Skip to main content

Plasma Diagnostics Lasers, Flow Visualization, and Probe Techniques

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

In the present chapter, the coverage of plasma diagnostic techniques is extended to laser techniques such as Thomson and Rayleigh scattering, coherent anti-Stokes Raman spectroscopy (CARS), and laser-induced fluorescence (LIF). These offer significant advantages in terms of the range of plasma temperature to which they could be applied as well as their superior spatial resolution. These advantages have to be weighed, however, against increasing complexity and required investment cost. Essentially, all of these techniques are complimentary and should be used selectively depending on process/research needs.

In the latter part of this chapter, the review of plasma diagnostic techniques is extended to flow visualization, such as conventional, high-speed, or flash-assisted photography which have been shown to offer a valuable tool for the characterization and study of the flow dynamics as well as temperature fields in plasma sources in the absence or presence of particulate matter or liquid droplets. Such techniques are also enhanced through the use of “shadowgraph” and “Schlieren” photography which are based on variation of the refractive index in the flow field due to composition and/or temperature difference in the flow or density gradients in cold compressible flows. The last part of this chapter is dedicated to enthalpy probes which, while being intrusive, offer a valuable tool with excellent spatial resolution for the measurement of local temperature, velocity, and composition of plasma flows.

Emil Pfender: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABS:

Absorption spectroscopy

AC:

Alternative current

APJ :

Atmospheric plasma jet

BS:

Beam splitter

CARS:

Coherent anti-Stokes Raman spectroscopy

CCD:

Charge-coupled device

CW:

Continuous wave

DC:

Direct current

DFWM :

Degenerate four-wave mixing

DSD:

Droplet size distribution

EMR:

Electromagnetic radiation

EP:

Enthalpy probe

FFT :

Fast Fourier transform

FWHM:

Full width at half maximum

HC:

Hollow cathode

HSP:

High-speed photography

HVOF:

High-velocity oxyfuel

LDA:

Laser Doppler anemometry

LHS:

Left-hand side

LIF:

Laser-induced fluorescence

LTE:

Local thermodynamic equilibrium

MS:

Mass spectrometer

NIR:

Near infrared

OES:

Optical emission spectroscopy

OMA:

Optical multichannel analyzer

P:

Polarizer

PC:

Personal computer

PC:

Phase conjugate

PIV:

Particle image velocimetry

PM:

Photomultiplier

QMS:

Quadrupole mass spectrometer

RF:

Radio frequency

RHS:

Right-hand side

SHG:

Second harmonic generation

TA-LIF:

Two-photon absorption laser-induced fluorescence

TBC:

Thermal barrier coating

TD-LAS :

Tunable diode laser absorption spectroscopy

THG:

Third harmonic generation

UV:

Ultraviolet

VPS:

Vacuum plasma spraying

VUV:

Vacuum ultraviolet

VUV-LAS :

Vacuum ultraviolet laser absorption spectroscopy

WAS:

Wire arc spraying

References

  • Anciello O, Flamm DL (Eds) (1989) Plasma diagnostics, vol. I, discharge parameters and chemistry. Academic Press, New York

    Google Scholar 

  • Andrews DL, Demidov AA (2002) An introduction to laser spectroscopy, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Asmann M, Wank A, Kim H, Heberlein J, Pfender E (2001) Characterization the converging jet region in a triple torch plasma reactor. Plasma Chem Plasma Process 21(1):37–63

    Article  Google Scholar 

  • Bini R, Monno M, Boulos MI (2006) Numerical and experimental study of transferred arc in argon. J Phys D Appl Phys. 39:3253–3266

    Google Scholar 

  • Bini R, Monno M, Boulos MI (2007) Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc. Plasma Chem Plasma Proc 27:359–380

    Google Scholar 

  • Blais A, Jodoin B, Dorier J-L, Gindrat M, Hollenstein C (2005) Inclusion of aerodynamic non-equilibrium effects in supersonic plasma jet enthalpy probe measurements. J Therm Spray Technol 14(3):342–353

    Article  Google Scholar 

  • Bolot R, Klein D, Coddet C (2003) Effect of the chamber pressure on the structure of a plasma jet. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park

    Google Scholar 

  • Boselli MV, Ghedini E, Gherardi M, Rotundo F, Sanibondi P (2013) High-speed imaging investigation of transient phenomena impacting plasma arc cutting process optimization. J Phys D Appl Phys 46:224010

    Article  Google Scholar 

  • Boulos MI (1985) The inductively coupled r.f. plasma. Pure Appl Chem 57:1321–1352

    Article  Google Scholar 

  • Boulos MI (1992a) RF induction plasma spraying, state-of-the-art review. J Therm Spray Technol 1:33–40

    Article  Google Scholar 

  • Boulos MI (1992b) Radio-frequency plasma developments, scale-up and industrial applications. J High Temp Chem Proc 1:401–411

    Google Scholar 

  • Boulos MI (1997) The inductively coupled radio frequency plasma. High Temp Mat Process 1:17–39

    Article  Google Scholar 

  • Boulos MI (2001) Visualization and diagnostics of thermal plasma flows. J Vis 4(1):19–28

    Article  Google Scholar 

  • Boyd R (2008) Nonlinear optics, 3rd edn. Academic, Springer

    Google Scholar 

  • Broc A, De Benedictis S, Dilecce G (2004) LIF investigations on NO, O and N in a supersonic N2/O2/NO RF plasma jet. Plasma Sources Sci Technol 13:504–514

    Article  Google Scholar 

  • Brossa M, Pfender E (1988) Probe measurements in thermal plasma jets. Plasma Chem Plasma Process 8(1):75–90

    Article  Google Scholar 

  • Brousse E (2010) Elaboration by thermal spray of finely structured elements of a high temperature electrolyser for the production of hydrogen: processes, structures and characteristics, PhD Thesis University of Limoges, Sept 21

    Google Scholar 

  • Capetti A, Pfender E (1989) Probe measurements in argon plasma jets operated in ambient argon. Plasma Chem Plasma Process 9(2):329–341

    Article  Google Scholar 

  • Chen FF (1965) Chapter 4: Electric probes. In: Huddlestone RH, Leonard SL (eds) Plasma diagnostic techniques. Academic, New York, pp 113–200

    Google Scholar 

  • Chen FF (2003) Langmuir probe diagnostics (lecture note), Mini-Course on Plasma Diagnostics, IEEE-ICOPS meeting, Jeju, Korea, June 5, 2003

    Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Rotundo F, Sanibondi P, Boselli M, Dallavalle S, Gherardi M, Nemchinsky V, Vancini M (2012) Advances in plasma arc cutting technology: the experimental part of an integrated approach. Plasma Chem Plasma Process 32:411–426

    Article  Google Scholar 

  • Coudert JF, Planche MP, Fauchais P (1995) Velocity measurement of D.C. plasma based on arc root fluctuations. Plasma Chem Plasma Process 15(1):47–70

    Article  Google Scholar 

  • Demtröder W (2003) Laser spectroscopy: basic concepts and instrumentation, 3rd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Dickerman PJ (Ed) (1961) Optical spectrometric measurements of high temperatures. University of Chicago Press

    Google Scholar 

  • Döbele HF, Mosbach T, Niemi K, Schulz-von der Gathen V (2005) Laser-induced fluorescence measurements of absolute atomic densities: concepts and limitations. Plasma Sources Sci Technol 14(2005):S31–S41

    Article  Google Scholar 

  • Dorier JL, Jodoin B, Gindrat M, Blais A, Hollenstein C, Barbezat G (2003) A novel approach to interpret enthalpy probe measurements in low pressure supersonic plasma jets. In: 16th international symposium on plasma chemistry, Taormina, 22–27 June 2003

    Google Scholar 

  • Dresvin SV (ed) (1977) Physics and technology of low temperature plasmas. Iowa State University Press, USA

    Google Scholar 

  • Druet SAJ, Taran J-PE (1981) CARS spectroscopy. Prog Quant Electr 7:1–72

    Article  Google Scholar 

  • Dunlop JR, Tserepi AD, Preppernau BL, Cerny TM, Miller TA (1992) H atom plasma diagnostics: a sensitive probe of temperature and purity. Plasma Chem Plasma Process 12(1):89–101

    Article  Google Scholar 

  • Dzierzega K, Bratasz L, Pellerin S, Pokrzywka B, Musiol K (2003) Stark width and shift measurements for the 696.543 nm ArI line using degenerate four-wave mixing (DFWM) spectroscopy. Phys Scr 67:52–58

    Article  Google Scholar 

  • Dzierzega K, Pokrzywka B, Pellerin S (2004) Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy. J Phys D Appl Phys 37:1742–1749

    Article  Google Scholar 

  • Dzierżega K, Mendys A, Pokrzywk B (2014) What can we learn about laser-induced plasmas from Thomson scattering experiments. Spectrochim Acta B 98:76–86

    Article  Google Scholar 

  • Eddy TL, Detering BA, Wilson GC (1990) Thermal spray: research and applications (ed: Bernecki TF). ASM International, Ohio, pp 33–37

    Google Scholar 

  • El-Diasty F (2011) Coherent anti-Stokes Raman scattering: spectroscopy and microscopy. Vib Spectrosc 55:1–37

    Article  Google Scholar 

  • Fauchais P, Coudert JF, Vardelle M (1989) Plasma diagnostics. In O Auceillo, DL Flamm (Eds). Academic Press, New York, vol 1, pp 349–446

    Google Scholar 

  • Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108

    Article  Google Scholar 

  • Fauchais P, Coudert JF (1996) Mesure des Températures dans les Plasmas Thermiques. Rev Gén Therm 35:324–337

    Article  Google Scholar 

  • Fauchais P, Vardelle A (2000) Heat, mass and momentum transfer in coating formation by plasma spraying. Int J Therm Sci 39:852–870

    Google Scholar 

  • Fauchais P, Vardelle A (2011) Innovative and emerging processes in plasma spraying: from micro- to nano-structured coatings. J Phys D Appl Phys 44, 14pp

    Google Scholar 

  • Fauchais P, Joulia A, Goutier S, Chazelas C, Vardelle M, Vardelle A, Rossignol S (2013) Suspension and solution plasma spraying. J Phys D Appl Phys 46:224015, 14pp

    Article  Google Scholar 

  • Fauchais P, Vardelle M, Goutier S, Vardelle A (2015) Key challenges and opportunities in suspension and solution plasma spraying. Plasma Chem Plasma Process 35:511–525

    Article  Google Scholar 

  • Finkelnburg W, Peters TH (1957) Handbook of physics, spectroscopy II. In S Flügge (Ed). Springer-Verlag, Berlin, p 28

    Google Scholar 

  • Fincke JR (1996) Advanced diagnostic techniques for thermal plasmas. Pure Appl Chem 68(5):1001–1006

    Article  Google Scholar 

  • Fincke JR, Snyder SC, Swank WD (1993a) Comparison of enthalpy probe and laser light scattering measurement of thermal plasma temperature and velocities. Rev Sci Instrum 64(3):711–718

    Google Scholar 

  • Fincke JR, Swank WD, Haggard DC (1993b) Plasma spraying of alumina: plasma and particle flow fields. Plasma Chem Plasma Process 13(4):579–600

    Article  Google Scholar 

  • Fincke JR, Swank WD, Haggard DC (1993c) Entrainment and demixing in subsonic argon/helium thermal plasma jets. Plasma Chem Plasma Process 2(4):345–350

    Google Scholar 

  • Fincke JR, Chang CH, Swank WD, Haggard DC (1994) Entrainment and demixing in subsonic thermal plasma jets: comparison of measurements and predictions. Int J Heat Mass Transf 37:1673–1682

    Article  Google Scholar 

  • Fincke JR, Crawford DM, Snyder SC, Swank WD, Haggard DC, Williamson RL (2003) Entrainment in high-velocity, high-temperature plasma jets. Part I: experimental results. Int J Heat Mass Transf 46:4201–4213

    Article  Google Scholar 

  • Frederickson K, Leonov S, Nishihara M, Ivanov E, Adamovich IV, Lempert WR, Rich JW (2014) Energy conversion in high enthalpy flows and non-equilibrium plasmas. Prog Aerosp Sci 72:49–65

    Article  Google Scholar 

  • Frederickson K, Leonov S, Nishihara M, Ivanov E, Adamovich IV, Lempert WR, Rich JW (2015) Energy conversion in high enthalpy flows and non-equilibrium plasmas. Prog Aerospace Sci 72:49–65

    Google Scholar 

  • Froula DH, Glenzer SH, Luhmann NC Jr, Sheffield J (2011) Plasma scattering of electro-magnetic radiation. Elsevier, London

    Google Scholar 

  • Fusselman SP, Yasuda HK (1994) Particle densities and non-equilibrium in a low-pressure argon plasma jet. Plasma Chem Plasma Process 14(3):251–275

    Article  Google Scholar 

  • Gindrat M, Dorier J-L, Hollenstein C, Refke A, Barbezat G (2004) Characterization of supersonic low-pressure plasma jets with electrostatic probes, plasma sources Sci. Technology 13:484–492

    Google Scholar 

  • Grey J, Jacobs PF, Sherman MP (1962) Calorimetric probe for the measurement of extremely high temperatures. Rev Sci Instrum 33(7):738–741

    Article  Google Scholar 

  • Grey J (1963) Sensitivity analysis for the calorimetric probe. Rev Sci Instr 134:857–859

    Google Scholar 

  • Grey J (1965) Thermodynamic methods of high-temperature measurement. ISA Trans 4:102–115

    Google Scholar 

  • Grey J, Jacobs PF, Sherman MP (1962) calorimetric Probe for the Measurement of Extremely High Temperatures, Rev. Sci. Instrum., 33(7):738–741

    Google Scholar 

  • Griem HR (1964) Plasma spectroscopy. McGraw-Hill, New York

    Google Scholar 

  • Hamatani H, Crawford WS, Cappelli MA (2002) Optical measurements of plasma velocity and temperature in a low-rate, low-power LPPS system. Surf Coat Technol 162(2002):79–92

    Google Scholar 

  • Hlına J, Gruber J, Šonský J (2006) Application of a CCD camera to investigations of oscillations in a thermal plasma jet. Meas Sci Technol 17(2006):918–922

    Article  Google Scholar 

  • Hutchinson IH (2002) Principles of plasma diagnostics. Cambridge Academic Press, Cambridge, UK

    Book  Google Scholar 

  • Hussary NA (1999) Fluid dynamic investigations of wire arc spraying process. MS Thesis, University of Minnesota, Minneapolis

    Google Scholar 

  • Hussary NA, Heberlein JVR (2001) Atomization and particle jet interactions in the wire-arc spaying process. J of Thermal Spray Technolgoy 10(4):604–610

    Google Scholar 

  • Hussary NA, Heberlein JVR (2007) Effect of system parameters on metal breakup and particle formation process in wire arc spraying process. J Thermal Sprat Technol 16(10):140–152

    Google Scholar 

  • Johnson CS, Gabriel DA (1994) Laser light scattering. Dover Publications, New York, pp 3–29

    Google Scholar 

  • Kelkar M, Heberlein J (2002) Wire-arc spray modeling. Plasma Chem Plasma Process 22(1):1–25

    Article  Google Scholar 

  • Kim S (2004) Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel, PhD Mechanical Engineering of Stanford University

    Google Scholar 

  • Kodama N, Kita K, Tanaka Y, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2014) Two-dimensional spectroscopic observation of a pulse-modulated induction thermal plasma torch for nanopowder synthesis. J Phys Conf Ser 550:012026

    Article  Google Scholar 

  • Kornas V, Roth A, Döbele HF, Pross G (1995) CARS diagnostics of acetylene formation in a plasma test reactor for hydrocarbon synthesis. Plasma Chem Plasma Process 15(1):71–86

    Article  Google Scholar 

  • Lange S, Sieber M, Forster G, Marqués-Lopez JL, Schein J, Kähler CJ (2011) Velocity diagnostics for gas velocity distributions in cold gas and plasma spraying using non-resonant laser scattering. J Therm Spray Technol 20(1–2):12–20

    Article  Google Scholar 

  • Langmuir, Mott-Smith H (1926) The theory of collectors in gaseous discharges. Phys Rev 28:727–763

    Google Scholar 

  • Lapierre D, Kearney RJ, Vardelle M, Vardelle A, Fauchais P (1994) Effect of a substrate on the temperature distribution in an argon-hydrogen thermal plasma jet. Plasma Chem Plasma Process 14(4):407–423

    Article  Google Scholar 

  • Ma S, Gao H, Wu L, Zheng S (2008) Time and spatially resolved spectroscopic measurement of temperatures in a free-burning arc by monochromatic imaging. Meas Sci Technol 19:105602, 5pp

    Article  Google Scholar 

  • Magne L, Pasquiers S (2005) LIF spectroscopy applied to the study of non-thermal plasmas for atmospheric pollutant abatement. C R Physique 6(2005):908–917

    Article  Google Scholar 

  • Marchand O, Girardot L, Planche MP, Bertrand P, Bailly Y, Bertrand G (2011) An insight into suspension plasma spray: injection of the suspension and its interaction with the plasma flow. J Therm Spray Technol 20(6):1310–1320

    Article  Google Scholar 

  • Marr GV (1968) Plasma spectroscopy. Elsevier Publishing Company, Amsterdam-London-New York

    Google Scholar 

  • Matsui M, Komurasaki K, Arakawa Y (2002) Characterization of arc jet type arc-heater plumes. In: 33rd Plasmadynamics and lasers conference. https://doi.org/10.2514/6.2002-2242

  • Matsui M, Takayanagi H, Oda Y, Komurasaki K, Arakawa Y (2004) Performance of arc-jet-type atomic-oxygen generator by laser absorption spectroscopy and CFD analysis. Vacuum 73(2004):341–346

    Article  Google Scholar 

  • Matsui M, Komurasaki K, Arakawa Y (2005) Laser absorption spectroscopy in high enthalpy flows. In: 38th AIAA Thermophysics conference. https://doi.org/10.2514/6.2005-5325

  • Matsui M, Yokota S, Takayanagi H, Koizumi H, Komurasaki K, Arakawa Y (2006) Plume characterization of plasma thrusters using diode-laser absorption spectroscopy. In: 44th AIAA Aerospace sciences meeting and exhibit. https://doi.org/10.2514/6.2006-767

  • Mazouffre S, Pawelec E (2009) Metastable oxygen atom velocity and temperature in supersonic CO2 plasma expansions. J Phys D Appl Phys 42:015203. 8pp

    Article  Google Scholar 

  • Merlino RL (2007) Understanding Langmuir probe current-voltage characteristics. Am J Phys 75(12):1078–1085

    Article  Google Scholar 

  • Miles RB, Lempert WR, Forkey JN (2001) Review article. Meas Sci Technol 12:R33–R55

    Article  Google Scholar 

  • Miller TA (1981) Novel techniques for plasma diagnostics: electron paramagnetic resonance and laser-induced fluorescence spectroscopy. Plasma Chem Plasma Process 1(1):3–18

    Article  Google Scholar 

  • Mitchner M, Kruger CH Jr (1973) Partially ionized gases. John Wiley & Sons, New York

    Google Scholar 

  • Murphy AB, Farmer AJD (1992) Temperature measurement in thermal plasmas by Rayleigh scattering. J Phys D Appl Phys 25:634–643

    Google Scholar 

  • Newbery AP, Grant PS (2000) Droplet splashing during arc spraying of steel and the effect on deposit microstructure. J Therm Spray Technol 9(2):250–258

    Article  Google Scholar 

  • Niemi K, Schulz-von der Gathen V, Döbele HF (2001) Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation. J Phys D Appl Phys 34:2330–2335

    Article  Google Scholar 

  • Niemi K, Schulz-von der Gathen V, Döbele HF (2005) Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet. Plasma Sources Sci Technol 14:375–386

    Article  Google Scholar 

  • Onofri F, Barbosa S (2013) Chapter 2: Optical particle characterization. In: Boutier A (ed) Laser metrology in fluid mechanics. Wiley, Hoboken

    Google Scholar 

  • Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543

    Article  Google Scholar 

  • Preppernau BL, Dolson DA, Gottscho RA, Miller TA (1998) Temporally resolved laser diagnostic measurements of atomic hydrogen concentrations in RF plasma discharges. Plasma Chem Plasma Process 9(2):157–164

    Article  Google Scholar 

  • Raghu S, Goutevenier G, Gansert R (1995) Comparative study of the structure of gas-stabilized and water-stabilized plasma jets. J Therm Spray Technol 4(2):175–178

    Article  Google Scholar 

  • Rahman M, Soucy G, Boulos MI (1995) Analysis of the enthalpy probe technique for thermal plasma diagnostics. Rev Sci Instrum 66(6):3424–3431

    Article  Google Scholar 

  • Rahman M, Soucy G, Boulos MI (1996) Diffusion phenomena of a cold gas in a thermal plasma stream. J Plasma Chem Plasma Process 16(1):169S–189S

    Google Scholar 

  • Rajabian M, Gravelle DV, Vacquié S (2004) Measurements of temperatures and electron number density in an argon–nitrogen plasma jet generated by a dc torch-operation close to supersonic threshold. Plasma Chem Plasma Process 24(2):261–284

    Article  Google Scholar 

  • Ratovoson P, Valensi F, Razafinimanana M, Tmenova T (2014) Spectroscopic study and high speed imaging of a transient arc. J Phys Conf Ser 550:012012

    Article  Google Scholar 

  • Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2013) High speed video camera and electrical signal analyses of arcs behavior in a 3-phase AC arc plasma torch. Plasma Chem Plasma Process 33:779–796

    Article  Google Scholar 

  • Reuter S, Niemi K, Schulz-von der Gathen V, Döbele HF (2009) Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet. Plasma Sources Sci Technol 18:015006, 9pp

    Article  Google Scholar 

  • Reuter S, Sousa JS, Stancu GD, Hubertus van Helden JP (2015) Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets. Plasma Sources Sci Technol 24:054001, 41pp

    Article  Google Scholar 

  • Röpcke J, Lombardi G, Rousseau A, Davies PB (2006) Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review. Plasma Sources Sci Technol 15:S148–S168

    Article  Google Scholar 

  • Russ S, Pfender E, Strykowsk PJ (1994) Unsteadiness and mixing in thermal plasma jets. Plasma Chem Plasma Process 14(4):425–436

    Article  Google Scholar 

  • Salpeter EE (1960) Electron density fluctuations in a plasma. Phys Rev 120:1528

    Article  MathSciNet  Google Scholar 

  • Sneep M, Ubachs W (2005) Direct measurement of the Rayleigh scattering cross section in various gases. J Quant Spectrosc Radiat Transf 92:293–310

    Article  Google Scholar 

  • Stancu GD, Kaddouri F, Lacoste DA, Laux CO (2010) Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. J Phys D Appl Phys 43:124002, 10pp

    Article  Google Scholar 

  • Stanisic J, Kosikowski D, Mohanty PS (2006) High-speed visualization and plume characterization of the hybrid spray process. J Therm Spray Technol 15(4):750–758

    Article  Google Scholar 

  • Steffens H-D, Duda T (2000) Enthalpy measurements of direct current plasma jets used for ZrO2-Y2O3 thermal barrier coatings. J Therm Spray Technol 9(2):235–240

    Article  Google Scholar 

  • Swank WD, Fincke JR, Haggard DC (1993b) Behavior of Ni-AI particles in argon: helium plasma jets. J Therm Spray Technol 2(3):243–249

    Article  Google Scholar 

  • Tachibana K (2002) VUV to UV laser spectroscopy of atomic species in processing plasmas. Plasma Sources Sci Technol 11:A166–A172

    Article  Google Scholar 

  • Wagenaars E, Gans T, O’Connell D, Niemi K (2012) Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet. Plasma Sources Sci Technol 21:042002, 4pp

    Article  Google Scholar 

  • Wang Z, Kearney RJ (1990) Rayleigh scattering from an argon plasma jet at atmospheric pressure. J Quant Spectrosc Radiat Transf 44(3):339–343

    Article  Google Scholar 

  • Warner K, Hieftje GM (2002) Thomson scattering from analytical plasmas. Spectrochim Acta B 57:201–241

    Article  Google Scholar 

  • Weinstein LM, Settles GS (2003) Chapter 1: Schlieren. In: Mercer C (ed) Optical metrology for fluids, combustion and solids. Springer Science and Business Media, New York

    Google Scholar 

  • Westerweel J (1993) Digital particle image velocimetry – theory and application. Delft University, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2021). Plasma Diagnostics Lasers, Flow Visualization, and Probe Techniques. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12183-3

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics