Skip to main content

Advances in Spray Drying Technology for Nanoparticle Formation

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles
  • 645 Accesses

Abstract

The biggest societal impact of pharmaceutical nanotechnology is related to “nanomedicine,” a promising new drug delivery mode which provides a higher therapeutic efficacy than conventional dosage forms due to increased drug bioavailability. Spray drying is commonly used in the pharmaceutical industry to convert a liquid phase (solution, emulsion, suspension, slurry, paste, or melt) into a dry, solid powder. In conventional spray drying, a feed product is atomized into a fine spray and dried by a hot inlet air stream. The contact between the hot inlet air stream and spray causes evaporation of solvent and drying of the spray into solid product in a single-step process. The widespread research investigation of nanoparticles as a mode of drug delivery has translated to the late development of spray drying technique with advancement focuses on atomization mechanism to produce discrete dried nanoparticles. This chapter describes spray drying processes and processors for particle production from micro- to nanoscale and highlights advantages of using spray drying as the process of nanoparticle manufacture, characteristics of spray-dried nanoparticles, and limitations of spray drying in drug targeting device manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Adi, P.M. Young, H.-K. Chan, H. Agus, D. Traini, Co-spray-dried mannitol-ciprofloxacin dry powder inhaler formulation for cystic fibrosis and chronic obstructive pulmonary disease. Eur. J. Pharm. Sci. 40, 239–247 (2010)

    Article  Google Scholar 

  2. C. Arpagaus, D. Rütti, M. Meuri, Enhanced solubility of poorly soluble drugs via spray drying, in Drug Delivery Strategies for Poorly Water-Soluble Drugs, ed. by D. Douroumis, A. Fahr (Wiley, Chichester, 2013)

    Google Scholar 

  3. S. Azarmi, W.H. Roa, R. Löbenberg, Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. 60, 863–875 (2008)

    Article  Google Scholar 

  4. T. Betancourt, A. Doiron, K.A. Homan, L.B. Peppas, Controlled release and nanotechnology, in Nanotechnology in Drug Delivery, ed. by M.M. Villiers, P. Aramwit, G.S. Kwon (Springer, New York, 2009), pp. 283–312

    Chapter  Google Scholar 

  5. BUCHI Labortechnik AG, best@buchi 27: development of a novel high-performance cyclone to increase the yield in a Mini Spray Dryer (2003), http://www.buchi.com/best-buchi-21-30.927.0.html

  6. BUCHI Labortechnik AG, The laboratory assistant. Chapter B, in ed. by C. Portmann, S. Flückiger, T. Ziolko, A. Tauer, A. Wiprächtiger, J. Müller, S. Kleinhans, C. Arpagaus, G. Schönenberger, 3rd edn. (Büchi Labortechnik AG, Flawil, 2007), pp. 68–87

    Google Scholar 

  7. K. Bürki, I. Jeon, C. Arpagaus, G. Betz, New insights into respirable protein powder preparation using a nano spray dryer. Int. J. Pharm. 48, 248–256 (2011)

    Article  Google Scholar 

  8. H. Cabral-Marques, R. Almeida, Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 73, 121–129 (2009)

    Article  Google Scholar 

  9. C. Chakraborty, B. Sarkar, C.H. Hsu, Z.H. Wen, C.S. Lin, P.C. Shieh, Future prospects of nanoparticles on brain targeted drug delivery. J. Neurooncol 93, 285–286 (2009)

    Article  Google Scholar 

  10. K.L. Christensen, G.P. Pedersen, H.G. Kristensen, Preparation of redispersible dry emulsions by spray drying. Int. J. Pharm. 212, 187–194 (2001)

    Article  Google Scholar 

  11. F. Danhier, O. Feron, V. Preat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148, 135–146 (2010)

    Article  Google Scholar 

  12. M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 981–1014 (2011)

    Article  Google Scholar 

  13. Y. Diebold, M. Calonge, Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res. 29, 596–609 (2010)

    Article  Google Scholar 

  14. D.E. Dobry, D.M. Settell, J.M. Baumann, R.J. Ray, L.J. Graham, R.A. Beyerinck, A model-based methodology for spray drying process development. J. Pharm. Innov. 4, 133–142 (2009)

    Article  Google Scholar 

  15. G. Dollo, P. Le Corre, A. Guérin, F. Chevanne, J.L. Burgot, R. Leverge, Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Sci. 19, 273–280 (2003)

    Article  Google Scholar 

  16. C. Duret, R. Merlos, N. Wauthoz, T. Sebti, F. Vanderbist, K. Amighi, Pharmacokinetic evaluation in mice of amorphous itraconazole-based dry powder formulations for inhalation with high bioavailability and extended lung retention. Eur. J. Pharm. Biopharm. 86, 46–54 (2014)

    Google Scholar 

  17. R.K. Dutta, S. Sahu, Development of diclofenac sodium loaded magnetic nanocarriers of pectin interacted with chitosan for targeted and sustained drug delivery. Colloids Surf. B Biointerfaces 97, 19–26 (2012)

    Article  Google Scholar 

  18. J. Elversson, A. Millqvist-Fureby, In situ coating-An approach for particle modification and encapsulation of proteins during spray-drying. Int. J. Pharm. 323, 52–63 (2006)

    Article  Google Scholar 

  19. A.O. Elzoghby, M.W. Helmy, W.M. Samy, N.A. Elgindy, Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur. J. Pharm. Biopharm. 84, 487–496 (2013)

    Google Scholar 

  20. D.F. Emerich, C.G. Thanos, The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng. 23, 171–184 (2006)

    Article  Google Scholar 

  21. B.N. Estevinho, F. Rocha, L. Santos, A. Alves, Microencapsulation with chitosan by spray drying for industry applications -a review. Trends Food Sci. Technol. 31, 138–155 (2013)

    Google Scholar 

  22. O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. Am. Chem. Soc. Pub. 3, 16–20 (2009)

    Google Scholar 

  23. C. Freitas, R.H. Muller, Spray-drying of solid lipid nanoparticles (SLN™). Eur. J. Pharm. Biopharm. 46, 145–151 (1998)

    Article  Google Scholar 

  24. T. Hino, S. Shimabayashi, N. Ohnishi, M. Fujisaki, H. Mori, O. Watanabe, K. Kawashima, K. Nagao, Development of a new type nozzle and spray-dryer for industrial production of fine powders. Eur. J. Pharm. Biopharm. 49, 79–85 (2000)

    Article  Google Scholar 

  25. L. Huang, A.S. Mujumdar, Spray drying technology-principles and practice, in Guide to Industrial Drying: Principles, Equipment and New Developments, ed. by A.S. Mujumdar (Three S Colors, Mumbai, 2008), pp. 103–132

    Google Scholar 

  26. G. Hughes, Nanostructure-mediated drug delivery. Nanomed. Nanotechnol. Biol. Med. 1, 22–30 (2005)

    Article  Google Scholar 

  27. P.T. Ingvarsson, S.T. Schmidt, D. Christensen, N.B. Larsen, W.L.J. Hinrichs, P. Andersen, J. Rantanen, H.M. Nielsen, M. Yang, C. Foged, Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01. J. Control. Release 167, 256–264 (2013)

    Article  Google Scholar 

  28. K.A. Janes, P. Calvo, M.J. Alonso, Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47, 83–97 (2001)

    Article  Google Scholar 

  29. M. Jayasundera, B. Adhikari, P. Aldred, A. Ghandi, Surface modification of spray dried food and emulsion powders with surface-active proteins: a review. J. Food Eng. 93, 266–277 (2009)

    Article  Google Scholar 

  30. D.M.K. Jensen, D. Cun, M.J. Maltesen, S. Frokjaer, H.M. Nielsen, C. Foged, Spray-drying of siRNA-containing PLGA nanoparticles intended for inhalation. J. Control. Release 142, 138–145 (2010)

    Article  Google Scholar 

  31. C.K. Kim, Y.S. Yoon, J.Y. Kong, Preparation and evaluation of flurbiprofen dry elixir as a novel dosage form using a spray-drying technique. Int. J. Pharm. 120, 21–31 (1995)

    Article  Google Scholar 

  32. S.A. Kularatne, P.S. Low, Targeting of nanoparticles: folate receptor, in Cancer Nanotechnology, Methods in Molecular Biology, ed. by S.R. Grobmyer, B.M. Moudgil, vol. 624 (Springer, New York, 2010), pp. 249–265

    Chapter  Google Scholar 

  33. A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 75, 1–18 (2010)

    Article  Google Scholar 

  34. S.H. Lee, D. Heng, W.K. Ng, H.-K. Chan, R.B.H. Tan, Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int. J. Pharm. 403, 192–200 (2011)

    Article  Google Scholar 

  35. X. Li, N. Anton, C. Arpagaus, F. Belleteix, T. Vandamme, Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90. J. Control. Release 147, 304–310 (2010)

    Article  Google Scholar 

  36. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60, 1650–1662 (2008)

    Article  Google Scholar 

  37. Y.L. Lo, J.C. Tsai, J.H. Kuo, Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J. Control. Release 94, 259–272 (2004)

    Article  Google Scholar 

  38. S.E. McNeil, Unique benefits of nanotechnology to drug delivery and diagnostics, in Characterization of Nanoparticles Intended for Drug Delivery, Methods in Molecular Biology, ed. by S.E. McNeil, vol. 697 (Springer, New York, 2011), pp. 3–8

    Chapter  Google Scholar 

  39. N. Mohajel, A. Roholamini Najafabadi, K. Azadmanesh, A. Vatanara, E. Moazeni, A. Rahimi, K. Gilani, Optimisation of a spray drying process to prepare dry powder microparticles containing plasmid nanocomplex. Int. J. Pharm. 423, 577–585 (2012)

    Article  Google Scholar 

  40. A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv. Powder. Technol. 22, 1–19 (2011)

    Article  Google Scholar 

  41. L.M. Nolan, L. Tajber, B.F. McDonald, A.S. Barham, O.I. Corrigan, A.M. Healy, Excipient-free nanoporous microparticles of budesonide for pulmonary delivery. Eur. J. Pharm. Sci. 37, 593–602 (2009)

    Article  Google Scholar 

  42. N.A. Ochekpe, P.O. Olorunfemi, C. Ndidi, Nanotechnology and drug delivery part 1: background and applications. Trop. J. Pharm. Res. 8, 265–274 (2009)

    Google Scholar 

  43. K. Ohashi, T. Kabasawa, T. Ozeki, H. Okada, One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray dryer for inhalation therapy of tuberculosis. J. Control. Release 135, 19–24 (2009)

    Article  Google Scholar 

  44. J.C. Olivier, Drug transport to brain with targeted nanoparticles. NeuroRx® J. Am. Soc. Expt. Neurother. 2, 108–119 (2005)

    Google Scholar 

  45. A. Paudel, Z.A. Worku, J. Meeus, S. Guns, G.V.D. Mooter, Manufacturing of solid dispersions of poorly water-soluble drugs by spray drying: formulation and process considerations. Int. J. Pharm. 453, 253–284 (2013)

    Google Scholar 

  46. S.H. Peighambardoust, A. Golshan Tafti, J. Hesari, Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food. Sci. Technol. 22, 215–224 (2011)

    Article  Google Scholar 

  47. G. Pilcer, F. Vanderbist, K. Amighi, Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery. Int. J. Pharm. 365, 162–169 (2009)

    Article  Google Scholar 

  48. L. Plapied, N. Duhem, A. des Rieux, V. Préat, Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci. 16, 228–237 (2011)

    Article  Google Scholar 

  49. E.M. Radman, T.W. Wong, Effects of microwave on drug release responses of spray-dried alginate microspheres. Drug Dev. Ind. Pharm. 36, 1149–1167 (2010)

    Article  Google Scholar 

  50. M. Rothdiener, J. Beuttler, S.K.E. Messerschmidt, R.E. Kontermann, Antibody targeting of nanoparticles to tumor-specific receptors: immunoliposomes, in Cancer Nanotechnology, Methods in Molecular Biology, ed. by S.R. Grobmyer, B.M. Moudgil, vol. 624 (Springer, New York, 2010), pp. 295–308

    Chapter  Google Scholar 

  51. A.K. Sailaja, P. Amareshwar, P. Chakravarty, Chitosan nanoparticles as a drug delivery system. Res. J. Pharm. Biol. Chem. Sci. 1, 474–484 (2010)

    Google Scholar 

  52. F. Sansone, R.P. Aquino, P. Del Gaudio, P. Colombo, P. Russo, Physical characteristics and aerosol performance of naringin dry powders for pulmonary delivery prepared by spray-drying. Eur. J. Pharm. Biopharm. 72, 206–213 (2009)

    Article  Google Scholar 

  53. K. Schmid, C. Arpagaus, W. Friess, Evaluation of a vibrating mesh spray dryer for preparation of submicron particles. Respir. Drug Deliv. Eur. 2, 323–326 (2009)

    Google Scholar 

  54. K. Schmid, C. Arpagaus, W. Friess, Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications. Pharm. Dev. Technol. 16, 287–294 (2011)

    Article  Google Scholar 

  55. S. Schüle, W. Frieβ, K. Bechtold-Peters, P. Garidel, Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Eur. J. Pharm. Biopharm. 65, 1–9 (2007)

    Article  Google Scholar 

  56. Y.-J. Son, P. Worth Longest, M. Hindle, Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int. J. Pharm. 443, 137–145 (2013)

    Article  Google Scholar 

  57. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001)

    Article  Google Scholar 

  58. Y.L. Su, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, Microencapsulation of Radix salvia miltiorrhiza nanoparticles by spray-drying. Powder Technol. 184, 114–121 (2008)

    Article  Google Scholar 

  59. J.C. Sung, B.L. Pulliam, D. Edwards, Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25, 563–70 (2007)

    Article  Google Scholar 

  60. P. Tewa-Tagne, S. Briancon, H. Fessi, Preparation of redispersible dry nanocapsules by means of spray drying: development and characterisation. Eur. J. Pharm. Sci. 30, 124–135 (2007)

    Article  Google Scholar 

  61. V.P. Torchilin, Passive and active drug targeting: drug delivery to tumors as an example, in Drug Delivery, Handbook of Experimental Pharmacology, ed. by M. Schafer-Korting, vol. 197 (Springer, New York, 2010), pp. 3–53

    Chapter  Google Scholar 

  62. D. Vandenheuvel, A. Singh, K. Vandersteegen, J. Klumpp, R. Lavigne, G.V.D. Mooter, Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. Eur. J. Pharm. Biopharm. 84, 578–582 (2013)

    Google Scholar 

  63. H. Vega Mercado, M. Marcela Gongora Nieto, G.V. Barbosa Canovas, Advances in dehydration of foods. J. Food Eng. 49, 271–289 (2001)

    Article  Google Scholar 

  64. R. Vehring, Pharmaceutical particle engineering via spray drying. Pharm. Res. 25, 999–1022 (2008)

    Article  Google Scholar 

  65. M. Wang, M. Thanou, Targeting nanoparticles to cancer. Pharmacol. Res. 62, 90–99 (2010)

    Article  Google Scholar 

  66. Y. Wang, K. Kho, W.S. Cheow, K. Hadinoto, A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles. Int. J. Pharm. 424, 98–106 (2012)

    Article  Google Scholar 

  67. T.W. Wong, C.L. Law, A.S. Mujumdar, Drying of pharmaceutical products, in Guide to Industrial Drying: Principles, Equipment and New Developments, ed. by A.S. Mujumdar (Three S Colors, Mumbai, 2008), pp. 201–221

    Google Scholar 

  68. D.Y. Ying, J. Sun, L. Sanguansri, R. Weerakkody, M.A. Augustin, Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose. J. Food Eng. 109, 597–602 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Micheal Whelehan, Stefanie Meyer, and the Ministry of Science, Technology and Innovation (Nanofund) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin Wui Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Wong, T.W., John, P. (2015). Advances in Spray Drying Technology for Nanoparticle Formation. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics