.0000023023.19651.01

    CAS  Google Scholar 

  42. Boussaad S, Dziri L, Arechabaleta R, Tao NJ, Leblanc RM (1998) Electron-transfer properties of cytochrome c Langmuir-Blodgett films and interactions of cytochrome c with lipids. Langmuir 14:6215–6219. doi:10.1021/la980319l

    CAS  Google Scholar 

  43. Wang H, Brennan JD, Gene A, Krgll UJ (1995) Assembly of antibodies in lipid membranes for biosensor development. Appl Biochem Biotechnol 53:163–181. doi:10.1007/BF02788606

    CAS  Google Scholar 

  44. Guntupalli R, Lakshmanan RS, Wan J, Kim D-J, Huang TS, Vodyanoy V, Chin BA (2008) Analytical performance and characterization of antibody immobilized magnetoelastic biosensors. Sens Instrum Food Qual 2:27–33. doi:10.1007/s11694-007-9025-x

    Google Scholar 

  45. Minehan DS, Marx KA, Tripathy SK (1994) Kinetics of DNA binding to electrically conducting polypyrrole films. Macromolecules 27:777–783. doi:10.1021/ma00081a024

    CAS  Google Scholar 

  46. Komarova E, Aldissi M, Bogomolova A (2005) Direct electrochemical sensor for fast reagent-free DNA detection. Biosens Bioelectron 21:182–189. doi:10.1016/j.bios.2004.07.025

    CAS  Google Scholar 

  47. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. doi:10.1016/j.biotechadv.2011.09.003

    CAS  Google Scholar 

  48. Ahuja T, Mira IA, Rajesh DK (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805. doi:10.1016/j.biomaterials.2006.09.046

    CAS  Google Scholar 

  49. Lupu S, Ficai A (2007) Layer by layer deposition of redox polymers/enzyme assemblies onto electrodes surfaces for nitrate electrochemical sensing. Rev Roum Chim 52:1137–1143

    CAS  Google Scholar 

  50. Clark SL, Montague MF, Hammond PT (1997) Ionic effects of sodium chloride on the templated deposition of polyelectrolytes using layer-by-layer ionic assembly. Macromolecules 30:7237–7244. doi:10.1021/ma970610s

    CAS  Google Scholar 

  51. Zhang H, Fu Y, Wang D, Wang L, Wang Z, Zhang X (2003) Hydrogen-bonding-directed layer-by-layer of dendrimer and poly(4-vinylpyridine) and micropore formation by post-base treatment. Langmuir 20:8497–8502. doi:10.1021/la035036u

    Google Scholar 

  52. Olek M, Ostrander J, Jurga S, Möhwald H, Kotov N, Kempa K, Giersig M (2004) Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies. Nano Lett 4:1889–1895. doi:10.1021/nl048950w

    CAS  Google Scholar 

  53. Iost RM, Crespilho FN (2012) Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 31:1–10. doi:10.1016/j.bios.2011.10.040

    CAS  Google Scholar 

  54. Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, Klitzing RV, Steitz R (2007) Hydration and internal properties of polyelectrolite multilayers. Colloids Surf A Physicochem Eng Asp 303:14–29. doi:10.1016/j.colsurfa.2007.02.054

    Google Scholar 

  55. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839. doi:10.1021/ja010172b

    CAS  Google Scholar 

  56. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185. doi:10.1016/0956-5663(92)87013-F

    CAS  Google Scholar 

  57. Gao Q, Guo Y, Zhang W, Qi H, Zhang C (2011) An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode. Sens Actuators B 153:219–225. doi:10.1016/j.snb.2010.10.034

    CAS  Google Scholar 

  58. Deng C, Chen J, Nie Z, Si S (2010) A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosens Bioelectron 26:213–219. doi:10.1016/j.bios.2010.06.013

    CAS  Google Scholar 

  59. Komathi S, Gopalan AI, Lee K-P (2009) Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase. Biosens Bioelectron 24:3131–3134. doi:10.1016/j.bios.2009.03.013

    CAS  Google Scholar 

  60. Yan XB, Chen XJ, Tay BK, Khor KA (2007) Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electrochem Commun 9:1269–1275. doi:10.1016/j.elecom.2006.12.022

    CAS  Google Scholar 

  61. Wu B-Y, Hou S-H, Yu M, Qin X, Li S, Chen Q (2009) Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications. Mater Sci Eng C 29:346–349. doi:10.1016/j.msec.2008.07.018

    Google Scholar 

  62. Kuhn A, Mano N, Vidal C (1999) Polioxometalate modified electrodes: from a monolayer to multilayer structures. J Electroanal Chem 462(2):187–194. doi:10.1016/S0022-0728(98)00410-0

    CAS  Google Scholar 

  63. Schlenoff JB, Ly H, Li M (1998) Charge and mass balance in polyelectrolyte multilayers. J Am Chem Soc 120(30):7626–7634. doi:10.1021/ja980350+

    CAS  Google Scholar 

  64. Sun Y, Yan F, Yang W, Sun C (2006) Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachement. Biomaterials 27:4042–4049. doi:10.1016/j.biomaterials.2006.03.014

    CAS  Google Scholar 

  65. Yang W, Wang J, Zhao S, Sun Y, Sun C (2006) Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochem Commun 8:665–672. doi:10.1016/j.elecom.2005.11.014

    CAS  Google Scholar 

  66. Tang D, Yuan R, Chai Y, Fu Y, Dai J, Liu Y, Zhong X (2005) New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2′-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations. Biosens Bioelectron 21:539–548. doi:10.1016/j.bios.2004.11.024

    CAS  Google Scholar 

  67. Ou C, Yuan R, Chai Y, Tang M, Chai R, He X (2007) A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled-carbon nanotubes-thionine multilayer films on polyelectrolyte surface. Anal Chim Acta 603:205–213. doi:10.1016/j.aca.2007.08.052

    CAS  Google Scholar 

  68. Pacey GE, Puckett SD, Cheng L, Khatib-Shahidi S, Cox JA (2005) Detection of DNA damaging agents, using layer-by-layer assembly. Anal Chim Acta 533:135–139. doi:10.1016/j.aca.2004.11.011

    CAS  Google Scholar 

  69. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139. doi:10.1021/cr068037a

    CAS  Google Scholar 

  70. Grieshaber D, MacKanzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458

    CAS  Google Scholar 

  71. Hang TC, Guiseppi-Elie A (2004) Frequency dependent and surface characterization of DNA immobilization and hybridization. Biosens Bioelectron 19:1537–1548. doi:10.1016/j.bios.2003.12.014

    CAS  Google Scholar 

  72. Diamandis EP, Christopoulus TK (1991) The biotin-(Strept)Avidin system: principles and applications in biotechnology. Clin Chem 37:625–636

    CAS  Google Scholar 

  73. Singh R, Sumana G, Verma R, Sood S, Sood KN, Gupta RK, Malhotra BD (2010) Fabrication of Neisseria gonorrhoeae biosensor based on chitosan-MWCNT platform. Thin Solid Films 519:1135–1140. doi:10.1016/j.tsf.2010.08.057

    CAS  Google Scholar 

  74. Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25:392–397. doi:10.1016/S0968-0004(00)01602-9

    CAS  Google Scholar 

  75. Lupu S, Lete C, Balaure PC, Caval DI, Mihailciuc C, Lakard B, Hihn J-Y, Del Campo FJ (2013) Development of amperometric biosensors based on nanostructured tyrosinase-conducting polymer composite electrodes. Sensors 13:6759–6774. doi:10.3390/s130506759

    CAS  Google Scholar 

  76. Nistor C, Emneus J, Gorton L, Ciucu A (1999) Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Anal Chim Acta 387:309–326. doi:10.1016/S0003-2670(99)00071-9

    CAS  Google Scholar 

  77. Cosnier S, Szunerits S, Marks RS, Lellouche JP, Perie K (2001) Mediated electrochemical detection of catechol by tyrosinase-based polydicarbazole/electrodes. J Biochem Biophys Methods 50:65–77. doi:10.1016/S0165-022X(01)00176-2

    CAS  Google Scholar 

  78. Tembe S, Kubal BS, Karve M, D’Souza SF (2008) Glutaraldehyde activated eggshell membrane for immobilization of tyrosinase from Amorphophallus companulatus: application in construction of electrochemical biosensor for dopamine. Anal Chim Acta 612:212–217. doi:10.1016/j.aca.2008.02.031

    CAS  Google Scholar 

  79. Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R (2010) A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds. Anal Chim Acta 665:146–151. doi:10.1016/j.aca.2010.03.033

    CAS  Google Scholar 

  80. Apetrei IM, Apetrei C (2013) Amperometric biosensor based on polypyrrole and tyrosinase for the detection of tyramine in food samples. Sens Actuators B 178:4046. doi:10.1016/j.snb.2012.12.064

    Google Scholar 

  81. Ameer Q, Adeloju SB (2009) Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film. Sens Actuators B 140:5–11. doi:10.1016/j.snb.2009.03.056

    CAS  Google Scholar 

  82. Teles FRR, Fonseca LP (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C 28:1530–1543. doi:10.1016/j.msec.2008.04.010

    CAS  Google Scholar 

  83. Odaci D, Kayahan SK, Timur S, Toppare L (2008) Use of a thiophene-based conducting polymer in microbial biosensing. Electrochim Acta 53:4104–4108. doi:10.1016/j.electacta.2007.12.065

    CAS  Google Scholar 

  84. Akyilmaz E, Kozgus O, Türkmen H, Çetinkaya B (2010) A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino benzene. Bioelectrochemistry 78:135–140. doi:10.1016/j.bioelechem.2009.09.003

    CAS  Google Scholar 

  85. Lupu S, Lakard B, Hihn J-Y, Dejeu J (2012) Novel in situ electrochemical deposition of platinum nanoparticles by sinusoidal voltages on conducting polymer films. Synth Met 162:193–198. doi:10.1016/j.synthmet.2011.11.031

    CAS  Google Scholar 

  86. Lupu S, Del Campo FJ, Muñoz FX (2012) Sinusoidal voltage electrodeposition and characterization of conducting polymers on gold microelectrode arrays. J Electroanal Chem 687:71–78. doi:10.1016/j.jelechem.2012.09.035

    CAS  Google Scholar 

  87. Lupu S, Lete C, Balaure PC, Del Campo FJ, Muñoz FX, Lakard B, Hihn J-Y (2013) In situ electrodeposition of biocomposite materials by sinusoidal voltages on microelectrodes array for tyrosinase based amperometric biosensor development. Sens Actuators B 181:136–143. doi:10.1016/j.snb.2013.01.060

    CAS  Google Scholar 

  88. Lee HJ, Park TH, Choi JH, Song EH, Shin SJ, Kim H, Choi KC, Park YW, Ju B-K (2013) Negative mold transfer patterned conductive polymer electrode for flexible organic light-emitting diodes. Org Electron 14:416–422. doi:10.1016/j.orgel.2012.11.015

    CAS  Google Scholar 

  89. Jensen OW, Desai S, Shepherd RL, Innis PC, Jensen BW, Forsyth M, Wallace GG, MacFarlane DR (2010) Ion effects in REDOX cycling of conducting polymer based electrochromic materials. Electrochem Commun 12:1505–1508. doi:10.1016/j.elecom.2010.08.019

    Google Scholar 

  90. Soto-Oviedo MA, Araújo OA, Faez R, Rezende MC, De Paoli M-A (2006) Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth Met 156:1249–1255. doi:10.1016/j. synthmet.2006.09.003

    CAS  Google Scholar 

  91. Lee UJ, Lee S-H, Yoon JJ, Oh SJ, Lee SH, Lee JK (2013) Surface interpenetration between conducting polymer and PET substrate for mechanically reinforced ITO-free flexible organic solar cells. Sol Energy Mater Sol Cells 108:50–56. doi:10.1016/j.solmat.2012.09.004

    CAS  Google Scholar 

  92. Wang CY, Tsekouras G, Wagner P, Gambhir S, Too CO, Officer D, Wallace GG (2010) Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synth Met 160:76–82. doi:10.1016/j.synthmet.2009.10.001

    CAS  Google Scholar 

  93. Zeybek B, Pekmez NÖ, Kılıç E (2011) Electrochemical synthesis of bilayer coatings of poly(N-methylaniline) and polypyrrole on mild steel and their corrosion protection performances. Electrochim Acta 56:9277–9286. doi:10.1016/j.electacta.2011.08.003

    CAS  Google Scholar 

  94. Lupu S, Lete C, Marin M, Totir N, Balaure PC (2009) Electrochemical sensors based on platinum electrodes modified with hybrid inorganic–organic coatings for determination of 4-nitrophenol and dopamine. Electrochim Acta 54:1932–1938. doi:10.1016/j.electacta.2008.07.051

    CAS  Google Scholar 

  95. Soares JC, Brisolari A, Rodrigues VC, Sanches EA, Gonçalves D (2012) Amperometric urea biosensors based on the entrapment of urease in polypyrrole films. React Funct Polym 72:148–152. doi:10.1016/j.reactfunctpolym.2011.12.002

    CAS  Google Scholar 

  96. Ru X, Shi W, Huang X, Cui X, Ren B, Ge D (2011) Synthesis of polypyrrole nanowire network with high adenosine triphosphate release efficiency. Electrochim Acta 56:9887–9892. doi:10.1016/j.electacta.2011.08.063

    CAS  Google Scholar 

  97. Gvozdenović MM, Jugović BZ, Bezbradica DI, Antov MG, Knežević-Jugović ZD, Grgur BN (2011) Electrochemical determination of glucose using polyaniline electrode modified by glucose oxidase. Food Chem 124:396–400. doi:10.1016/j.foodchem.2010.06.046

    Google Scholar 

  98. Radhapyari K, Kotoky P, Khan R (2013) Detection of anticancer drug tamoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase. Mater Sci Eng C 33:583–587. doi:10.1016/j.msec.2012.09.021

    CAS  Google Scholar 

  99. Rodrigues VC, Moraes ML, Brisolari A, Soares JC, Ferreira M, Gonçalves D (2011) Polypyrrole/phytase amperometric biosensors for the determination of phytic acid in standard solutions. Sens Actuators B 160:222–226. doi:10.1016/j.snb.2011.07.038

    Google Scholar 

  100. Maubane MS, Mamo MA, Nxumalo EN, van Otterlo WAL, Coville NJ (2012) Tubular shaped composites made from polythiophene covalently linked to Prato functionalized N-doped carbon nanotubes. Synth Met 162:2307–2315. doi:10.1016/j.synthmet.2012.10.020

    CAS  Google Scholar 

  101. Zhijiang C, Ruihan Z, Xingjuan S (2012) Preparation and characterization of polyindole nanofibers by electrospinning method. Synth Met 162:2069–2074. doi:10.1016/j.synthmet.2012.09.019

    Google Scholar 

  102. Teodorescu F, Lete C, Marin M, Munteanu C, Totir ND (2013) A novel glucose biosensor based on poly(azulene-co-3-thiophene acetic acid) conducting films. Rev Chim 64:15–21

    CAS  Google Scholar 

  103. Schuhmann W, Huber J, Mirlach A, Daub J (1993) Covalent binding of glucose oxidase to functionalized polyazulenes. The first application of polyazulenes in amperometric biosensors. Adv Mater 5:124–126. doi:10.1002/adma.19930050211

    CAS  Google Scholar 

  104. Abasıyanık MF, Şenel M (2010) Immobilization of glucose oxidase on reagentless ferrocene-containing polythiophene derivative and its glucose sensing application. J Electroanal Chem 639:21–26. doi:10.1016/j.jelechem.2009.11.001

    Google Scholar 

  105. Komathi S, Gopalan AI, Kim S-K, Anand GS, Lee K-P (2013) Fabrication of horseradish peroxidase immobilized poly(N-[3-(trimethoxy silyl)propyl]aniline) gold nanorods film modified electrode and electrochemical hydrogen peroxide sensing. Electrochim Acta 92:71–78. doi:10.1016/j.electacta.2013.01.032

    CAS  Google Scholar 

  106. Benyoucef A, Boussalem S, Ferrahi MI, Belbachir M (2010) Electrochemical polymerization and in situ FTIRS study of conducting polymers obtained from o-aminobenzoic with aniline at platinum electrodes. Synth Met 160:1591–1597. doi:10.1016/j.synthmet.2010.05.020

    CAS  Google Scholar 

  107. Mehretie S, Admassie S, Tessema M, Solomon T (2012) Electrochemical study of niclosamide at poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. Sens Actuators B 168:97–102. doi:10.1016/j.snb.2012.02.035

    CAS  Google Scholar 

  108. Wang Y, Xu H, Yang X, Luo Z, Zhang J, Li G (2012) All-solid-state blood calcium sensors based on screen-printed poly(3,4-ethylenedioxythiophene) as the solid contact. Sens Actuators B 173:630–635. doi:10.1016/j.snb.2012.07.064

    CAS  Google Scholar 

  109. Fang A, Ng HT, Li SFY (2003) A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium–tin oxide surface. Biosens Bioelectron 19:43–49. doi:10.1016/S0956-5663(03)00133-7

    CAS  Google Scholar 

  110. Martínez-Huitle CA, Suely Fernandes N, Ferro S, De Battisti A, Quiroz MA (2010) Fabrication and application of Nafion®-modified boron-doped diamond electrode as sensor for detecting caffeine. Diamond Relat Mater 19:1188–1193. doi:10.1016/j.diamond.2010.05.004

    Google Scholar 

  111. Esseghaier C, Bergaoui Y, Ben Fredj H, Tlili A, Helali S, Ameur S, Abdelghani A (2008) Impedance spectroscopy on immobilized streptavidin horseradish peroxidase layer for biosensing. Sens Actuators B 134:112–116. doi:10.1016/j.snb.2008.04.016

    CAS  Google Scholar 

Download references

Acknowledgments

S. L. greatly acknowledges the financial support by a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-2011-3-0271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelian Lupu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Lupu, S., Balaure, P.C., Lete, C., Mihailciuc, C. (2015). Biocomposite Nanomaterials for Electrochemical Biosensors. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics