Skip to main content

Thermodynamic and Transport Properties of Gases over the Temperature Range 300–30,000 K

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Handbook of Thermal Plasmas

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 131 Accesses

Abstract

Thermodynamic (TD) and transport properties of plasmas are a prerequisite for any plasma modeling work. They are also an indispensable tool for the fundamental understanding of the basic phenomena involved and the optimization of the process operating conditions. Compared to calculations for ordinary gases, plasmas impose additional difficulties due to the large numbers of chemical species at elevated temperatures (including charged particles) and the chemical reactions taking place in plasmas. As shown in Part I, Chapter 6, Thermodynamic Properties of Plasmas, and Chapter 7, Transport Properties of Gases Under Plasma Conditions, the calculation of plasma properties can be a formidable task, especially as far as transport and radiation properties are conceded. Collision cross sections required for those calculations suffer from relatively large uncertainties associated with the assumptions which have to be introduced for the interaction potentials. Experimental data, on the other hand, are only available for a limited number of collision processes. Data presented in Chapter 31, Thermodynamic and Transport properties of Gases over the Temperature Range 300 – 30,000 K. and Chapter 32 Radiation Properties of Gases over the Temperature Range 300 – 30,000 K are based on experimental and computed results from the most reliable sources available in the open literature.

Emil Pfender: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c p :

Specific heat at constant pressure (J/kg.K)

e :

Electron charge (C)

h :

Enthalpy (J/kg, or kJ/kg)

k :

Boltzmann’s constant (1.38 × 10−23 J/K)

m i :

Number of moles of constituent i in the mixture (mole)

M i :

Atomic or molecular weight of constituent i (amu)

n :

Total number of constituents in the mixture

p i :

Partial pressure of component, i in the mixture (Pa)

p :

Total pressure (Pa)

x i :

Mass fraction of constituent, i in the mixture (−)

y i :

Mole fraction, or volume fraction, of constituent, i in the mixture (−)

w i :

Mass of constituent i in the mixture (kg)

ε 0 :

Dielectric constant of vacuum (F/m)

κ :

Thermal conductivity (W/m.K)

μ :

Molecular viscosity (kg/m.s)

ρ :

Density, specific mass (kg/m3)

σ :

Electrical conductivity (S/m, or A/V.m)

Ωij:

Collision integral for particles of species i and j (m2)

References

  • ADEP (1986) ‘Banque de données de l’Université et du CNRS’ Ed. Direction des Bibliothèques des Musées et de l’Information Scientifique et Technique

    Google Scholar 

  • Asinovsky EI, Kirillin AV, Pakhomov EP, Shabashov VI (1971) Experimental investigation of transport properties of low-temperature plasma by means of electric arc. Proc IEEE 59(4):592

    Article  Google Scholar 

  • Aubreton J (1985) Thèse de Docteur ès Sciences Physiques, Université de Limoges, France

    Google Scholar 

  • Aubreton A, Elchinger MF (2003) Transport properties in non-equilibrium argon, copper and argon–copper thermal plasmas. J Phys D Appl Phys 36:1798–1805

    Article  Google Scholar 

  • Aubreton J, Fauchais P (1983) Influence des potentiels d’intéraction sur les propriétés de transport des plasmas thermiques: exemple d’application le plasma argon hydrogène à la pression atmosphérique. Rev Phys Appl 18:51

    Article  Google Scholar 

  • Bacri J, Raffanel S (1989) Calculation of transport coefficients of air plasmas. Plasma Chem Plasma Process 9:133–154

    Article  Google Scholar 

  • Baronnet JM, Debbagh-Nour G, Lesinski J, Meillot E (1985) Transport coefficients of high temperature H2/O2 plasma. In: Proceedings of ISPC-7, Eindhoven, vol 1, C-3-7:836

    Google Scholar 

  • Behringer K, Kollmar W, Mentel J (1968) Messung der Warmeleitfahigkeit von Wasserstoff zwischen 2000 und 7000°K. Z Phys 215:127–151

    Article  Google Scholar 

  • Bonnefoi C (1975) Contribution au calcul théorique des coefficients de trandport d’un plasma d’azote par la méthode de Chapman-Enskog à l’approximation quatre de Sonine. Thèse 3ème Cycle, Université de Limoges, France

    Google Scholar 

  • Bonnefoi, C (1983) Contribution à l’étude des methods de resolution de l’équation de Boltzmann dans un plasma à deux temperatures: exemple le mélange argon-hydrogène. Thèse de Docteur ès Sciences Physiques, Université de Limoges, France

    Google Scholar 

  • Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. Plenum Press, New York

    Book  Google Scholar 

  • Capitelli M, Gorse C, Fauchais P (1976) Transport coefficients of Ar-H2 high temperature mixtures. J Chem Phys 73:755–759

    Google Scholar 

  • Capitelli M, Gorse C, Fauchais P (1977) Transport coefficients of N2-H2 mixtures. J Phys (France) 38(6):653–657

    Article  Google Scholar 

  • Chapmann S, Cowling TG (1964) Mathematical theory of non-uniform gases. Cambridge University Press, London

    Google Scholar 

  • Chen WLT, Heberlein J, Pfender E, Pateyron B, Delluc G, Elchinger MF, Fauchais P (1995) Thermodynamic and transport properties of argon/helium plasmas at atmospheric pressure. Plasma Chem Plasma Process 15(3):559–579

    Article  Google Scholar 

  • Cressault Y, Hannachi R, Teulet P, Gleizes A, Gonnet JP, Battandier JY (2008) Influence of metallic vapors on the properties of air thermal plasmas. Plasma Sources Sci Technol 17:035016 (9 pp)

    Article  Google Scholar 

  • Cressault Y, Murphy AB, Teulet P, Gleizes A, Schnick M (2013) Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure. J Phys D Appl Phys 46:415207 (27 pp)

    Google Scholar 

  • Devoto RS (1965) The transport properties of a partially ionized monatomic gas. PhD thesis, Stanford University

    Google Scholar 

  • Devoto RS (1968) Transport coefficients of partially ionized hydrogen. Aust J Plant Physiol 2(6):617–631

    Google Scholar 

  • Devoto RS, Li CP (1968) Transport coefficients of partially ionized helium. Aust J Plant Physiol 2(1):17–32

    Google Scholar 

  • Devoto RS, Bauder UH, Cailleteau J, Shires E (1978) Air transport coefficients frm electric arc measurements. Phys Fluids 21(4):552

    Article  Google Scholar 

  • Drellishak KS (1963) Partition functions and thermodynamic properties of high temperature gases. PhD thesis, Northwestern University

    Google Scholar 

  • Elchinger MF, Pateyron B, Delluc G, Fauchais P (1989) Radiative and transport properties of some nitrogen-oxygen mixtures including air. In: d’Agostino R (ed) Proceeding of ISPC-8, Pugnochiuso, vol 1, p 127

    Google Scholar 

  • Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:R153–R183

    Article  Google Scholar 

  • Gorse C (1975) Contribution au calcul des propriétés de transport des plasmas des mélanges argon-hydrogène et argon-azote. Thèse 3ieme. Cycle, Université de Limoges, France

    Google Scholar 

  • Herzberg G (1950) Spectra of diatomic molecules, 2nd edn. Van Nostrand, New York

    Google Scholar 

  • Hirschfelder JO, Curtis CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Kovitya P (1985) Physical properties of high-pressure plasmas of hydrogen and copper in the temperature range 5000–60000K. IEEE Trans Plasma Sci 13(6):587

    Article  Google Scholar 

  • Kramida A, Ralchenko Y, Reader J, The NIST ASD Team (2012) NIST atomic spectra database (version 5.0). National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • McBride BJ, Gordon S (1967) FORTRAN IV program for calculation of thermodynamic data. NASA TN-D-40976

    Google Scholar 

  • Moore CE (1958) Atomic energy levels. NBC Circ. 467, vol 3

    Google Scholar 

  • Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air and oxygen air plasmas. Plasma Chem. Plasma Process 15(2):279–307

    Article  Google Scholar 

  • Murphy AB (1996) A comparison of treatments of diffusion in thermal plasmas. J Phys D Appl Phys 29:1922–1932

    Article  Google Scholar 

  • Murphy AB (1997) Transport coefficients of helium and argon-helium plasmas. IEEE Trans Plasma Sci 25(5):809–814

    Article  Google Scholar 

  • Murphy AB (2000) Transport coefficients of hydrogen and argon-hydrogen plasmas. Plasma Chem. Plasma Process 20(3):279–297

    Article  Google Scholar 

  • Murphy AB (2010) The effect of metal vapor in arc welding. J Phys D Appl Phys 43:434001 (31 pp)

    Google Scholar 

  • Murphy AB, Tam E (2014) Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. J Phys D Appl Phys 47:295202 (10 pp)

    Google Scholar 

  • Pateyron B. (1987) Thèse de Doctorat es Sciences Physiques. Université de Limoges, France

    Google Scholar 

  • Pateyron B, Aubreton J, Elchinger MF, Delluc G (1985a) Thermodynamic and transport properties at high temperature: hydrogen plasma and water plasma. International meetings on phase equilibrium data, Paris, 5–13 September

    Google Scholar 

  • Pateyron B, Aubreton J, Elchinger MF, Delluc G (1985b) Thermochemical equilibria in multicomponent systems on microcomputers. International meetings on phase equilibrium data, Paris, 5–13 September

    Google Scholar 

  • Pateyron B, Elchinger M-F, Delluc G, Fauchais P (1992) Thermodynamic and transport properties of Ar–H2 and Ar–He plasma gases used for spraying at atmospheric pressure. I: properties of the mixtures. Plasma Chem Plasma Process 12(4):421–448

    Article  Google Scholar 

  • Popovic S, Konjevic N (1976) On the thermal conductivity of hydrogen at elevated temperatures. Z Naturforsch 31a:1042–1045

    Article  Google Scholar 

  • Schreiber PW, Hunter AM, Benedetto KR (1973) Electrical conductivity and total emission coefficient of air plasma. J AIAA 11(6):815–821

    Article  Google Scholar 

  • White WB, Johnson SM, Dantzig GB (1958) Chemical equilibrium in complex mixtures. J Chem Phys 28:751

    Article  Google Scholar 

Download references

Acknowledgments

The authors are particularly indebted to Mr. G. Delluc, Ms. M.F. Elchinger, and Dr. B. Pateyron of the Université de Limoges who performed the calculations of the following tables. Thanks are also due to Dr. Z. Njah of the Université de Sherbrooke and to Prof. J. Heberlein and Mr. P.C. Huang of the University of Minnesota who have made many helpful suggestions and provided comparisons of these data with those derived at the University of Minnesota over the past 15 years, and a compilation of a large number of experimental and theoretical literature data carried out by Dr. J. Lesinski at the Université de Sherbrooke. Particular thanks are also due to Dr. Siwen Xu, of Tekna Plasma Systems Inc., Sherbrooke, Québec, Canada, for his devoted efforts in the updating of this database and the preparation of the graphs and tabulated data files presented in Sects. 4, 5, and 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Cressault, Y., Fauchais, P.L., Murphy, A.B., Pfender, E. (2021). Thermodynamic and Transport Properties of Gases over the Temperature Range 300–30,000 K. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12183-3

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics